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Abstract

Emotion Recognition in conversations (ERC)
involves an internal cognitive process that in-
terprets emotional cues by using a collection of
past emotional experiences. However, many ex-
isting methods struggle to decipher emotional
cues in dialogues since they are insufficient
in understanding the rich historical emotional
context. In this work, we introduce an innova-
tive Detective Network (DetectiveNN), a novel
model that is grounded in the cognitive theory
of emotion and utilizes a “recall-detect-predict"
framework to imitate human emotional reason-
ing. This process begins by ‘recalling’ past
interactions of a specific speaker to collect emo-
tional cues. It then ‘detects’ relevant emotional
patterns by interpreting these cues in the con-
text of the ongoing conversation. Finally, it
‘predicts’ the speaker’s current emotional state.
Tested on three benchmark datasets, our ap-
proach significantly outperforms existing meth-
ods. This highlights the advantages of incorpo-
rating cognitive factors into deep learning for
ERC, enhancing task efficacy and prediction
accuracy1.

1 Introduction

In recent years, recognizing emotions in dialogues
has gained increasing attention in the field of natu-
ral language processing (NLP). This is driven by its
vast potential for application in areas like human-
computer interaction and empathetic dialogue sys-
tems (Ma et al., 2020; Concannon and Tomalin,
2023; Yang et al., 2024).

In the realm of conversational emotion recogni-
tion, interpreting emotional cues embedded in con-
versational context is crucial (Mittal et al., 2020;
Gomathy, 2021). Emotional cues in conversations
are subtle patterns or indicators that hint at the
underlying emotions of a speaker. These cues of-
ten act as triggers for the emotions expressed in

∗Corresponding author:Jun Sun (sunjun16sj@gmail.com).
1our code can be found here

current utterances (Oberländer et al., 2020; Hu
et al., 2021). ERC seeks to detect and interpret
these emotional clues within the flow of conver-
sation, aiming for a nuanced understanding of the
emotional context. Traditional ERC approaches
typically adopt a ‘recall-then-predict’ strategy (Mi-
tra et al., 2023), modeling both speaker-level and
dialogue-level contexts to predict emotional states
in conversations. DialogueGCN (Ghosal et al.,
2019) models interactions between speakers using
graph networks to capture emotional cues through-
out the conversation. DialogXL (Shen et al., 2021)
introduces a dialog-aware self-attention mecha-
nism within a transformer structure to capture emo-
tional cues, including intra- and inter-speaker de-
pendencies. C-LSTM (Zhou et al., 2015) lever-
ages an LSTM-based approach to encode the global
context, whereas DialogueRNN (Majumder et al.,
2019) employs GRUs to track both speaker state
and global state for each conversation. COSMIC
(Ghosal et al., 2020) leverages external common-
sense knowledge to enhance the model’s ability to
detect rich emotional cues. Additionally, Dialogue-
CRN (Hu et al., 2021) employs a multi-turn reason-
ing module that extracts and combines emotional
clues from the dialogue. However, these methods
lack a distinct process for interpreting extracted
emotional cues before classifying the emotion.

Emotion recognition can be understood as the
process of deciphering emotional cues to compre-
hend the cognitive context, aligning with the Cogni-
tive Theory of Constructed Emotion (Russell, 2003,
2009; Barrett and Russell, 2014). This theory sug-
gests that emotions are formed from an individ-
ual’s cognitive context, shaped by their thoughts,
memories, and social interactions (Barrett, 2014).
Inspired by this theory, we approach ERC tasks as
an internal cognitive process that deciphers each
participant’s emotional cues based on their past
emotional experiences in a dialogue. This process
involves identifying and organizing emotional cues,
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synthesizing them into a coherent emotional nar-
rative, and subsequently examining this narrative
throughout the conversational context to validate
the cues. We propose a novel Detective Network
(DetectiveNN) with a ‘recall-detect-predict’ strat-
egy for enhanced ERC accuracy. The DetectiveNN
model features a detection phase that deciphers
emotional cues throughout the conversation con-
text, connecting these cues to decode the evolution
of a speaker’s emotional responses. This phase re-
veals patterns in a speaker’s emotional flows, akin
to a detective piecing together clues to map an in-
dividual’s emotional states.

DetectiveNN begins with a recall phase, where
we utilize Gated Recurrent Units (GRUs), a type
of sequence-based model, for their efficiency in
handling sequential data and their ability to capture
long-term dependencies. This is crucial for retain-
ing diverse contextual information from the speak-
ers’ emotional experiences and interactions. This
approach is inspired by the pioneering work of Hu
(Hu et al., 2021) and Yang (Yang and Shen, 2021),
who demonstrated the efficacy of sequence-based
models in learning diverse contextual information.

In the detection phase, we employ a transformer-
like architecture to iteratively analyze and decode
emotional cues drawn from the extensive emotional
experiences of a specific speaker. This phase is
divided into two key operations: an examination
process and a conscious detection process. Dur-
ing the examination phase, we employ transformer
encoder blocks with Multi-Head Attention (MHA)
layers. MHA layers enable the model to simultane-
ously focus on various parts of the input sequence
by assigning disparate levels of attention or impor-
tance. Transformer encoder blocks integrate cues
to achieve a deep understanding of the speaker’s
emotional context. The conscious detection process
employs a cross-attention mechanism, probing the
speaker’s constructed emotional narrative and inte-
grating the dynamic interplay between emotional
cues and the speaker’s historical interactions. This
method uncovers patterns that decode the speaker’s
emotional journey, offering insights into the evolu-
tion of emotional states over time.

Following the insights gained from the detec-
tion phase, an emotion classifier predicts the emo-
tion label of each utterance. By incorporating the
‘recall-detect-predict’ framework, DetectiveNN ef-
fectively mirrors the cognitive reasoning process
humans use to understand emotional states. We hy-

pothesize that integrating cognitive reasoning into
deep learning models significantly enhances their
capability to analyze and interpret emotions in each
dialogue segment.

To assess the efficacy of our proposed model,
extensive experiments were conducted on three
widely accepted benchmark datasets: IEMOCAP,
EmoryNLP and Dailydialog. The experimental
results demonstrate that our model significantly
outperforms existing methods, primarily attributed
to the application of a cognitive approach in deci-
phering emotional cues.

The primary contributions of our research are as
follows:

• We introduce an innovative Detective Net-
work (DetectiveNN) designed within a ‘recall-
detect-predict’ framework, drawing on princi-
ples of cognitive theory of constructed emo-
tion.

• We design a transformer architecture to per-
form the detection process. This architecture
plays a key role in interpreting emotional cues
in conversations, enhancing the accuracy and
nuances of recognizing different emotions in
dialogues.

• We conduct extensive experiments on three
benchmark datasets. The results consistently
demonstrate the effectiveness and superiority
of the proposed model (see Figure 1).

2 Related Work

The ERC field has advanced significantly, empha-
sizing the extraction and integration of emotional
cues from conversations. This progress can be
grouped into three major methodologies: Sequence-
based models, Pre-trained Language Model-based
Models, and Graph-based Models.

Sequence-based models: DialogueRNN (Ma-
jumder et al., 2019) uses GRUs to track emotional
states by integrating speaker identity, context, and
emotions from neighboring utterances. Dialogue-
CRN (Hu et al., 2021) combines cognitive theo-
ries of emotion with LSTM networks for iterative
extraction and integration of emotional cues. BC-
LSTM (Poria et al., 2018) employs bidirectional
LSTMs to capture the influence of preceding and
following utterances. CMN (Hazarika et al., 2018b)
models past utterances using GRUs in a multimodal
approach. EmotionIC (Yingjian et al., 2023) inte-
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grates attention and recurrence with IMMHA, Di-
aGRU, and SkipCRF for comprehensive emotion
detection. COSMIC (Ghosal et al., 2020) incor-
porates commonsense knowledge with GRUs to
model various conversational states. SACL-LSTM
(Hu et al., 2023) uses contrastive learning to com-
pare emotional representations from both original
and adversarial data, allowing the model to better
generalize in recognizing emotions across different
conversational contexts, while DF-ERC (Li et al.,
2023) uses contrastive learning to separate modal-
ity and utterance features. EACL (Yu et al., 2024)
utilizes label encodings as anchors and develops
an auxiliary loss to better distinguish similar emo-
tions.

Pre-trained Language Model-based Models: Di-
alogXL (Shen et al., 2021) uses XLNet (Yang et al.,
2019) and dialogue-level self-attention to han-
dle multi-party conversation dynamics. Emoberta
(Kim and Vossen, 2021) employs RoBERTa (Liu
et al., 2019) to predict speaker emotions by learning
both speaker-level and dialogue-level context.

Graph-based Models: DialogueGCN (Ghosal
et al., 2019) uses a graph convolutional neural net-
work to model conversational context by represent-
ing utterances as nodes and their dependencies as
edges. Zhang et al. (2019) and Lian et al. (2020)
employ graph convolutional networks with atten-
tion mechanisms to capture context-sensitive and
speaker-sensitive dependencies.

3 Methodology

3.1 Problem Definition

We define a conversation consisting of a total num-
ber of N utterances. Each utterance in the conver-
sation is associated with a specific speaker. There
are S distinct speakers in the conversation. For
each speaker, we have a subset of utterances corre-
sponding to this speaker.

The objective of the ERC task is to predict the
emotion label for each utterance from the set of
emotional labels {y1, y2, . . . , yP } where P is the
number of emotional labels.

3.2 Recall Phase

In the realm of ERC, the intra-context is crucial for
understanding the emotional journey and thematic
progressions of each speaker within their dialogue
contributions.

We first utilize a bi-directional GRU network to
gather emotional cues and information from utter-

ances generated by speaker s. Each utterance is rep-
resented by a feature embedding xi ∈ Rdu, where
du is the embedding dimension of each utterance.
The sequence of these embeddings is processed by
the GRU, with i = Φ(k, s) mapping the k-th step
in the GRU to the corresponding utterance index
for the speaker s.

cintra
i , hintra

s,k = GRU intra(xi, h
intra
s,k−1) (1)

where cintra
i ∈ R2du represents an intra-context em-

bedding, and hintra
s,k is the hidden state of the GRU

after processing the k-th step for the speaker s.
We sequentially process each cintra

i and compile
them into a matrix C intra

s ∈ RNs×2du. Ns is the
total number of utterances spoken by the speaker s.
This matrix builds up as we go through the steps,
eventually leading to the final state.

To obtain the global context embedding c
global
j

representing all interactions between interlocutors,
we employ another bi-directional GRU model to
capture sequential dependencies between adjacent
utterances of interlocutors. The context representa-
tion can be computed as:

c
global
j , h

global
j = GRUglobal(xj , h

global
j−1 ) (2)

where j is an utterance index from the conversation.
Similarly we concatenate c

global
j to form the matrix

Cglobal ∈ RL×2du. hglobal
j is the j-th global hidden

state of the GRU.

3.3 Detection Phase

The detection phase offers a systematic method for
analyzing the underlying emotional dynamics of
the speaker s. Initially, it identifies and organizes
emotional cues in a logical order. It then synthe-
sizes those cues to form a coherent emotional nar-
rative. Subsequently, the detection phase examines
the emotional narrative against the context of the
entire conversation, aiming to validate those initial
emotional cues. Throughout this analysis, it uncov-
ers patterns in the emotional flows of the speaker
s, akin to a detective connecting dots to reveal a
broad map of an individual’s emotional states.

Positional Encoding: We first apply positional
encoding, denoted as PE, to inject ordering infor-
mation to the intra-context matrix C intra

s . This en-
sures that the DetectiveNN not only processes the
inherent emotional cues at each step but also un-
derstands its sequential context within the entire
process.
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Figure 1: The architecture of the proposed model DetectiveNN

We adopt transformer encoder blocks with each
block consisting of a Multi-Head Attention layer
and a Feed-Forward Network layer to identify and
integrate emotional cues from the intra-context.

Multi-Head Self-Attention (MHA) Layer: Our
architecture includes an MHA layer with four heads
to process the intra-context embedding C intra

s . This
layer functions as a detective examining the context
of speaker s with each head focusing on different
aspects of the emotional content in the speaker’s
utterances. MHA ensures a thorough, multi-faceted
analysis by capturing emotional cues from the intra-
context.

Feed-Forward Network (FFN) Layer: Build-
ing on the raw emotional cues identified by the
MHA layer, the FFN analyzes how those cues in-
teract and connect. Similar to a detective piec-
ing together different clues in a story, the FFN
layer builds a comprehensive emotional narrative
of speaker s.

Therefore we obtain C̃ intra
s as the representation

of the emotional narrative. It can be expressed as
follows:

C̃ intra
s = FFN

(
MHA(C intra

s + PE(C intra
s ))

)
(3)

where C̃ intra
s ∈ RNs×dc. dc is the embedding di-

mension of the emotional narrative.
Cross-Verification Layer: The DetectiveNN

then connects emotional cues from intra-context by
examining the derived emotional narrative against
a broad conversational context. Through careful
evaluation, the model identifies patterns in the emo-
tional flows of speaker s. We employ a cross-
attention mechanism to mirror this progress. The
emotional narrative C̃ intra

s is treated as a query Q
to retrieve additional contextual information from
past interactions between the speakers. We set the

global context matrix Cglobal as both Key K and
Value V .

Ĉ intra
s = Softmax

(
C̃ intra
s CglobalT

√
dc

)
Cglobal (4)

where Ĉ intra
s ∈ RNs×dc represents emotional pat-

terns captured through cross verification.

3.4 Emotion Prediction
After retrieving and reasoning emotional clues, the
detective is to piece together the puzzle in a way to
assess the current emotional state of speaker s.

The emotion classification process constitutes
the final stage of our model, where we integrate
insights derived from the detection phase with a
Multi-Layer Perceptron (MLP) layer to predict the
emotional state of the targeted utterance.

We employ a skip connection to concatenate
original intra-context embedding cintra

i,s with the out-
put of the cross-verification layer ĉintra

i,s along the
feature dimension axis. The concatenated feature
vector Fi,s represents the updated embedding of
the i-th utterance from speaker s:

Fi,s = Concat
(
ĉintra
i,s , cintra

i,s

)
(5)

Next, Fi,s is fed into the MLP for further pro-
cessing. The MLP transforms Fi,s into a high-level
representation hi,s for making a final prediction:

hi,s = MLP(Fi,s) (6)

In the final step, we employ the softmax function
to the output of the MLP layer hi,s to obtain a
probability distribution over the possible emotional
states. The predicted emotional state ŷi,s for the
targeted utterance is thus given by:
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ŷi,s = Softmax(hi,s) (7)

4 Experiments and Results

4.1 Datasets

DetectiveNN was tested on three benchmark
datasets for recognizing emotions in conversations:
IEMOCAP (Busso et al., 2008), EmoryNLP (Za-
hiri and Choi, 2018), and DailyDialog (Li et al.,
2017). IEMOCAP and DailyDialog focus on two-
party dialogues, while EmoryNLP includes multi-
party conversations. We report results for all three
datasets, with details in Table 1.

IEMOCAP (Busso et al., 2008): IEMOCAP con-
sists of two-person conversations among ten speak-
ers, with training data from the first eight speakers.
Each video captures a dyadic dialogue, divided into
utterances annotated with six emotions: happiness,
sadness, neutrality, anger, excitement, and frustra-
tion.

EmoryNLP (Zahiri and Choi, 2018): EmoryNLP
utilizes content from the TV series “Friends," this
dataset includes utterances classified into seven
emotions: neutral, joyful, peaceful, powerful,
scared, mad, and sad. Sentiments are labeled as
positive, negative, or neutral.

DailyDialog (Li et al., 2017): DailyDialog cov-
ers various everyday topics, mirroring natural hu-
man conversation. Each utterance is annotated with
emotional categories and dialogue acts, including
seven emotions: angry, disgusted, fearful, joyful,
neutral, sad, and surprised.

Our research primarily investigates the emo-
tional categorization and text aspects of these
datasets. We align our study with COSMIC’s
(Ghosal et al., 2020) train/validation/test splits for
consistency.

4.2 Baselines

We compare our model, DetectiveNN, with sev-
eral models introduced in the related work section,
including DialogueRNN, DialogueGCN, Dialogue-
CRN, BC-LSTM, CMN, EmotionIC, COSMIC,
DialogXL, EACL, SACL-LSTM and DF-ERC. Ad-
ditionally, we also evaluate DetectiveNN against
two other models: EmoCaps and CNN.

EmoCaps (Li et al., 2022): EmoCaps utilizes a
transformer-based architecture to extract emotional
trends across various modalities. It leverages a

bi-directional LSTM for contextual analysis, inte-
grating both past and future conversational context
to classify emotions.

CNN (Kim, 2014): CNN is a convolutional neu-
ral network designed to be trained on utterances
that are context-independent.

Table 2, Table 3, and Table 4 present the perfor-
mance evaluation of DetectiveNN on the test data.
In training the model on the IEMOCAP dataset, we
integrate texutal, visual and aduio features to create
multimodal fused embeddings. All three modal-
ity feature embeddings are obtained from Li et al.
(2022). For training the model on the EmoryNLP
and DailyDialog datasets, we utilize RoBERTa to
extract contextual features. RoBERTa embeddings
are taken from Ghosal et al. (2020).

4.3 Evaluation Metrics
Consistent with prior studies by Hazarika et al.
(2018a), Ghosal et al. (2020), and Jiao et al. (2020),
we select the accuracy score (Acc.) as our pri-
mary metric for evaluating overall performance
on the IEMOCAP, EmoryNLP, and DailyDialog
datasets. Additionally, to provide a comprehensive
assessment of our model’s capability across both
majority and minority classes, we report both the
Weighted-average F1 score (Weighted-F1) and the
Macro-averaged F1 score (Macro-F1) for IEMO-
CAP and EmoryNLP datasets. We report both the
micro-average F1 score (Micro-F1) and the Macro-
averaged F1 score (Macro-F1) for the DailyDialog
dataset. These metrics offer a more nuanced view
of the model’s effectiveness in handling different
class distributions.

4.4 Implementation Details
In our experimental setup, the validation set is uti-
lized for hyperparameter optimization. The archi-
tecture varies between datasets: a single-layer bidi-
rectional GRU is applied to IEMOCAP, EmoryNLP
and Dailydialog datasets.

In the subsequent detection phase, we em-
ploy two transformer encoder blocks because the
EmoryNLP dataset is characterized by a limited
number of turns and brief conversations. This con-
figuration facilitates a more prolonged learning pro-
cess, allowing the model to effectively detect nu-
anced emotional cues within short conversational
contexts. Our experiments also demonstrate that in-
corporating additional encoder blocks enables the
model to identify a broader range of features. For
the IEMOCAP and Dailydialog datasets, which are
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Dataset # Dialogues # Utterances Avg. # Classes
train val test train val test Length

IEMOCAP 108 12 31 5,810 — 1,623 47 6
DailyDialog 11,118 1,000 1,000 87,832 7,912 7,863 72 7
EmoryNLP 659 89 79 7,551 954 984 10 7

Table 1: Table 1: The statistics of three datasets.

characterized by longer turns and more extended
conversations, we implement a single transformer
encoder block.

The batch size is uniformly set to 30 for all ex-
periments. The initial hyperparameter search space
includes learning rates of 10−3, 10−4, and 10−5,
and dropout rates of 0.2, 0.3, 0.4, and 0.5. Based
on the results of the grid search, the selected config-
urations for each dataset are as follows: 10−3 and
0.5 for IEMOCAP, 10−4 and 0.2 for EmoryNLP,
and 10−4 and 0.5 for DailyDialog. L2 weight de-
cay is set to 2× 10−3 for all experiments. The loss
objective for all experiments is cross-entropy loss.
We train the DetectiveNN for a maximum of 80
epochs using the Adam optimizer (Kingma and Ba,
2014) and stop training if the validation loss does
not decrease for 10 consecutive epochs.

For benchmarking against existing models like
CNN, BC-LSTM, DialogueGCN, DialogueRNN,
and DialogueCRN, we replicate their setups us-
ing the publicly available code provided by Kim
(2014), Poria et al. (2018), Majumder et al. (2019),
Ghosal et al. (2019), and Hu et al. (2021), ensuring
consistency in the experimental environment.

Methods Acc. Weighted-F1 Macro-F1
CNN † 53.16 52.13 47.28
BC-LSTM † 55.86 55.24 53.19
CMN* 56.56 56.13 54.30
COSMIC* – 65.28 –
DialogXL* – 65.94 –
DialogueRNN† 63.50 63.18 62.99
DialogueGCN† 62.42 62.11 61.17
DialogueCRN† 70.65 70.35 70.01
Emoberta* – 68.57 –
EACL* 68.81 70.41 –
SACL-LSTM* 69.08 69.22 –
DF-ERC* 71.84 71.75 –
EmotionIC* 69.44 69.61 –
EmoCaps* – 71.77 –
DetectiveNN 76.15 76.01 76.40

Table 2: Experimental results on the IEMOCAP dataset.
Annotated with an * indicates results sourced from the
model’s paper, and a (†) denotes results from reproduc-
tions conducted by the authors.

Methods Acc. Micro-F1 Macro-F1
CNN† 65.35 57.21 50.13
BC-LSTM† 64.19 53.19 48.94
EmotionIC* – 60.13 54.19
COSMIC* – 58.48 51.05
DialogXL* – 54.93 –
DialogueRNN† 63.03 61.50 57.66
DialogueGCN† 71.56 62.20 60.43
DialogueCRN† 73.15 64.10 53.18
DetectiveNN 75.55 70.20 57.38

Table 3: Experimental results on the Dailydialog dataset.
Annotated with an * indicates results sourced from the
model’s paper, and a (†) denotes results from reproduc-
tions conducted by the authors.

Methods Acc. Weighted-F1 Macro-F1
CNN† 34.21 30.19 28.59
BC-LSTM† 38.17 34.27 29.87
SACL-LSTM* – 39.65 –
COSMIC* – 38.11 –
DialogXL* – 34.73 –
DialogueGCN† 37.75 34.98 31.30
DialogueCRN† 40.65 37.59 32.31
DialogueRNN† 41.04 35.76 31.22
SACL-LSTM* 42.21 39.65 –
EACL* 36.45 40.24 –
EmotionIC* – 40.25 –
DetectiveNN 42.68 40.78 33.65

Table 4: Experimental results on the EmoryNLP dataset.
Annotated with an * indicates results sourced from the
model’s paper, and a (†) denotes results from reproduc-
tions conducted by the authors.

4.5 Main Results

Table 2, Table 3, and Table 4 illustrate the results
of comparing our DetectiveNN model with other
models and backbones from different perspectives.
Based on this, we make the following observations:

(1) Our method achieves significant improve-
ments over the SOTA baseline models on all bench-
marks. Specifically, we outperform EmoCaps, Dia-
logueCRN, and EmotionIC by 4.24%, 6.10%, and
0.53% on IEMOCAP, Dailydialog and EmoryNLP
respectively.

(2) Previous research has highlighted the com-
plexity involved in emotion modeling in the
EmoryNLP dataset, challenges stemming from the
diversity of speakers and limited conversational
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exchanges (Ghosal et al., 2019; Li et al., 2020). De-
tectiveNN, in contrast, shows notable performance
enhancements on the IEMOCAP and DailyDialog
datasets. This advancement is attributed to longer
and more in-depth conversational exchanges and
richer utterance content in these datasets. These as-
pects allow for a more comprehensive understand-
ing of the global context and emotional cues, thus
enhancing the accuracy of DetectiveNN.

4.6 Ablation Study

The DetectiveNN model is based on a recall-detect-
predict framework. To assess the impact of the
recall and detection phases on performance, abla-
tion experiments were conducted on the IEMOCAP
and EmoryNLP datasets. Removing either phase
successively led to a significant performance drop,
demonstrating their importance. Detailed results
are in Table 5.

Recall Phase Analysis: The recall phase gathers
relevant global context from dialogues. Exclud-
ing this phase reduced the model’s effectiveness
on both datasets, highlighting its crucial role in
forming a contextual base for reasoning.

Detection Phase Analysis: The detection phase
analyzes emotional cues derived from the recall
phase. Notably, when the recall phase was re-
moved, transformer encoders were applied to both
intra-context and global context inputs. As high-
lighted in our results, the absence of the detection
phase resulted in a marked decrease in performance
across both datasets, indicating its critical role in
decoding emotional cues within a conversational
context. Furthermore, our findings, as detailed in
the final row of Table 5, reveal that eliminating both
the recall and detection phases together results in
a significant drop in performance. This marked
decline underscores the interdependent and syner-
gistic nature of these two phases, underlining their
combined importance in enhancing the reasoning
capability of the DetectiveNN model.

Impact of Intra-Contextual Dependency: Our
study further explores the significance of intra-
contextual dependency, essential for understand-
ing how a speaker’s emotional state is shaped by
their unique conversational context. Excluding
this dependency-tracking component from Detec-
tiveNN results in a great decline in performance
across both datasets. This outcome highlights the
imperative for DetectiveNN to effectively moni-
tor each speaker’s emotional journey, allowing the

model to accurately identify and interpret personal
emotional cues.

4.7 Comparative Case Study

We also conduct a comparative case study to evalu-
ate our method against the DialogueCRN and Di-
alogueRNN models. Table 6 presents a conversa-
tion sampled from the IEMOCAP dataset. Dia-
logueRNN fails to capture the complex emotional
context in certain utterances, such as mislabeling
“I want you to pretend like he’s coming back!” as
“sad,” thereby missing the underlying frustration
and possible anger. Similarly, it incorrectly pre-
dicts “excited” for “But, Kate...,” indicating a lack
of understanding of emotional nuances and situa-
tional context. DialogueCRN also demonstrates
limitations, such as misinterpreting conflict by in-
correctly labeling the utterance “Laugh at me, but
what happens the night that she goes to sleep in
his bed, and his memorial breaks into pieces?” as
“sad.”

In contrast, our model, DetectiveNN, employs a
recall-detect-predict framework that demonstrates
more accurate emotion recognition in dialogues. In
this case, the predicted labels from DetectiveNN al-
ternate between “frustrated” and “angry,” while the
predictions from DialogueCRN and DialogueRNN
exhibit more varied and less stable labels. The
results suggest that DetectiveNN takes better ad-
vantage of historical information, meaning that it
respects emotional inertia.

5 Visualization & Analysis

We present heatmap visualizations to interpret the
model’s emotion predictions using a randomly se-
lected conversation sample from the IEMOCAP
test dataset. The first heatmap (see Figure 2) il-
lustrates features extracted from the transformer
encoder’s final layer during the detection phase,
while the second heatmap (see Figure 3) shows ac-
tivations from the first layer of the MLP. In both
visualizations, the x-axis represents the dimensions
of the feature vector, each value corresponding to
the average feature activation for a specific emotion
class. The y-axis denotes different emotion classes.

The first heatmap reveals distinct activation pat-
terns across the 200 feature dimensions, which vary
significantly between emotion classes such as an-
gry and sad. These activation patterns may cap-
ture lexical features indicative of specific emotional
cues. However, the model struggles to distinguish
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Context Cognition IEMOCAP EmoryNLP
Intra-Contextual Recall Detection Acc. W-F1 M-F1 Acc. W-F1 M-F1

Dependency Phase Phase
✓ ✓ ✓ 76.15 76.01 76.40 42.68 40.78 33.65
✓ ✓ × 51.60 50.38 50.62 38.21 36.03 29.15
✓ × ✓ 41.46 38.60 36.77 39.11 37.39 31.15
✓ × × 70.40 70.68 70.98 40.55 38.35 30.85
× ✓ ✓ 57.74 57.13 57.80 37.60 37.10 30.45
× ✓ × 50.26 50.14 50.30 38.92 37.00 30.07

Table 5: Experimental results of ablation studies on IEMOCAP and EmoryNLP datasets.

Ground-truth
label

Detective
NN

Dialogue
CRN

Dialogue
RNN A Case Study

frustrated frustrated frustrated neutral Person B: Look. It’s a nice day. Why are we arguing?

frustrated frustrated angry angry Person A: Nobody in her—this house dares shake her faith.
Strangers might, but not his father, and not his brother.

frustrated frustrated neutral frustrated Person B: What do you want me to do? What do you want–
angry angry frustrated sad Person A: I want you to pretend like he’s coming back!

frustrated frustrated neutral excited Person B: But, Kate...
angry angry excited angry Person A: Because if he’s not coming back, then I’ll kill myself.

frustrated frustrated frustrated excited Person B: Hah......

angry angry sad angry Person A: Laugh at me, but what happens the night that
she goes to sleep in his bed, and his memorial breaks in pieces?

Table 6: A comparative case study.
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Figure 2: Output of the last layer of the trans-
former encoder block.

Emotion angry frustrated sad neutral happy excited
angry 1.00 0.98 0.30 0.96 0.26 0.41
frustrated 0.98 1.00 0.43 0.99 0.39 0.54
sad 0.30 0.43 1.00 0.46 0.97 0.90
neutral 0.96 0.99 0.46 1.00 0.45 0.61
happy 0.26 0.39 0.97 0.45 1.00 0.96
excited 0.41 0.54 0.90 0.61 0.96 1.00

Table 7: Emotion similarity matrix for emotion classes based on
the output of the last layer of the transformer encoder block.

closely related negative emotions, such as angry
and frustrated. This difficulty suggests that emo-
tional cues alone may not be sufficient to capture
fine-grained differences between similar emotions.

To further validate these observations, We com-
pute a cosine similarity matrix using the average
activations from the output of the final layer of the
transformer encoder across the entire test dataset
for each emotion class (see Table 7). The results
numerically confirm our findings from Figure 2,
reinforcing the model’s difficulty in distinguish-
ing similar emotions, particularly among negative
emotions, as indicated by high similarity scores.

The second heatmap (see Figure 3) shows more
intense activations for the frustrated class com-
pared to the angry class, suggesting that the model

integrates contextual information to decode the
complex interplay between emotions, events, and
the unfolding narrative within a sentence. To quan-
tify these activations, we calculate a cosine similar-
ity matrix based on the average activations from the
output of the first layer of the MLP for each emo-
tion class across the entire test dataset (see Table
9). We then compare these results with the average
activations from the DetectiveNN model without
the detection phase (see Table 8). To ensure a fair
comparison, we increase the number of MLP layers
to match the parameter count of the original model.

Table 9 demonstrates the significant impact of
the detection phase on the model’s performance.
When this phase is removed, the similarity between
closely related emotions, such as angry and frus-
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Figure 3: Output of the first layer of MLP.

Emotion angry frustrated sad neutral happy excited
angry 1.00 0.83 -0.02 0.28 -0.82 -0.74
frustrated 0.83 1.00 0.19 0.76 -0.59 -0.39
sad -0.02 0.19 1.00 0.29 0.35 -0.06
neutral 0.28 0.76 0.29 1.00 -0.06 0.25
happy -0.82 -0.59 0.35 -0.06 1.00 0.79
excited -0.74 -0.39 -0.06 0.25 0.79 1.00

Table 8: Emotion similarity matrix for emotion classes based on
the output of the first layer of MLP without the detection phase.

Emotion angry frustrated sad neutral happy excited
angry 1.00 0.69 -0.11 0.18 -0.75 -0.38
frustrated 0.69 1.00 0.21 0.53 -0.74 -0.36
sad -0.11 0.21 1.00 0.10 -0.18 -0.65
neutral 0.18 0.53 0.10 1.00 -0.34 -0.03
happy -0.75 -0.74 -0.18 -0.34 1.00 0.64
excited -0.38 -0.36 -0.65 -0.03 0.64 1.00

Table 9: Emotion similarity matrix for emotion classes based on
the output of the first layer of MLP with the detection phase.

trated (0.83 vs. 0.69), as well as happy and excited
(0.79 vs. 0.64). These results indicate a higher dif-
ficulty in distinguishing similar emotions when the
detection phase is absent. Conversely, the model’s
ability to differentiate broader emotion categories
improves, reinforcing the conclusion that contex-
tual information is effectively captured and inte-
grated across different model layers.

6 Conclusions

In this paper, we introduce DetectiveNN, a novel
framework for Emotion Recognition in Conversa-
tion. This framework utilizes an innovative recall-
detect-predict structure to interpret emotions in con-
versations. Initially, DetectiveNN identifies key
emotional cues within the dialogue. Subsequently,
it conducts a thorough analysis of these cues to
accurately predict the emotional state.

Rigorously evaluated across three benchmark
datasets, DetectiveNN has demonstrated its superi-
ority over existing models, revealing the profound
impact of integrating cognitive reasoning into deep
learning architectures. This cognitive factor plays
an important role not only in enhancing the model’s
efficiency and accuracy in prediction but also in ad-
vancing ERC methodologies.

7 Limitations

DetectiveNN improves emotion prediction accu-
racy for long-term dialogue turns but struggles
with short-term turns due to its reliance on ex-
tended interaction context. This context depen-

dence limits its ability to detect emotional cues
in brief exchanges. Additionally, lacking informa-
tion on speakers’ personality traits hinders Detec-
tiveNN’s performance in capturing complex emo-
tional dynamics, such as sarcasm and humor, which
are prevalent in datasets like EmoryNLP from the
“Friends" TV series. Integrating personality trait
knowledge is essential for accurately predicting
nuanced emotions in conversations.
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