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Abstract

For abstractive text summarization (ATS), la-
borious data annotation and time-consuming
model training become two high walls, hinder-
ing its further progress. Active Learning (AL),
selecting a few informative instances for anno-
tation and model training, sheds light on solv-
ing these issues. However, only few AL-based
studies focus on ATS and suffer from low stabil-
ity, effectiveness, and efficiency. To solve the
problems, we propose a novel LLM-determined
curriculum active learning framework. Firstly,
we design a prompt to ask large language mod-
els to rate the difficulty of instances, which
guides the model to train on from easier to
harder instances. Secondly, we design a novel
AL strategy, i.e., Certainty Gain Maximization,
enabling to select instances whose distribution
aligns well with the overall distribution. Ex-
periments show that our method can improve
the stability, effectiveness, and efficiency of the
ATS backbones. Code is available on Github 1.

1 Introduction

Abstractive text summarization (ATS) aims to con-
dense a lengthy document into a concise yet in-
formative summary, preserving the essential in-
formation of the original document (Sun et al.,
2023). Benefiting from the Transformer (Vaswani
et al., 2017) and pre-training strategies (Lewis et al.,
2020; Zhang et al., 2020), a new paradigm, i.e., pre-
training and fine-tuning Transformer-based large
language models (LLMs), achieves state-of-the-art
results in ATS (Xia et al., 2024). However, as the
number of parameters in LLMs increases, process-
ing LLMs for ATS becomes impractical due to the
huge time and computational resources required.
Moreover, similar to other natural language gen-
eration (NLG) tasks, fine-tuning LLMs for ATS

*Corresponding author.
1https://github.com/Clearloveyuan/

EMNLP-LDCAL/tree/main
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Figure 1: BART-base model with various AL methods
on the AESLC dataset. (A) Performance on the test set,
where AL methods select instances with a query size of
20 for training. (B) Running time over 200 instances.

requires large-scale datasets, which always neces-
sitate labor intensive cost and expert knowledge,
further impeding ATS (Tsvigun et al., 2023).

Active learning (AL) sheds light on alleviating
these issues (Settles, 2009). To reduce human la-
bor and time consumption, AL aims to select a few
unlabeled yet informative instances for annotation
and model training (Li et al., 2024a). Specifically,
BAS (Gidiotis et al., 2024) and IDDS (Tsvigun
et al., 2023) are recent best-performing AL meth-
ods for ATS. BAS measures the uncertainty of a
model’s prediction for each instance and annotates
an instance with the highest uncertainty. Given a
model and an input sentence, BAS randomly drops
certain parameters in the model to generate multi-
ple outputs. The variance of the BLEU scores (Pa-
pineni et al., 2002) between the input and each
output is considered as the uncertainty of the given
input instance. In contrast, IDDS (Tsvigun et al.,
2023) aims to acquire representative instances for
model training. It selects instances that are dis-
similar to those already selected but are the most
representative among unselected instances.

Despite the great success of the AL methods in
ATS, there are still three issues. i) Unstable Perfor-
mance. As shown in Figure 1(A), as the number of
selected instances increases, previous methods ex-
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Figure 2: UMAP visualization (McInnes et al., 2020) of selected instances from BART with various AL methods on
the AESLC dataset. Blue and red points represent 14,200 unselected and 200 selected instances, respectively.

hibit unstable fluctuations on model performance.
This instability often prevents the model from being
fully optimized, thereby hindering its performance.
ii) Misaligned Distribution. As shown in Figure 2,
BAS selects outliers because such instances have
high uncertainty. While IDDS is designed to avoid
outliers, it neglects instances in low density regions.
Because the distribution of selected instances dif-
fers from that of the entire dataset, performance im-
provement is hampered. iii) High Computational
Cost. In Figure 1(B), among all AL methods, BAS

is the most time-consuming one, because it visits
the remaining unselected instances in each iteration.
Although IDDS visits all instances in advance with-
out inference at each iteration, its time complexity
is O(n2) with n being the number of instances,
which is a huge overhead for large-scale datasets.

To address the above issues, we make two contri-
butions. Firstly, to address unstable performance,
we propose LLM-Determined Curriculum Active
Learning (LDCAL). We found that the AL-based
training process is highly sensitive to the train-
ing order of instances, which easily leads to the
model’s unstable performance. Drawing inspira-
tion from the way humans realize learning stability
by gradually increasing the difficulty of learning
content, we employ curriculum learning by grad-
ually increasing the complexity of instances from
easy to hard during training. Unlike previous stud-
ies that always determine document difficulty based
on traditional curriculum, we design a prompt to
directly ask LLMs for document difficulty. By fol-
lowing the curriculum determined by LLMs, stable
performance can be achieved. Secondly, to address
the misaligned distribution and high computational
cost, we propose a novel AL strategy named Cer-
tainty Gain Maximization. Certainty measures how
well unselected instances are represented by se-

lected ones, and we select instances that maximize
the certainty gain for the unselected instances. By
using Certainty Gain Maximization, we can select
instances whose distribution aligns well with the
overall distribution in Figure 2(D). In addition, the
time complexity of Certainty Gain Maximization
is O(nk) (k ≪ n), where n and k represent the
number of unselected and selected instances, re-
spectively. It is significantly lower than that of
existing methods in Figure 1(B). The main contri-
butions of this study are summarized as follows:

• To the best of our knowledge, we are the first to
propose a curriculum active learning framework for
ATS, where LLM-determined curriculum enhances
the stability and effectiveness of the AL processes.

• We design a certainty gain-based AL strategy
to select diverse instances with uneven distribution,
further improving effectiveness and efficiency.

• Experiments conducted on three ATS bench-
marks demonstrate the stability, effectiveness, and
efficiency of our method LDCAL.

2 Related Work

Abstractive Text Summarization. Seq2seq mod-
els (Sutskever et al., 2014) along with the at-
tention mechanism (Bahdanau et al., 2015) have
made neural networks a primary tool for ATS.
Then, pre-trained language models, based on Trans-
former, achieve SOTA performance on various
tasks (Zhang et al., 2024; Li et al., 2023b; You
et al., 2022). Pre-training and fine-tuning has be-
come a mainstream paradigm for ATS (Lewis et al.,
2020; Zhang et al., 2020; Qi et al., 2020; Guo et al.,
2021). We aim to explore an efficient and effective
method based on this paradigm. Although LLM-
based zero-shot and in-context learning (Chhabra
et al., 2024; Jain et al., 2023) inspired many inter-
ests recently, which is out scope of this work.
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Active Learning (AL). AL selects only a few in-
formative instances to annotate for model train-
ing, aiming to reduce human annotation efforts
and model computation costs (Margatina and Ale-
tras, 2023). Recent work almost leverages AL

for text classification (Wu et al., 2022; Yu et al.,
2022; Schröder et al., 2023) and sequence tagging
tasks (Radmard et al., 2021; Yuan et al., 2022),
with little focus on NLG tasks. Current AL-based
methods for NLG can be broadly classified into
two categories: uncertainty-based and diversity-
based methods (Zhang et al., 2022b). Specifically,
uncertainty-based methods identify uncertain in-
stances as those that prompt models to produce di-
verse outputs, assuming these instances offer more
valuable information for model training than oth-
ers (Raj and Bach, 2022). For example, for each
source instance, Wang et al. (2019) repeat the fol-
lowing two processes several times: 1) randomly
drop certain model parameters and 2) infer the
translation probability between the source and the
generated translation. After repetition, the variance
of these translation probabilities is considered as
the uncertainty for the source instance. Follow-
ing their work, Xiao et al. (2020) use the variance
of the BLEU score as an uncertainty measure in
the German-English translation, and Gidiotis et al.
(2024) adopt this for ATS. Diversity-based meth-
ods assume that diverse instances can approximate
the original data distribution, suggesting the selec-
tion of the most representative instances for model
training (Kim et al., 2006). For example, to avoid
outliers, Tsvigun et al. (2023) select instances that
are dissimilar to already selected ones while en-
suring similarity to unselected instances. Xia et al.
(2024) calculate the average Jensen-Shannon di-
vergence between each unselected instance and
selected instances as a diversity score, to allevi-
ate hallucinations. Unlike these methods, LDCAL

involves curriculum learning and incorporates a
new certainty gain maximization strategy to select
instances from various regions of the ATS dataset.

Curriculum Learning (CL). As a training strat-
egy, CL gradually increases the complexity of the
data, i.e., easy-to-hard, during the training process
for faster convergence and better performance (Ben-
gio et al., 2009). CL achieves great success in var-
ious NLG tasks, e.g., machine translation (Zhang
et al., 2021; Mohiuddin et al., 2022), medical report
generation (Liu et al., 2021; Zhang et al., 2022a), di-
alogue generation (Zhu et al., 2021), and language
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Figure 3: Overall pipeline of the LDCAL framework.

modeling (Mi, 2023). “How to define the difficulty
of training instances” is a fundamental issue in CL.
For example, sentence length (Kocmi and Bojar,
2017), word rarity (Zhang et al., 2018), and norm of
word embedding (Liu et al., 2020) are considered
as difficulty measurements for machine translation.
For ATS, sentence length (Kano et al., 2021), self-
defined confidence scores (Sotudeh et al., 2022;
Sun et al., 2023), and ROUGE scores (Magooda
and Litman, 2021) are used. Instead of defining
text difficulty from classic curriculum, we design
prompts to directly ask LLMs for the difficulty.

3 Methodologies

We first introduce the detailed process of the pro-
posed LDCAL framework in Section 3.1. Then, we
introduce the LLM-determined curriculum learning
strategy for difficulty measurement in Section 3.2.
Finally, in Section 3.3, we describe the novel AL

strategy, i.e., the certainty gain maximization.

3.1 Curriculum Active Learning Framework

The overview of our LDCAL for ATS is shown in
Figure 3. We first introduce the necessary notations
and then present the detailed process.

Notations. We define Dpool={x(i)}Ni=0 as a dataset
pool containing N unlabeled documents, where
x(i)=(x(i)1 , · · · , x(i)n ) represents the i-th unlabeled
document with n tokens. Using an instance diffi-
culty measurement function I() and an AL-based
instance acquisition function A(), we select a few
instances from Dpool for annotation and then add
them to a labeled pool Dlab = {(x(i),y(i))}Mi=0,
where y(i)=(y(i)1 , · · · , y(i)m ) is the i-th annotated
summary with m tokens and M denotes the size of
Dlab. Given an LLM with weights W , we fine-tune
it with Dlab in a balanced easy-to-hard order.

LDCAL Framework. LDCAL mainly contains
four processes, and we will introduce them in order.

1) Curriculum Learning with Instance Division.
Based on the designed documents’ difficulty
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You are tasked with evaluating the ease of generating 
a summary for a given English text. Rate the difficulty
of summarizing the text on a scale from 1.0 to 4.0. 
Provide a comprehensive rationale for your assessment.
Consider factors such as the complexity of the language 
and the coherence of the text. Explain how these elements
influence the difficulty level of the generating a summary.

Prompt

Figure 4: LLM-determined instance difficulty for CL.

measurement function I(), we set four difficulty
levels for documents and separate Dpool into four
corresponding sub-pools, formulated by:

DEasy
pool ,DMode.

pool ,DChal.
pool ,DHard

pool = I(Dpool), (1)

where “Mode.” and “Chal.” are abbreviations
for moderate and challenging, respectively. For
more details on I(), please refer to Section 3.2.

2) Active Learning for Instance Selection. We de-
sign a diversity-based acquisition function A()
to select a few representative instances in paral-
lel from four unlabeled sub-pools as follows:

{x(i)}ki=1 = A(D∗
pool,M

∗), (2)

where ∗ ∈ {Easy, Mode., Chal., Hard}, M∗ is
the number of selected instances from D∗

pool and
k is the total query size. For more details on
A(), please refer to Section 3.3.

3) Human Annotation. Each selected instance x
is annotated with an abstractive text summary
y by human annotators. Then, the selected doc-
ument x is removed from the unlabeled pool
D∗

pool and is added to the labeled pool as:

D∗
pool := D∗

pool\x; Dlab := Dlab ∪ {(x,y)}. (3)

4) Model Fine-tuning. Dlab is used to update the
weights of an LLM pre-trained language model
in a balanced easy-to-hard order as follows:

W̃ = argmin
W

L (Dlab,W ) , (4)

where L is the loss used for fine-tuning, e.g., su-
pervised fine-tuning objective (Li et al., 2024b).

Then, we introduce two core modules of LDCAL.

3.2 CL with Instance Division
Humans’ learning process typically occurs in an
easy-to-hard order, as directly learning a difficult

concept may exceed their abilities to understand it.
To ensure that the model learns as much knowledge
as possible from limited instances, we design two
CL strategies to mimic this process, based on under-
standing the difficulty of text from the perspectives
of Classic manners and LLMs, respectively.

LLM-Determined CL. Considering that LLMs in-
creasingly outperform humans in many tasks (Mi-
naee et al., 2024) and can understand difficulty
of text from a model’s perspective, we design a
LLM-determined CL strategy. Specifically, we cre-
ate a prompt, as shown in Figure 4, to directly
ask an LLM, i.e., GPT-3.5, to rate the difficulty in
understanding each document. We then use these
scores to measure document difficulty. Considering
that LLM resources may be limited in reality, we
also propose a Classic CL and use it as a baseline
(CCAL) to compare with LLM-determined CL.

Classic CL. Current studies determine the diffi-
culty of understanding a document based on read-
ing experience like sentence length or manually
defined metrics like Perplexity, achieving improve-
ments in many tasks (Gao et al., 2024). Thus, we
summarize traditional difficulty-based CL methods
for measuring document difficulty in three aspects.

1) Lexical Complexity. i) Word_freq: Average
frequency of all words in the document; ii) POS:
Average frequency of simple universal part-of-
speech tags in the document, such as PROPN
and VERB; iii) TAG: Average frequency of de-
tailed part-of-speech tags in the document like
NNP, VBZ, and VBG, annotated using spaCy.2

2) Syntactic Structure Complexity. i) Sent_len:
Number of words in the text; ii) Parse_child: Av-
erage of the number of children of words in the
sentence parse tree. iii) DEP: Syntactic relation
connecting a word to its parent in the depen-
dency parse tree of the sentence, e.g., amod and
compound (Jafarpour et al., 2021).

3) Contextual Semantic Complexity. i) LL_loss:
Average loss of words in sentences from Long-
former (Beltagy et al., 2020); ii) GPT_score: It
is based on the likelihood of the sentence being
generated by GPT-2, with lower scores indicat-
ing more difficulty (Radford et al., 2019).

Finally, we use the normalized weighted sum of
above-mentioned scores as the difficulty score for
each document, with smaller scores being simpler.

2https://github.com/explosion/spaCy.
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Instance Division. After obtaining document diffi-
culty scores by CL, we divide unlabeled instances
Dpool into four sub-pools, as formulated in Eq.(1).
In Figure 3, we further partition selected instances
of these four sub-pools into several blocks, where
each block contains an equal number of easy, mod-
erate, challenging, and hard instances. We utilize
such balanced blocks for model training, with in-
stances in each block sorted from easy to hard. We
refer to this as the balanced easy-to-hard order.

3.3 Active Learning for Instance Selection

We argue that uncertainty-based methods tend to
select outliers that have small value for model train-
ing. Diversity-based methods overlook uneven den-
sity of instances, repeatedly selecting instances
from high-density areas while neglecting those
from low-density areas. To relieve these issues, we
propose the certainty gain maximization, aiming
to maximize the diversity of selected instances and
avoid outliers, i.e., select representative instances
from both high-density and low-density regions.

Specifically, we first obtain the embedding of
each instance x(u) using an encoder Φ(), denoted
as Φ(x(u))=e(u), e.g., using the [CLS] pooled
sequence embedding from BERT (Devlin et al.,
2019). Then, a certainty score (CER) for each unla-
beled instance x(u) is defined as how well it can be
represented by those already labeled instances as:

CER(x(u)) = max
x(ℓ) ∈Dlab

Sim(x(u),x(ℓ)), (5)

where Sim() can be any similarity measure, e.g., a
scalar product Sim(x(u),x(ℓ)) = <e(u), e(ℓ)>. We
assume the higher the certainty score between e(u)

and e(ℓ), the better x(u) can be represented by x(ℓ).
To ensure that the final Dlab maximizes the over-

all CER, we first define the Certainty Gain (CERG)
for each unlabeled instance. Specifically, if any
one unlabeled instance x(s) is selected for annota-
tion, its impact on the certainty gain of any other
unlabeled instances x(u) can be formulated by:

CERG(x(s),x(u)) = max{Sim(x(s),x(u))−CER(x(u)), 0},
(6)

where we avoid negative certainty gain by setting 0
to represent that there is no certainty gain for x(u).

Due to uneven instance distribution in ATS,
solely focusing on selecting instances to maximize
the certainty gain of all unlabeled instances would
bias the sampling towards high-density regions. To
address this issue, we introduce the average cer-

tainty gain maximization (ACERG) as follows:

ACERG(x(s)) =
1

L

∑

x(u)∈Dpool

CERG(x(s),x(u)), (7)

where L represents the total number of unlabeled
instances with certainty gain greater than 0, i.e.,
CERG(x(s),x(u)) > 0. Since outliers tend to have
a relatively small sum of certainty gain scores, we
introduce a threshold β = 50 to avoid selecting
outliers. In practice, we select the same number of
instances that have the highest ACERG from each
sub-pool (Eq.(2)), which is simple yet effective.

Time Complexity. Compared to uncertainty-based
acquisition strategies, LDCAL does not require re-
training an acquisition model during each AL iter-
ation, as instance representations and similarities
can be calculated by Eq.(5) before starting the AL

annotation process. Compared to existing diversity-
based acquisition strategies, such as IDDS and core-
set (Sener and Savarese, 2017), which have a time
complexity of O(n2) with n being the number of
unlabeled instances, LDCAL has an almost linear
time complexity of O(nk), where k is the number
of annotated instances with k ≪ n.

Table 1: Dataset statistics of the used Abstract Text
Summarization Datasets. Specifically, # Ins. represents
number of instances, Doc. len. represents the averaged
length of documents and Sum. len. represents the aver-
aged length of summaries.

Dataset Subset # Ins. Doc. len. Sum. len.

Gigaword Train 200 40.8 13.3
Test 2K 38.6 12.5

AESLC Train 14.4K 142.4 7.8
Test 1.9K 143.8 7.9

WikiHow Train 184.6K 377.5 77.2
Test 1K 386.9 77.0

Pubmed Train 119.1K 495.4 263.9
Test 6.7K 509.5 268.0

4 Experiments and Discussions

4.1 Experimental Settings
Datasets. Following Tsvigun et al. (2023), we
evaluated ATS backbones using three widely-used
datasets. AESLC contains short emails with their
subject lines as summaries (Zhang and Tetreault,
2019). WikiHow contains medium-sized articles
with their headlines as summaries (Koupaee and
Wang, 2018). PubMed contains long scientific arti-
cles with their abstracts as summaries (Cohan et al.,
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2018). Table 1 displays the numbers of instances
in both training and test sets, along with the av-
erage token counts for documents and summaries.
All datasets are in English. In line with Tsvigun
et al. (2023), we have refined the WikiHow dataset
by removing noisy instances. Specifically, we ex-
clude those with documents containing ten or fewer
tokens and summaries with three or fewer tokens.

Different human-based curriculums have differ-
ent ranges. For example, in the AESLC dataset,
the range of word length is 25 to 3136, while the
range of the POS score is 3 to 948. Therefore,
we first normalize each curriculum score and then
add them up as the difficulty score for the doc-
ument. Finally, we arranged the samples in as-
cending order according to the difficulty score of
the document and evenly divided them into four
sub-pools. For example, we have total number
of 14,436 samples in the AESLC dataset and we
divide it as |DEasy

pool | = 3, 609, |DMode.
pool | = 3, 609,

|DChal.
pool | = 3, 609, |DHard

pool | = 3, 609. For LDCAL,
we follow the same way to equally separate in-
stances into four equal sizes according to their dif-
ficulty scores, which is obtained from GPT-3.5.

Baselines and Evaluation Metrics. We selected
six classic and state-of-the-art (SOTA) AL base-
lines for comparison, including uncertainty-based
methods: NSP (Xiao et al., 2020), ENSP (Lyu et al.,
2020), and BAS (Gidiotis et al., 2024); diversity-
based methods: core-set (Sener and Savarese,
2017) and IDDS (Tsvigun et al., 2023); Random
Sampling, and Classic CL with certainty gain-
based AL strategy, i.e., CCAL. Since there are no
hybrid active learning baselines for text summa-
rization, we do not compare with those general ac-
tive learning baselines in the classification field (Li
et al., 2023a, 2024a). To evaluate the quality of gen-
erated summaries, we used the commonly adopted
ROUGE metrics (Lin, 2004). Considering that hal-
lucination of the generated summaries is one of the
most crucial problems in ATS (Nan et al., 2021;
Goyal et al., 2022), we measured the factual consis-
tency of the generated summaries with the original
documents by SummaCZS (Laban et al., 2022).

Implementation Details. For uncertainty-based
methods, we first randomly selected ten annotated
instances to fine-tune the ATS model. We then used
the model to infer the uncertainty scores of unla-
beled instances for the first AL iteration. Other
baselines do not require fine-tuning the model to
make a query for the first AL iteration. In each AL

iteration, we selected the top 20 instances (query
size) from Dpool based on the uncertainty or diverse
score obtained by an acquisition strategy. The se-
lected instances with their ground-truth summaries
are added to Dlab. Following previous work on an-
notation emulation (Shen et al., 2017; Shelmanov
et al., 2021), we used ground-truth summaries to
emulate human-annotated summaries. Finally, we
fine-tuned an ATS model from scratch and evalu-
ated it on a held-out test set. We ran the AL loop
for 10 iterations with 200 instances in total for
each experiment. We also report the performance
of ATS backbones in each iteration to show the
dynamics of the model performance, depending
on the invested annotation effort. To ensure a fair
comparison with previous studies, we used either
off-the-shelf software packages or the code pro-
vided by the respective authors. Each model was
run ten times, and the average performance across
these runs is reported as the final result.

Backbones and Hyperparameters. We conducted
experiments using the SOTA ATS backbones:
BART-base (Lewis et al., 2020) and PEGASUS-
large (Zhang et al., 2020). We tuned the hyperpa-
rameters by the ROUGE-L score on the subset of
the Gigaword dataset (Graff et al., 2003).

4.2 Quantitative Evaluation

4.2.1 Comparison with SOTA Baselines
High Effectiveness. In Table 2, to measure the
quality and factual consistency of the generated
abstractive summaries, we report ROUGE and
SummaCZS scores for baselines. We have the
following three main findings. Firstly, LDCAL

and CCAL achieve the best and second-best per-
formance compared to all baselines, showing the
effectiveness of combing CL with AL. Secondly,
NSP, ENSP, and BAS underperform Random Sam-
pling since they often infer outliers with high uncer-
tainty scores and select the outliers for model train-
ing. It is demonstrated in Section 4.3.3. Thirdly,
IDDS outperforms Random Sampling because it
can avoid outliers. However, IDDS underperforms
LDCAL and CCAL, as it tends to select redundant
instances from high-density regions and neglects
instances from low-density regions. As mentioned
in § 4.3.3, when we add a few instances from low-
density regions to IDDS, its performance improves.

High Efficiency. In Figure 5, when BART-base
is selected as the backbone, LDCAL and CCAL

show high efficiency compared to all baselines.
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AESLC WikiHow PubMed
Model Method ROUGE-1 ROUGE-2 ROUGE-L SummaCZS ROUGE-1 ROUGE-2 ROUGE-L SummaCZS ROUGE-1 ROUGE-2 ROUGE-L SummaCZS

BART

Base

NSP 25.4±3.1 13.9±1.7 25.4±1.0 0.11±0.02 28.0±0.3 8.8±0.1 20.3±0.1 -0.43±0.04 26.4±0.2 9.6±0.1 17.0±0.3 -0.32±0.03

ENSP 26.4±3.2 14.6±1.7 27.1±0.9 0.10±0.03 27.9±0.2 8.8±0.1 20.3±0.2 -0.45±0.04 28.0±0.2 10.1±0.1 17.3±0.4 -0.33±0.04

BAS 28.1±2.2 14.7±1.8 27.5±1.5 0.13±0.01 27.3±0.4 9.5±0.1 20.7±0.1 -0.44±0.03 27.7±0.2 9.8±0.2 17.1±0.1 -0.35±0.04

core-set 26.0±0.8 13.6±0.2 25.6±0.4 0.13±0.02 27.8±0.1 9.3±0.2 20.2±0.0 -0.42±0.02 27.2±0.1 9.5±0.1 16.9±0.1 -0.28±0.02

IDDS 28.6±1.1 15.8±0.6 28.1±1.0 0.15±0.01 29.2±0.2 10.0±0.2 21.3±0.2 -0.45±0.02 30.0±0.1 11.0±0.1 18.0±0.3 -0.22±0.02

Random 28.3±4.5 14.8±1.8 27.6±1.7 0.12±0.02 28.2±0.2 9.8±0.2 21.0±0.2 -0.44±0.03 28.0±0.2 10.0±0.1 17.2±0.5 -0.32±0.03

CCAL 29.0±0.5 16.2±0.7 28.5±0.8 0.16±0.01 29.8±0.2 10.2±0.2 21.7±0.1 -0.43±0.02 30.4±0.1 11.4±0.1 18.6±0.1 -0.20±0.03

LDCAL 29.4±0.4 16.5±0.2 28.9±1.4 0.18±0.01 30.2±0.1 10.5±0.1 22.0±0.1 -0.40±0.02 30.8±0.1 11.8±0.1 18.9±0.1 -0.18±0.02

PEGASUS

Large

NSP 26.2±3.6 14.3±2.2 25.8±3.4 0.13±0.03 28.2±0.5 9.0±0.1 20.4±0.2 -0.38±0.04 26.7±0.1 9.8±0.1 17.3±0.2 -0.30±0.04

ENSP 27.0±2.0 14.9±1.7 27.5±2.2 0.11±0.04 28.0±0.1 9.2±0.3 20.5±0.1 -0.39±0.03 28.5±0.1 10.4±0.1 17.5±0.1 -0.29±0.03

BAS 28.5±2.0 15.1±2.8 27.5±1.6 0.15±0.02 27.4±0.2 9.7±0.2 20.9±0.3 -0.40±0.04 28.2±0.1 10.0±0.0 17.4±0.2 -0.32±0.05

core-set 25.2±0.4 14.0±0.4 25.9±0.6 0.14±0.03 27.9±0.1 9.5±0.1 20.5±0.0 -0.41±0.03 27.8±0.1 9.8±0.1 17.0±0.0 -0.26±0.02

IDDS 29.3±1.3 16.2±0.9 28.4±1.8 0.16±0.02 29.4±0.2 10.4±0.1 21.7±0.1 -0.36±0.02 30.4±0.1 11.3±0.1 18.3±0.2 -0.18±0.03

Random 28.4±2.8 15.2±1.7 27.9±4.2 0.13±0.04 28.4±0.5 9.7±0.3 21.3±0.2 -0.40±0.04 28.4±0.3 10.4±0.1 17.5±0.1 -0.30±0.04

CCAL 29.8±0.6 16.7±0.7 28.8±0.3 0.18±0.02 30.1±0.2 10.7±0.1 22.2±0.1 -0.35±0.02 30.8±0.1 11.9±0.1 18.7±0.2 -0.17±0.03

LDCAL 30.1±0.7 16.9±0.6 29.3±0.8 0.20±0.01 30.5±0.1 10.9±0.1 22.4±0.1 -0.34±0.02 31.0±0.1 12.1±0.1 19.2±0.1 -0.15±0.02

Table 2: Main results of summarization in ROUGE and SummaCZS metrics with 200 instances annotations across
models and datasets, where the best results are highlighted in bold and the second-best are underscored.
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Figure 5: Running Time on the AESLC dataset.

Uncertainty-based methods NSP, ENSP, and BAS

need to use models to infer the uncertainty score for
each instance in each AL iteration, which is time-
consuming. Core-set and IDDS strategies need
to calculate the distance between each pair of in-
stances during the diverse instance selection pro-
cess, which has O(n2) time complexity for a ATS

dataset with the number of n documents. This is
computationally expensive for larger-scale datasets.
In contrast, LDCAL and CCAL approximate the
linear time complexity, O(nk) with k ≪ n, e.g.,
n = 14, 400 and k = 200 for the AESLC dataset.

Good Stability. Figure 6 shows the trend of the
baselines’ performance with increasing number of
instances. Specifically, the unstable performance of
NSP, ENSP, and BAS is due to their frequent selec-
tion of outliers for model training. IDDS can avoid
outliers. However, few selected training data often
lead to underfitting of the model, resulting in un-
stable performance. Zhao et al. (2021) also found
the same phenomenon. In contrast, LDCAL and

CCAL show good stability, which can be attributed
to CL. In Figure 7, we further show the role of CL

in enhancing the stability of AL performance by
combining CL with other baselines.

Method AESLC WikiHow PubMed

Random Sampling 26.7±1.7 21.0±0.2 17.2±0.5

LDCAL 28.9±1.4 22.0±0.1 18.9±0.2
w/o ACERG 26.9±1.3 21.1±0.2 17.5±0.1

w/o CL 28.3±0.7 21.5±0.1 18.3±0.1

w Classic CL 28.5±0.8 21.7±0.1 18.6±0.1

Table 3: Ablation Study for LDCAL. We trained BART
with 200 annotated instances and report ROUGE-L.

4.2.2 Ablation Studies

Table 3 verifies the effectiveness of CL and AL

modules in LDCAL through ablation studies. We
first introduce three variants of LDCAL as follows.
1) w/o ACERG represents LDCAL without the cer-
tainty gain maximization strategy, that randomly
selects 200 instances for model training from easy
to hard without the AL loop. 2) w/o CL repre-
sents LDCAL without the CL process, that selects
instances solely based on ACERG without consid-
ering the difficulty level. 3) w Classic CL replaces
the original LLM-determined CL with Classic CL,
introduced in Section 3.2.

As shown in Table 3, we derive the following
three main findings. Firstly, when we remove the
certainty gain strategy, the performance of LDCAL
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Figure 6: Number of labeled instances vs. ROUGE-L. LDCAL is compared with other AL strategies, using BART
and PEGASUS as backbones, on the AESLC, WikiHow, and PubMed datasets.

drops considerably, showing the importance of the
AL process. Secondly, w/o ACERG performs bet-
ter than Random Sampling, demonstrating the ef-
fectiveness of CL even in the scenarios with only a
few randomly selected instances. Thirdly, LDCAL

with Classic or LLM-determined CL achieves supe-
rior scores compared to Random Sampling, show-
ing the effectiveness of CL. Moreover, LLM-
determined CL performs better than Classic CL,
demonstrating that LLMs have their own under-
standing of document difficulty. We hope LDCAL

can inspire more LLM-determined CL methods.

Method AESLC WikiHow PubMed

NSP 25.4±1.0 20.3±0.1 17.0±0.3
NSP+CL 25.3±1.2(↓) 20.4±0.1(↑) 17.0±0.2(−)

BAS 27.5±1.5 20.6±0.2 17.1±0.1
BAS+CL 27.5±1.3(−) 20.7±0.1(↑) 17.3±0.1(↑)

core-set 25.6±0.4 20.2±0.0 16.9±0.1
core-set+CL 25.8±0.3 (↑) 20.5±0.1(↑) 17.2±0.1(↑)

IDDS 28.1±1.0 21.3±0.2 18.0±0.3
IDDS+CL 28.2±0.7(↑) 21.5±0.2(↑) 18.2±0.1(↑)

LDCAL w/o CL 28.3±0.7 21.5±0.1 18.3±0.1
LDCAL 28.9±1.4 22.0±0.1 18.9±0.2

Table 4: CL for other BART-based baselines. We report
ROUGE-L on the AESCL dataset with 200 instances.

4.3 Qualitative Evaluation
4.3.1 Effect of CL for Other Baselines
To further explore the effectiveness of CL, we com-
bined it with various baselines, as shown in Table 4.

We observe that, when adding the LLM-determined
CL, almost all baselines improve the performance
significantly, demonstrating a well-defined training
order of instances is effective for the AL process.

To explore the effect of CL on the stability of the
AL process, we show the performance changes of
the baselines as the number of instances increases
in Figure 7. We find that when CL is added, the
stability of the baselines is greatly enhanced.
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Figure 7: Combining CL with other AL strategies.

4.3.2 Effect of CL Training Order
The training order of instances is the core issue for
CL. To determine the optimal training order, we
conducted experiments with three types of training
orders: 1) Random order, where instances of vary-
ing difficulty levels are randomly sorted. 2) Easy-
to-hard order, where the dataset is completely
sorted by the difficulty of instances. 3) Balanced
order (used in LDCAL), where the dataset is di-
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Figure 8: CL process with diverse training orders.

vided into several equal blocks, each containing
equal number of easy, moderate, challenging, and
hard instances. Within each block, instances are
sorted from easy to hard. In Figure 8, we have three
findings. Firstly, a simple easy-to-hard order may
result in underfitting due to the initial use of sim-
ple instances. Secondly, although random ordering
can yield good results in the early stages, it may
become less effective as the number of instances in-
creases. Thirdly, the balanced order more quickly
achieves good performance than the simple easy-
to-hard method in the early stages and continues
to improve steadily during later training, because
it allows the model to encounter harder instances
earlier and periodically review simpler instances.

Method AESLC WikiHow

NSP 25.4±1.0 20.3±0.1
NSP w/o outliers 26.2±1.3(↑) 20.8±0.2(↑)
BAS 27.5±1.5 20.6±0.2
BAS w/o outliers 27.8±1.2(↑) 20.8±0.3(↑)
IDDS 28.1±1.0 21.3±0.2
IDDS + low-density ins. 28.3±1.2(↑) 21.6±0.2(↑)

Table 5: Experimental results after removing outliers
for NSP and BAS, and replacing instances for IDDS.

4.3.3 Outliers and Low-Density Instances
To demonstrate the harm caused by outliers, we
removed outliers from a total of 200 training in-
stances for NSP and BAS. Table 5 shows a signifi-
cant improvement in performance after removing
outliers, indicating that the outliers can reduce base-
line performance. To highlight the importance of
low-density instances for model training, we re-
placed the last 20 selected instances of IDDS with
the last 20 selected instances of LDCAL, i.e., 20
representative instances from low-density regions.

As in Table 5, IDDS + low density instances im-
proves performance, demonstrating the importance
of selecting instances in low-density regions.

5 Conclusion

This research presented the first study of the cur-
riculum active learning framework for ATS. Ex-
tensive experiments showed that LLM-determined
CL helps to improve model’s stability and perfor-
mance. Our AL strategy, i.e., certainty gain maxi-
mization, could select diverse instances in uneven
distribution scenes, further enhancing model’s ef-
fectiveness and efficiency. In future work, we want
to design more effective prompts for CL and inves-
tigate LDCAL in other NLG tasks beyond ATS.

Limitations

Despite the benefits, there are still several limita-
tions of this study. Firstly, AL strategies directly
use the annotations provided by the dataset, rather
than annotating instances by humans in an human-
in-the-loop manner. Thus, the effectiveness of
LDCAL in real scenarios with human annotations
still needs further exploration. Secondly, although
we have achieved good results with the BART and
PEGASUS backbones, our effectiveness in other
recent LLMs, such as Llama (Touvron et al., 2023),
still needs further validation.

Ethical Considerations

Active learning (AL) inherently involves a biased
sampling process, potentially resulting in annotated
datasets that reflect this bias. Consequently, one
can intentionally use AL to amplify the bias within
datasets. Our research enhances the effectiveness
of AL, which in turn could streamline the intro-
duction of additional bias. Additionally, we ac-
knowledge that our approach relies on pre-trained
language models, which are themselves typically
biased. This inherent bias in pre-trained models can
inadvertently influence the selection of instances
for annotation in AL, impacting all applications
that utilize these models.
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