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Abstract

While BERT produces high-quality sentence
embeddings, its pre-training computational cost
is a significant drawback. In contrast, ELEC-
TRA provides a cost-effective pre-training ob-
jective and downstream task performance im-
provements, but worse sentence embeddings.
The community tacitly stopped utilizing ELEC-
TRA’s sentence embeddings for semantic tex-
tual similarity (STS). We notice a significant
drop in performance for the ELECTRA dis-
criminator’s last layer in comparison to prior
layers. We explore this drop and propose a
way to repair the embeddings using a novel
truncated model fine-tuning (TMFT) method.
TMFT improves the Spearman correlation co-
efficient by over 8 points while increasing pa-
rameter efficiency on the STS Benchmark. We
extend our analysis to various model sizes, lan-
guages, and two other tasks. Further, we dis-
cover the surprising efficacy of ELECTRA’s
generator model, which performs on par with
BERT, using significantly fewer parameters and
a substantially smaller embedding size. Fi-
nally, we observe boosts by combining TMFT
with word similarity or domain adaptive pre-
training.

1 Introduction

Pre-trained language models (PLMs) have been a
staple in NLP for years, leveraging self-supervised
objectives to improve representations for down-
stream tasks. BERT (Devlin et al., 2019), one of
the most widely used PLMs, uses a masked lan-
guage modeling (MLM) objective for pre-training.
The main drawbacks of MLM are the substantial
compute cost due to the low masking rate, and
the gap between the pre-training task and down-
stream tasks. To address these issues, Clark et al.
(2020) introduce ELECTRA, which substitutes
MLM with replaced token detection (RTD), achiev-
ing the same results as BERT but with four times
less compute. RTD uses a generator model that
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Figure 1: A method for improving sentence embeddings
with (2) TMFT on STS. We apply mean pooling over the
embeddings at layer l and fine-tune. One of the combi-
nations can also be added for further improvement: (1a)
TMFT on word similarity, or (1b) DAPT using MLM.

corrupts the input, while a discriminator model dis-
tinguishes between corrupted and original tokens.

Semantic textual similarity (STS) (Agirre et al.,
2013) is a foundational NLP task with broad appli-
cations. STS applications must balance accuracy
and embedding size to ensure fast inference. To
this end, Reimers and Gurevych (2019) introduced
sentence transformers, a framework based on the
transformer bi-encoder architecture. It encodes text
representations independently before pooling them,
calculating the similarity score through a compari-
son operation between the two embedded texts.

While some transformer models excel across
GLUE (Wang et al., 2018) tasks, their sentence em-
bedding quality may vary. Sentence transformers
often use PLMs pre-trained with a language model-
ing objective (Song et al., 2020; Raffel et al., 2020;
Liu et al., 2019). In contrast, RTD pre-trained
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models demonstrate subpar performance in a bi-
encoder setting (Reimers, 2021), but pre-training
such a model is more cost-effective. It is unclear
whether this low performance is due to pre-training
and whether the embeddings can be improved.

To address this gap, we present a layer-wise
study of ELECTRA’s sentence embeddings. We
examine the performance discrepancy between
BERT and ELECTRA’s discriminator across vari-
ous model sizes, languages, and tasks. We hypoth-
esize the last few layers of the discriminator are
too specialized for the pre-training task. Follow-
ing this, we present truncated model fine-tuning
(TMFT), shown in Figure 1, which utilizes the
transformer up to layer l, followed by pooling and
fine-tuning the whole truncated model. We show
that the discriminator suffers from a drop in STS
performance when fine-tuning the final layer’s em-
beddings and that this drop is consistent across all
inspected model sizes and languages. Although
we focus on STS, we expose a similar trend for
two other tasks. When applying TMFT on STS
Benchmark (STSB) (Cer et al., 2017), the embed-
dings significantly outperform the ones from the
ELECTRA discriminator’s last layer. Moreover,
TMFT-obtained embeddings outperform the ones
of BERT fine-tuned on STSB up to but not includ-
ing the eighth layer. Further, we uncover the effi-
cacy of the ELECTRA generator model, perform-
ing on par with BERT while having a significantly
smaller embedding size and substantially fewer pa-
rameters. Finally, we propose two improvements
of the basic TMFT method: prior TMFT on word
similarity and prior domain adaptive pre-training
(DAPT) using MLM, shown in Figure 1.

Our contributions are: (1) a layer-wise analy-
sis of ELECTRA’s sentence embeddings for vari-
ous model sizes, languages, and tasks; (2) a novel
TMFT method for repairing ELECTRA’s embed-
dings that substantially improves performance on
STS, paraphrase identification, and textual entail-
ment tasks, and exposing the surprising efficacy
of the generator model; (3) two additional tech-
niques in combination with TMFT for improving
ELECTRA’s embeddings even further on STS. 1

2 Related Work

Reimers and Gurevych (2019) introduced Siamese
networks to transformers, motivating significant

1We provide the source code for our work here: https:
//github.com/ir2718/similarity-embedding-quality

research on enhancing sentence embeddings. Fine-
tuning on an auxiliary task unrelated to STS has
also been explored. Reimers and Gurevych (2019)
first fine-tune on a textual entailment task, followed
by fine-tuning on STS. DAPT has also become a
widely adopted method, improving performance in
downstream tasks (Gururangan et al., 2020).

Similarly, there has been considerable interest in
using different layers of a PLM for sentence em-
beddings. Bommasani et al. (2020) assess the layer-
wise performance of transformer models and pool-
ing methods on word similarity datasets. Huang
et al. (2021) determine what combinations of hid-
den states perform the best for unsupervised STS,
while Jawahar et al. (2019) extract layer-wise struc-
tural characteristics encoded in BERT by probing.
Finally, Ethayarajh (2019) explores layer-wise em-
bedding anisotropy. Two works that resemble ours
the most are Hosseini et al. (2023) and Li et al.
(2024). The former improves results by combining
layer representations with dynamic programming,
while we fine-tune the model from input embed-
dings up to a specific layer. Li et al. (2024), devel-
oped concurrently with our work, uses model and
embedding truncation combined with fine-tuning
and a novel loss function. However, this work does
not address ELECTRA’s performance drop.

3 Truncated Model Fine-Tuning

The usual approach for obtaining sentence embed-
dings is applying a pooling operation over the last
layer’s embeddings. We use mean pooling as it
yields the best results, in line with previous work
(Reimers and Gurevych, 2019). The TMFT method
we propose for repairing ELECTRA’s embeddings
reduces to taking the l-th layer output followed by
pooling and fine-tuning on the target task.

For a sentence S = (s1, . . . , sN ) the encoder
outputs a tensor E ∈ RL′×N×d, where L′ is
the number of layers including the input embed-
dings (which we treat as a layer). We then ap-
ply mean pooling p over the l-th representation,
p(E, l) = 1

N

∑N
n=1El,n,:, where El,n,: is the d-

dimensional output token embedding of layer l for
token at position n. We apply this to both sen-
tences, compare them using cosine similarity, and
propagate the loss from layer l to the model input.2

Furthermore, we propose combining one super-
vised and one self-supervised method with TMFT

2Fine-tuning based on the final embedding and using prior
embeddings for inference yields unsatisfactory results, and a
similar approach is already known (Hosseini et al., 2023).
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for performance gains: (1) PLM fine-tuning on the
word similarity task or (2) DAPT using MLM. The
intuition for the former is that word similarity is
crucial for assessing sentence similarity, while the
latter builds upon prior evidence that MLM-based
PLMs work well in a bi-encoder (Reimers, 2021).

4 Experiments and Results

We fine-tune each model on the STSB from GLUE.
We also run the experiments on machine-translated
versions of STSB in Korean, German, and Span-
ish (cf. Appendix B). We choose these based on
language-specific dataset and PLM availability. We
report the Spearman correlation coefficient, sug-
gested by Reimers and Gurevych (2019). For word
similarity experiments, we use word pairs present
in the following datasets: RG-65 (Rubenstein and
Goodenough, 1965), WordSim-353 (Finkelstein
et al., 2001), SimLex-999 (Hill et al., 2015), and
SimVerb-3500 (Gerz et al., 2016), with a random
70:15:15 train, validation, and test split. The MLM
experiments are conducted on sentences from SNLI
(Bowman et al., 2015) and MultiNLI (Williams
et al., 2018). We also experiment with paraphrase
identification and textual entailment using the Mi-
crosoft Research Paraphrase Corpus (MRPC) and
Sentences Involving Compositional Knowledge
(SICK) textual entailment dataset (Marelli et al.,
2014), respectively (cf. Appendix A). For STSB,
MRPC, and SICK, we use cross-validation splits
defined by the dataset authors.

We use the following models from HuggingFace
Transformers (Wolf et al., 2020): BERT tiny, mini,
small, medium, base, and large. For the ELEC-
TRA discriminator and generator, we use the small,
base, and large models. To strengthen our findings
on RTD-pre-trained models, we run experiments
for the DeBERTaV3 model (He et al., 2021). For
fine-tuning and pre-training, we use the AdamW
optimizer (Loshchilov and Hutter, 2017), a learn-
ing rate of 2e−5, and weight decay set to 1e−2.
We apply gradient clipping to a max norm of 1.0.
For fine-tuning on all tasks except word similarity,
we use a batch size of 32 for 10 epochs. Word
similarity fine-tuning uses a batch size of 128 for
50 epochs. For DAPT, we use a batch size of 32
with 8 gradient accumulation steps for 10 epochs
with 0.15 masking probability. An exception is
DeBERTaV3, with a batch size of 8 and 32 gradi-
ent accumulation steps due to memory constraints.
All reported results are averaged across five seeds.

Test set Spearman correlation coefficients on STSB
correspond to the model with the highest Spearman
correlation coefficient on the validation set. For
MRPC and SICK, the test set F1 scores correspond
to the models with the classification threshold opti-
mized for the highest validation set F1 score.

4.1 ELECTRA
Applying ELECTRA to downstream tasks is usu-
ally done using the discriminator. We decided not
to follow this practice, as ELECTRA’s authors do
not give convincing reasons for discarding the gen-
erator. Hence, we conduct experiments with both
models. The generator is similar to BERT, except
the generator’s input embeddings are tied to the
discriminator in pre-training. For comparison, we
use BERT as a baseline as it is a standard choice
and similar in size to the discriminator.

Figure 2a shows test set Spearman correlation co-
efficients for TMFT applied to ELECTRAbase dis-
criminator, ELECTRAbase generator, and BERTbase.
BERT shows a trend where the Spearman correla-
tion coefficient roughly increases as the index of the
fine-tuned layer embedding increases. The same
trend is present for the generator. ELECTRAbase
generator with 33.31M parameters maintains com-
parable performance to BERTbase with 107.72M
parameters on all tasks (cf. Table 1, Figure 5, and
Figure 6 in Appendix A). This finding is consis-
tent across all inspected generator and BERT sizes
(cf. Table 2 in Appendix D). The discriminator
shows a different trend, gradually increasing un-
til the ninth layer, after which performance drops
sharply. We attribute this drop to the RTD task, also
suggested by Centered Kernel Alignment (CKA)
representation similarity analysis, which shows that
CKA values between discriminator models and
MLMs drop in the final layers even before fine-
tuning (cf. Figure 3). A similar performance drop
occurs for Korean, German, and Spanish (cf. Ap-
pendix B), all considered discriminator model sizes
(cf. Figure 11), the paraphrase identification task
(cf. Figure 5), and the DeBERTaV3 discriminator
(cf. Figure 2a). The increase in the ELECTRA dis-
criminator test Spearman correlation coefficients
between the ninth (87.63M parameters) and last
state (108.89M parameters) is 11.32 points. The
best-performing state on the validation set is the
third state (45.10M parameters), and the increase
for the third state compared to the last state on the
test set is 8.36. Furthermore, the discriminator’s in-
put embeddings outperform BERT, while its output
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Figure 2: Test set Spearman correlation coefficients on STSB using TMFT with and without improvements (shaded
area is the standard deviation). Subfigure 2a presents results using TMFT on STSB, 2b shows TMFT on STSB with
prior TMFT on word similarity, and 2c depicts TMFT on STSB with prior MLM. More details are in Table 1.

TMFT STSB TMFT WS + TMFT STSB DAPT NLI + TMFT STSB

Model Layer Params Val Test Layer Params Val Test Layer Params Val Test

BERTbase 12 107.72M 86.07/85.98 82.74/83.03 12 107.72M 85.85/85.84 83.77/84.08 12 107.72M 85.91/85.71 82.66/82.64
ELECTRAD base 3 45.10M 82.15/82.20 75.29/76.96 3 45.10M 82.66/82.56 76.71/77.31 7 73.45M 84.07/83.78 79.90/79.92
ELECTRAG base 12 33.31M 86.62/86.38 82.57/82.50 12 33.31M 86.67/86.39 82.85/82.91 11 32.52M 85.58/85.22 80.97/80.85
DeBERTaV3base 7 148.00M 84.80/84.86 81.98/82.44 7 148.00M 85.48/85.55 83.27/83.31 7 148.00M 85.95/85.88 83.59/83.51

Table 1: Comparison of models with the highest validation set Spearman correlation coefficient using TMFT.
The reported scores are the test set Spearman and Pearson correlation coefficients. Results with the addition of
improvements are included (WS stands for word similarity, NLI stands for natural language inference). Bold values
represent the highest values for the used method across all trained models.

embeddings surpass BERT’s up to, but not includ-
ing, the eighth layer. Across all models, the largest
increase between consecutive layers is between the
0th and 1st layers, likely due to self-attention.

4.2 Further Improvements

Our first proposed improvement is TMFT on word
similarity before TMFT on sentence similarity. The
downside of this method is that it requires data la-
beled for word similarity. We consider only using
the same layer for both fine-tuning procedures. Fig-
ure 2b gives the test set Spearman correlation coeffi-
cients on STSB for the proposed improvement. We
observe BERT and the discriminator both benefit
from this method, with ELECTRA outperforming
BERT up to but not including the tenth layer.

Our second improvement is DAPT using MLM
before TMFT on STS, regardless of the model type.
We only consider pre-training using the last layer’s
output. Figure 2c presents the test set Spearman
correlation coefficients on the STSB dataset. With
improvements included, the performance of almost
all representations improved across all models, and
the drop in the final layers of the discriminator is

diminished (cf. Figure 2c and Table 1).

4.3 Parameter-Performance Trade-off

Finally, we investigate the parameter-performance
trade-off. The results show the number of parame-
ters the model has when using the best-performing
representation on the validation set and the corre-
sponding test set Spearman correlation coefficients
(cf. Figure 4 and Table 2). We consider only TMFT
without improvements. Considering the test set
scores and the number of parameters, the best mod-
els are BERT (tiny, mini, large) and ELECTRA
generator (small, base, large). The difference in
the number of parameters and layers suggests the
depth of a transformer is essential for retaining per-
formance on STS. Figure 4 also demonstrates an
improvement in the number of parameters, and in
the performance when comparing the last and best
representation of the discriminator.

4.4 Performance Drop Analysis

To explain the drop in the Spearman correlation co-
efficient, we conduct an analysis using CKA (Ko-
rnblith et al., 2019). We apply the CKA to the
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Figure 3: The result of applying CKA on the hidden layer representations of the STSB test set at a layer with a
certain index. Subfigure 3a presents the comparison between ELECTRA generator and BERT, subfigure 3b the
comparison between ELECTRA discriminator and BERT, and subfigure 3c the comparison between DeBERTaV3
discriminator and BERT.
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Figure 4: Comparison of the number of parameters of
the model and the test set Spearman correlation coeffi-
cients. The shown models have the highest validation
Spearman correlation coefficient value. The figure also
includes the last layer representations that do not cor-
respond to the highest validation Spearman correlation
coefficient. ELECTRAlarge discriminator is excluded as
its value is too small (25.84). The gray line indicates the
Pareto front. For detailed test set Spearman correlation
coefficient values, refer to Table 2 in Appendix D.

STSB test set representations obtained from the
hidden states of two models with the same index.
Since the time complexity of the TMFT method de-
pends on the dataset size and the number of hidden
states, it is beneficial to know about the presence
of the possible drop prior to fine-tuning. An addi-
tional benefit of this method is that it works with

pre-trained models, saving time and resources. We
observe a pattern where the drop in CKA values in
the final layers is a necessary condition for the drop
in Spearman correlation coefficient values in the fi-
nal layers. The comparison between the ELECTRA
discriminator and BERT (Figure 3b) exhibits the
same trend as the comparison between the DeBER-
TaV3 discriminator and BERT (Figure 3c), which
is a sharp decline in CKA values in the final few
layers. The comparison between the ELECTRA
generator and BERT (Figure 3a) does not exhibit
the CKA value drop. All combinations of inspected
models after fine-tuning show similar trends com-
pared to their pre-trained counterparts.The drop
could be attributed to the model architecture, pre-
training data, pre-training method, fine-tuning data,
or hyperparameter choice. To control for these con-
founders, we apply TMFT to randomly initialized
models. We found that all models exhibit the same
behavior, suggesting the architecture and tokenizer
choice are not to blame for the performance drop
(cf. Figure 13 in Appendix E).

5 Conclusion

We analyze ELECTRA’s sentence embeddings for
STS and two other tasks, comparing them to a
BERT baseline on the STSB dataset. Our proposed
truncated model fine-tuning method significantly
improves the discriminator. The generator model
matches BERT’s performance while significantly
reducing the number of parameters and producing
smaller embeddings.
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6 Limitations

Our study reveals substantial differences in model
performance on some tasks, but sentence embed-
ding models can also be used for information re-
trieval. We limited ourselves to one dataset for
STS, paraphrase identification, and entailment, four
datasets for word similarity, and two datasets for
MLM, due to computation restrictions. Experi-
ments in Korean, German, and Spanish were ex-
clusively conducted using the truncated model fine-
tuning method. Another limitation of our work is
the way we apply word similarity fine-tuning prior
to truncated model fine-tuning on STS. We only
consider fine-tuning the same layer’s embeddings
for both procedures. Furthermore, in MLM, prior
to truncated model fine-tuning on STS, we only
use the last layer’s embeddings, as opposed to us-
ing previous layers. For all our experiments, we
fixed the hyperparameters. Finally, our study cov-
ers only two families of models in detail: BERT
and ELECTRA.

References
Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-

Agirre, and Weiwei Guo. 2013. *SEM 2013 shared
task: Semantic textual similarity. In Second joint
conference on lexical and computational semantics
(*SEM), volume 1: proceedings of the Main confer-
ence and the shared task: semantic textual similarity,
pages 32–43.

Rishi Bommasani, Kelly Davis, and Claire Cardie. 2020.
Interpreting Pretrained Contextualized Representa-
tions via Reductions to Static Embeddings. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4758–
4781, Online. Association for Computational Lin-
guistics.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
CoRR, abs/1508.05326.

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-
Gazpio, and Lucia Specia. 2017. SemEval-2017
task 1: Semantic textual similarity multilingual and
crosslingual focused evaluation. In Proceedings
of the 11th International Workshop on Semantic
Evaluation (SemEval-2017), pages 1–14, Vancouver,
Canada. Association for Computational Linguistics.

Kevin Clark, Minh-Thang Luong, Quoc V Le, and
Christopher D Manning. 2020. Electra: Pre-training
text encoders as discriminators rather than generators.
arXiv preprint arXiv:2003.10555.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Kawin Ethayarajh. 2019. How contextual are contextu-
alized word representations? Comparing the geom-
etry of BERT, ELMo, and GPT-2 embeddings. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 55–65,
Hong Kong, China. Association for Computational
Linguistics.

Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias,
Ehud Rivlin, Zach Solan, Gadi Wolfman, and Ey-
tan Ruppin. 2001. Placing search in context: The
concept revisited. volume 20, pages 406–414.
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A Performance on Additional Tasks

Figure 5 represents the F1 test scores on the MRPC
dataset. We use a bi-encoder optimized using a
binary cross entropy loss. All other fine-tuning
hyperparameters are the same as in the case of
STS. ELECTRA discriminator and DeBERTaV3
show the same performance drop in the final layers.
ELECTRA achieves an F1 score of 80.66 for the
final hidden state, while the F1 for the ninth hidden
state is 82.57. For DeBERTaV3 the difference is
even greater. It achieves an F1 score of 80.69 for
the final hidden state, while the tenth hidden state
achieves 85.53. BERT and ELECTRA generator
do not show a similar trend.
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Figure 5: Test set F1 scores on the MRPC dataset across
all layers.

Figure 6 represents the F1 test scores on the
SICK entailment dataset. We use a bi-encoder to
encode the first sentence u, the second sentence
v, and concatenate its absolute difference |u− v|
following (Reimers and Gurevych, 2019). Finally,
a classification head is used to calculate the output
probabilities. The model is optimized using a cross
entropy loss. All other fine-tuning hyperparameters
are the same as in the case of STS. The results show
slight performance drops for ELECTRA discrimi-
nator in the final layers, while DeBERTaV3 shows
an upward trend in the final layers. BERT shows
a slight performance drop in the final layer, while
the ELECTRA generator exhibits a very large drop.
The F1 value for the final layer is 65.66, while the
previous layer achieves 71.87.
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Figure 6: Test set F1 scores on the SICK entailment
dataset across all layers.

B Performance on STSB in Different
Languages

To strengthen our findings, we provide experiments
on three other languages: Korean, German, and
Spanish. Due to the scarcity of pre-trained mod-
els and labeled data, we opt for these languages.
All datasets used for the experiments were machine
translated. The Korean STS (Ham et al., 2020) uses
an internal neural machine translation engine for
all training splits, although the validation set and
test set were checked for errors by annotators. The
other datasets used for training are completely au-
tomatically translated using the DeepL API (May,
2021). The results for Korean, German, and Span-
ish are shown in Figures 7, 8, and 9 respectively.
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Figure 7: Test set Spearman correlation coefficients on
Korean STSB across all layers.

The experiments for Korean (Figure 7) show a
performance drop for the KoELECTRA discrimi-
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nator.3 The final hidden state shows a Spearman
correlation coefficient of 59.46, while the ninth
hidden state achieves 72.27. The KoELECTRA
generator4 achieves a Spearman correlation coeffi-
cient of 78.50 for the final hidden state, while for
KLUE BERT5 it is 80.96.
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Figure 8: Test set Spearman correlation coefficients on
German STSB across all layers.

Experiments in German (Figure 8) exhibit a sim-
ilar trend as in Korean and English. The GELEC-
TRA discriminator6 achieves a Spearman corre-
lation coefficient of 56.22, while for the seventh
hidden state it is 71.15. The difference between
the GELECTRA generator7 and german BERT8 is
more apparent, with the highest Spearman correla-
tion coefficients of 75.86, and 79.54, respectively.

Finally, the experiments in Spanish (Figure 9)
are in line with the other languages as well. The
Electricidad discriminator9 achieves a Spearman
correlation coefficient of 61.73 for the final hidden
state. The highest value is 72.88, which is achieved
for the eight hidden state. A performance gap is
present for the Electricidad generator10 and BETO
model,11 scoring 77.51, and 81.57, respectively. To

3https://huggingface.co/monologg/
koelectra-base-v3-discriminator

4https://huggingface.co/monologg/
koelectra-base-v3-generator

5https://huggingface.co/klue/bert-base
6https://huggingface.co/deepset/gelectra-base
7https://huggingface.co/deepset/

gelectra-base-generator
8https://huggingface.co/google-bert/

bert-base-german-cased
9https://huggingface.co/mrm8488/

electricidad-base-discriminator
10https://huggingface.co/mrm8488/

electricidad-base-generator
11https://huggingface.co/dccuchile/

bert-base-spanish-wwm-cased
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Figure 9: Test set Spearman correlation coefficients on
Spanish STSB across all layers.

summarize, experiments in all languages exhibit a
performance drop for the discriminator in the final
layers.

C Performance for Various Model Sizes
on STSB

We further strengthen our findings with experi-
ments for various model sizes. The models used
for the experiments are BERT, ELECTRA discrimi-
nator and ELECTRA generator. The figures 10, 11,
and 12 show the test set Spearman correlation co-
efficients on STSB across various model sizes. The
shaded are in the figures represents the standard
deviation.
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Figure 10: Test set Spearman correlation coefficients on
STSB across various ELECTRA generator model sizes.

For the ELECTRA generator experiments (Fig-
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ure 10), we use the small,12 base,13 and large14

sizes. The highest Spearman correlation coefficient
scores are 81.55, 82.57, and 84.63, respectively.
All highest scores are achieved for the final hidden
state, which is in line with other experiments.
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Figure 11: Test set Spearman correlation coefficients on
STSB across various ELECTRA discriminator model
sizes.

The ELECTRA discriminator experiments (Fig-
ure 11) show a performance drop present in the
later layers, in agreement with previous results.
The highest achieved Spearman correlation coef-
ficients for the small,15 base,16 and large17 sizes
are 72.68, 78.14, and 82.77, achieved in layers 8,
9, and 15, respectively.

For experiments with BERT (Figure 12), there
are more available standard sizes: tiny, mini, small,
medium, base, and large. We apply our method to
all of these sizes. The highest results are achieved
for the last hidden state, while the scores for tiny,
mini, small, medium, base, and large models are
69.80, 75.55, 79.13, 80.74, 82.74, and 85.47, re-
spectively.

12https://huggingface.co/google/
electra-small-generator

13https://huggingface.co/google/
electra-base-generator

14https://huggingface.co/google/
electra-large-generator

15https://huggingface.co/google/
electra-small-discriminator

16https://huggingface.co/google/
electra-base-discriminator

17https://huggingface.co/google/
electra-large-discriminator
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Figure 12: Test set Spearman correlation coefficients on
STSB across various BERT model sizes.

D Overview of Best-Performing Models
Using TMFT on STSB

Table 2 represents the test set Spearman correlation
coefficients and Pearson correlation coefficients on
STSB for models that achieve the highest valida-
tion Spearman correlation coefficient using TMFT.
The Table also includes the number of parame-
ters of the truncated model. Bold values represent
the highest values for the model family. BERT
achieves the highest Spearman correlation coef-
ficient for the last hidden layer, which is in line
with other experiments. BERTlarge achieves the
highest test set Spearman correlation coefficient of
85.47 with 332.53M parameters. For the ELEC-
TRA discriminator small, base, and large, the hid-
den states with the highest validation Spearman
correlation coefficient are 1, 3, and 12, respectively.
The ELECTRA discriminator greatly benefits from
model truncation, which is demonstrated by the
improvements of the Spearman correlation coeffi-
cient by 2.16, 8.47, and 55.06 points, while using
8.69M, 63.79M, and 151.15M parameters less for
the small, base, and large models, respectively. Fi-
nally, the ELECTRA generator model family pro-
vides a parameter efficient alternative to BERT.
The largest ELECTRA generator model uses only
50.74M parameters and achieves a test set Spear-
man correlation coefficient of 84.63, only 0.84
points less than BERTlarge, which has 281.79M
more parameters.
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Model Layer Params Val Test

BERTtiny 2 4.37M 78.20/77.57 69.80/70.64
BERTmini 4 11.10M 83.06/82.42 75.55/76.28
BERTsmall 4 28.50M 85.25/85.09 79.13/79.56
BERTmedium 8 41.11M 85.74/85.46 80.74/81.02
BERTbase 12 107.72M 86.07/85.98 82.74/83.03
BERTlarge 24 332.53M 88.33/88.31 85.47/85.68

ELECTRAD small 1 4.76M 79.74/79.27 68.88/69.64
ELECTRAD small last 12 13.45M 73.98/73.14 66.72/67.27
ELECTRAD base 3 45.10M 82.15/82.20 75.29/76.96
ELECTRAD base last 12 108.89M 72.41/71.62 66.82/67.23
ELECTRAD large 12 182.94M 84.74/84.88 80.90/81.15
ELECTRAD large last 24 334.09M 29.88/28.44 25.84/25.21

ELECTRAG small 12 13.45M 84.62/84.11 81.55/80.93
ELECTRAG base 12 33.31M 86.62/86.38 82.57/82.50
ELECTRAG large 24 50.74M 87.23/86.86 84.63/84.52

Table 2: An overview of the test set Spearman correla-
tion coefficients and Pearson correlation coefficients for
various model families and model sizes. The reported
test set values correspond to the model with the highest
validation set Spearman correlation coefficient. For pa-
rameter calculation, the pooler layer is excluded as we
do not use it.

E TMFT on Randomly Initialized Models

To verify whether excluding the pre-training step
will shed more light on the performance drop, we
provide an ablation study with randomly initial-
ized models. Our hypothesis is that all models
should roughly exhibit the same behaviour when
fine-tuned up to a certain layer. Figure 13 presents
the result for TMFT on randomly initialized mod-
els. After layer zero, all models exhibit the same
behaviour, with minor oscillations. The biggest
difference is present in layer zero, where ELEC-
TRA generator performs the best. The results sug-
gest that architecture and tokenizer choice are not
the cause of the performance drop. However, this
does not exclude the effect of pre-training data,
pre-training method, fine-tuning data, or hyperpa-
rameter choice.
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Figure 13: Test set Spearman correlation coefficients on
STSB for randomly initialized models.

F Reproducibility

We conducted our experiments on an AMD Ryzen
Threadripper 3970X 32-Core Processor and a sin-
gle RTX 3090 GPU with 24GB of RAM. Run-
ning the experiments took around 300 GPU hours.
DAPT experiments with BERT and ELECTRA dis-
criminator take around 7 GPU hours each, while
for the ELECTRA generator it is around 4.5 GPU
hours. Pre-training DeBERTaV3 took the longest,
lasting around 30 hours. The word similarity fine-
tuning takes up to 3 minutes, regardless of the
model.
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