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Abstract

Large Language Models (LLMs) have exhib-
ited remarkable performance across various nat-
ural language processing tasks. However, de-
ploying LLMs on resource-limited settings re-
mains a challenge. While early-exit techniques
offer an effective approach, they often require
compromised training methods that result in
sub-optimal performance. On the other hand,
multi-model methods achieve improved results
but suffer from significant inference latency
and memory consumption. In this paper, we
propose LoRAExit, a novel dynamic inference
architecture that leverages low-rank adapters
for efficient deployment of LLMs. LoRAExit
decouples the training of multiple exit inter-
faces, enabling the separate optimization of
each exit, thereby fundamentally addressing
the performance issues of early-exit networks.
Moreover, we introduce a superior-exit guided
distillation method that effectively utilizes mod-
els of different sizes, thereby further enhancing
the performance of early exits. Experimental
results demonstrate that LoRAExit significantly
improves LLM performance when deployed on
resource-limited settings.

1 Introduction

Large Language Models (LLMs) have achieved
remarkable success in various natural language
processing tasks, demonstrating their potential for
advancing the state-of-the-art in language under-
standing and generation (Chowdhery et al., 2022;
Vaswani et al., 2017). However, the deployment of
LLMs on resource-limited settings, such as edge de-
vices and systems with constrained computational
resources, presents significant challenges (Treviso
et al., 2023; Hou et al., 2024). The computational
demands of LLMs, characterized by their large size
and high memory requirements, hinder their effi-
cient deployment in such settings.

In recent years, there has been significant re-
search exploring various approaches to enhance the

Figure 1: Limitations of existing training methods for
early exit networks. (a) The joint training method opti-
mizes all parameters simultaneously. (b) The two-stage
training method involves training the backbone of the
LLM in the first stage, followed by training the classi-
fiers in the second stage. (c) The local training method
employs heuristics to distribute each loss to specific
layers, aiming to mitigate conflicting gradients. The
black solid line represents the forward process, and the
colored dotted line represents the backward process.

efficiency of LLMs during inference. One promi-
nent approach is adaptive inference, where com-
putations are dynamically allocated based on data
difficulty (Han et al., 2021). Among the effec-
tive methods, early-exit networks have garnered at-
tention, enabling predictions at different inference
stages and allowing for early termination when con-
fident predictions are obtained (Teerapittayanon
et al., 2016; Hou et al., 2023b). However, these
early-exit techniques often rely on compromised
training methods, which can lead to sub-optimal
performance. Figure 1 illustrates three representa-
tive training methods. The joint training method
optimizes all parameters simultaneously, while the
two-stage training method involves training the
LLM backbone in the first stage and the interme-
diate classifiers in the second stage. These meth-
ods suffer from conflicting gradient issues that can
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significantly impact model performance. The local
training method mitigates this issue by heuristically
distributing each loss to specific layers, attempting
to alleviate the conflicting gradients. However, it re-
mains challenging to accurately distribute the loss
to specific parameters, and simple heuristics may
inadvertently harm performance. Another notable
approach is multi-model methods, which leverage
combinations of models to achieve improved re-
sults (Mamou et al., 2023). Nevertheless, these
methods suffer from increased inference latency
and memory consumption, posing challenges in
resource-limited settings.

Overcoming these limitations and building an ef-
ficient adaptive model present two key challenges.
Firstly, we need to train a model of different sizes
without compromising its performance. Secondly,
we must ensure that the model can run without
significantly increasing the resource requirements.
These challenges are inherently conflicting because
sharing parameters in early exits can degrade per-
formance, while completely separating parameters
will inevitably increase the resource requirements.

To tackle these challenges, we propose Lo-
RAExit, a novel dynamic inference architecture
specifically designed for efficient deployment of
LLMs in resource-limited settings. LoRAExit uti-
lizes low-rank adapters to decouple the training
of multiple exit interfaces in LLMs. By enabling
the separate optimization of each exit interface,
LoRAExit effectively addresses the performance is-
sues associated with early-exit networks. Addition-
ally, we introduce a superior-exit guided distillation
method in LoRAExit, which effectively leverages
models of different sizes to aid the training of small
models with early exits. In LoRAExit, the LoRA
adapter enables the training of multiple exits with-
out conflicting gradients. Concurrently, our novel
batching mechanism facilitates efficient inference.
The early exiting strategy further complements this
by trimming inference time. The harmonization of
these two approaches allows us to optimize both
training and inference workflows collectively.

To assess the efficacy of LoRAExit, we con-
ducted extensive experiments in resource-limited
settings. Our evaluation focuses on real-system
speedup as a performance metric, considering that
LLMs commonly operate on modern accelerators
like GPUs where computation (typically measured
in FLOPs) is not the primary bottleneck, but rather
factors like memory play a more crucial role (Miao
et al., 2023). The experimental results demonstrate

that LoRAExit significantly enhances LLM perfor-
mance, surpassing existing approaches when de-
ployed in such settings. In summary, we make the
following contributions:

• We identify the performance, latency and
memory dilemma of the existing adaptive in-
ference algorithms.

• We propose LoRAExit, a novel adaptive infer-
ence architecture that builds upon parameter-
efficient tuning techniques to fulfill the mem-
ory and latency requirement while not com-
promising the performance.

• A superior-exit guided distillation method is
proposed to utilize the suitable information in
different exits.

• We evaluate LoRAExit on various scenarios
and demonstrate that it substantially outper-
forms the previous state-of-the-art solutions.

2 Background & Motivation

2.1 LLM and Adaptive Inference

LLMs have emerged as powerful tools for natu-
ral language processing (NLP) tasks, exhibiting
remarkable performance across a wide range of ap-
plications (Bommasani et al., 2021). LLMs, such
as BERT (Devlin et al., 2019) and GPT (Brown
et al., 2020), are deep neural networks with mil-
lions or even billions of parameters, enabling them
to capture intricate language patterns and generate
coherent and contextually relevant text. However,
the deployment of LLMs in resource-limited set-
tings presents significant challenges due to their
computational demands (Miao et al., 2023).

Adaptive inference techniques aim to address
these challenges by optimizing the deployment of
LLMs in resource-limited environments (Han et al.,
2021). These techniques focus on improving the ef-
ficiency of LLMs to reduce computational require-
ments and enable real-time language processing
on devices with limited resources. Two prominent
approaches for adaptive inference are early-exit
techniques and multi-model methods. These ap-
proaches make it possible to adjust the computa-
tional budget with different sample difficulties.

2.2 Performance Issue in Early-Exit

Early-exit techniques allow LLMs to make predic-
tions at different stages of inference and terminate
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PABEE PALBERT DREE Optimal

Layer 3 64.24 64.63 40.68 72.27
Layer 6 73.38 74.18 34.34 78.95
Layer 9 80.72 79.22 47.05 82.26
Layer 12 81.73 81.10 75.46 82.60

Table 1: The performance of each exit of different early-
exit training methods. Bold value is the highest perfor-
mance in each layer.

early when confident predictions are obtained (Teer-
apittayanon et al., 2016). This approach aims to re-
duce computational costs by avoiding unnecessary
processing for instances where accurate predictions
can be made early in the inference process. While
early-exit techniques can improve efficiency, they
often require compromised training methods that
may lead to sub-optimal performance compared
to fully trained LLMs (Rotem et al., 2023; Zhu
et al., 2023). Specifically, there are three main-
stream early-exit training methods. The joint train-
ing method and two-stage training method involve
merging the final prediction with intermediate clas-
sifiers, resulting in a “conflicting gradient” problem
which occurs when different exits in a model share
parameters, leading to gradients that conflict dur-
ing the training process. This phenone is observed
in diverse studies (Zhu et al., 2023; Rotem et al.,
2023; Ji et al., 2023b). Recent works propose local
training methods that assign a subset of parame-
ters to each exit, addressing the conflicting gradient
issue but potentially limiting the model’s expres-
siveness (Rotem et al., 2023).

To empirically validate this observation, we con-
duct fine-tuning experiments on three representa-
tive early-exit models with a BERT BASE back-
bone, incorporating four exit points corresponding
to layers [3, 6, 9, 12] (for detailed experimental set-
tings, please refer to Section 4). Additionally, we
add the performance of training a same-size model
independently as the optimal performance. The ex-
perimental results, presented in Table 1, clearly
demonstrate that existing training methods gen-
erally struggle to train high-performing models,
particularly in the earlier exit points where the per-
formance of these early-exit training methods falls
significantly short of optimal levels.

2.3 Memory and Latency Issue in MM

Multi-model methods involve the combination
of multiple models to enhance overall perfor-
mance (Mamou et al., 2023). During the inference

Params EE MM
Mem. Lat. Mem. Lat.

base 86 280 12.88 690 24.96
large 350 786 24.73 1,625 44.52
xlarge 710 1,717 22.72 3,934 41.7
xxlarge 1,320 3,023 44.17 5,997 74.83

Table 2: Comparison of memory and latency between
EE and MM for various model sizes. The parameters are
measured in millions, memory is indicated in megabytes,
and latency is expressed in milliseconds.

process, these methods gradually execute models
of increasing sizes until satisfactory performance
is achieved, at which point the process is termi-
nated with the obtained predictions. However, a
drawback of multi-model methods is the increased
inference latency and higher memory consumption.
This is primarily due to the necessity of loading and
executing all the models in memory sequentially.

We performed a series of experiments utilizing
varying sizes of the DeBERTa model (He et al.,
2020), ranging from 86M to 1.3B parameters. The
results are presented in Table 2, which indicate that
as the model size increases, the multi-model ap-
proach exhibits a nearly twofold increase in mem-
ory requirements and runs approximately twice as
slow when compared to the early-exit method.

2.4 Motivations
The challenges associated with deploying LLMs
in resource-limited environments serve as a driv-
ing force for the exploration of efficient and high-
performance approaches that overcome the limi-
tations of early-exit techniques and multi-model
methods. It is crucial to develop an approach
that optimizes LLM deployment without compro-
mising accuracy or increasing inference latency
and memory consumption. Recent advancements
in parameter-efficient tuning methods (Xu et al.,
2023) provide a new opportunity to design a novel
early-exit architecture that can be trained without
conflicting gradients. Notably, extensive experi-
ments have demonstrated the superior performance
of the LoRA tuning method compared to full pa-
rameter fine-tuning in most scenarios (Hu et al.,
2022). These promising findings inspire us to con-
sider the potential of leveraging LoRA to construct
an improved adaptive model.

3 Methodology

In this section, we introduce the proposed adaptive
model architecture, which takes advantage of the
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Figure 2: The architecture of a demonstrated three-layer
transformer featuring the proposed LoRAExit for early
exit. (a) The structure of the transformer layer, where
multiple LoRA heads are individually added to maxi-
mize performance. In each layer, different LoRA heads
are applied separately for different exits to eliminate the
conflicting gradient problem. During training, SEGD is
applied to each exit and its superior exit to enhance per-
formance. (b) The computation pattern during inference
for the second layer, shows how efficient batch process-
ing enables early exit with minimal memory overhead.

powerful low-rank adapters to achieve high perfor-
mance and low overhead (Section 3.1). Addition-
ally, we introduce a superior-exit guided distillation
method, specifically designed for the completely
separated exit architecture, which effectively en-
hances the performance of intermediate exits (Sec-
tion 3.2). Finally, we introduce the batched infer-
ence operator that can ddresses the computational
overhead introduced by employing multiple LoRA
heads (Section 3.3).

3.1 Model Architecture
Throughout this section, we focus on the dis-
criminative LLMs (e.g., BERT) and address the
multi-class classification scenario with samples
(xi, yi)

n
i=1, where xi represents a token sequence

and yi denotes its corresponding label. Given an in-
put sequence, each transformer layer Li computes
the hidden state hi based on the previous hidden
state hi−1 using the following equation:

hi = LN(FFN(LN(SA(hi−1) + hi−1))) (1)

where SA refers to the self-attention operator, FNN
represents the feed-forward network, and LN de-
notes the layer norm layer. The computation of
these layers can be computationally expensive, par-
ticularly for large models with numerous layers.

In this paper, we propose to maintain the expres-
siveness of the model by incorporating low-rank

adapters (LoRA) and completely dissociating the
effects of different exit branches, as depicted in
Figure 2. For each exit, we introduce a series of
LoRA modules in each layer leading up to the exit.
Specifically, for an exit attached at backbone layer
i, we add LoRA modules from layer 1 to layer i.
For instance, in Figure 2, for exit classifier 2, LoRA
modules are added at layer 1 and layer 2. For a
d-dimensional input x, the calculation of the LoRA
module is defined as:

x′ = x(Wi +AiBi) (2)

where Wi ∈ Rd×d represents the original weight,
while Ai ∈ Rd×m and Bi ∈ Rm×d are the low-
rank adapters, where d ≫ m. The low-rank adapter
is a novel technique that significantly reduces the
number of parameters in the model while preserv-
ing its expressiveness (Hu et al., 2022). Following
previous efforts, we only add LoRA weights in
the query and value vectors in the self-attention
layer. Subsequently, we introduce the early exit
after the output of each layer, augmented by the
LoRA output. The exit head is implemented as a
feed-forward network.

This architecture effectively separates the gradi-
ents from each exit, simplifying the model training
process and mitigating the issue of conflicting gra-
dients (Zhu et al., 2023). Simultaneously, by lever-
aging the powerful low-rank adapters, our method
preserves the expressiveness of the model. These
characteristics differentiate our approach from ex-
isting early-exit methods. In contrast to conven-
tional methods that simply attach the exit head to
the backbone (Zhou et al., 2020), our method re-
solves the conflicting gradient issue. Furthermore,
our approach differs from recently proposed local
training methods, which only limit the training of
each exit to a small fraction of parameters, signifi-
cantly impacting performance (Rotem et al., 2023).

3.2 Superior-Exit Guided Distillation

The LoRAExit architecture offers the advantage
of training the model without being influenced by
conflicting gradients, thereby achieving improved
performance. Furthermore, we found that this fun-
damental design allows for the integration of other
effective techniques such as knowledge distilla-
tion (Gou et al., 2020). In a multiple-exit archi-
tecture, various exits are positioned at different lo-
cations within the model. We define a superior exit
as the exit that immediately follows a given exit.
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For instance, for exit k, the superior exit is k + 1.
Leveraging the hierarchical relationships among
these exits, we propose a method called Superior-
Exit Guided Distillation (SEGD) to enhance the
performance of earlier exits. This enhancement is
very important for better balancing accuracy and
latency in LoRAExit.

Initially, we train the final layer (layer N ) of the
model with a classification head using conventional
cross-entropy loss:

LN (ŷi) = −
∑

ŷi log(y
N
i ) (3)

where, yNi represents the output of the final exit for
the i-th input, and ŷi is the ground truth label. Sub-
sequently, we progressively employ the predictions
of the superior exit k+1 as soft labels to distill the
next exit k using the following loss formulation:

Lk(ŷi) = (1−λ)Lk(y
k
i , ŷi)+λKL(ȳk+1

i , ȳki ) (4)

where λ is the weight of the distillation loss, KL
is the Kullback-Leibler divergence, ȳk+1

i and ȳki is
the soft label from the superior exit and this exit
which is defined as,

ȳki =
exp(zki /T )∑
j exp(z

k
j /T )

(5)

where zki represents the logits of the k-th exit, and
T is the temperature parameter. By distilling from
the superior exit rather than the final classification
layer, LoRAExit achieves enhanced performance,
as it reduces the gap between the teacher and stu-
dent models (Mirzadeh et al., 2019), which is criti-
cal for the earlier layers.

3.3 Adaptive Inference

Upon training the LoRAExit model, achieving
fast inference speed during model execution be-
comes crucial. The architecture of LoRAExit con-
sists of multiple LoRA modules, allowing for the
utilization of advanced accelerators (e.g., GPUs)
equipped with highly efficient operators (Sheng
et al., 2023; Chen et al., 2023). Specifically, we
divide the computation of each layer into the back-
bone and the LoRA heads. The computation can
be expressed as follows:
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 (6)

The first part of the computation can be effi-
ciently batched using the CUDA GEMM operator,
while the second part can be effectively batched
using the SGMV operator (Chen et al., 2023). Con-
sequently, each layer of the LoRAExit architecture
can be processed efficiently on modern hardware
with minimal overhead. Once the features for each
layer are obtained, we employ a confidence-based
approach to determine the appropriate exit point.

4 Experiments and Results

This section presents the experimental setup,
datasets used, and the results obtained through the
evaluation of LoRAExit.

4.1 Datasets
Our evaluation of the proposed LoRAExit method
is conducted over seven classification tasks from
the GLUE benchmark (Wang et al., 2018), com-
prising CoLA, RTE, MRPC, QQP, SST-2, QNLI,
and MNLI. For tasks featuring multiple metrics, we
follow the approach of (Ji et al., 2023b), reporting
the arithmetic mean of these metrics. Specifically,
CoLA is evaluated using Matthew’s correlation,
QQP and MRPC are assessed by averaging accu-
racy and F1 scores, and the remaining tasks are
evaluated based on accuracy alone. The details of
these dataset can be found in Appendix A.1.

4.2 Baselines
To evaluate the performance of LoRAExit, baseline
models and methods are compared. This subsec-
tion describes the baselines used and explains the
rationale behind their selection.

We employ the commonly used BERT-base (De-
vlin et al., 2018) and ALBERT-base (Lan et al.,
2019) to compare our method with current early
exit studies fairly. In addition, we include a differ-
ent model family the DeBERTa model (He et al.,
2020), as for DeBERTa, we use DeBERTa-base,
DeBERTa-large, and DeBERTa-xlarge which com-
pose a benchmark to test LoRAExit in different
model families and sizes.

To evaluate LoRAExit ’s performance, we com-
pare it with following state-of-the-art methods,

PABEE. PABEE is a patience-based early exit
strategy, which stops the inference process when
the number of times that the predictions remain “un-
changed” reaches the predefined value (Zhou et al.,
2020). This approach optimizes computational effi-
ciency by eliminating unnecessary processing once
the model’s outputs stabilize.
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Lat. Layer CoLA RTE MRPC QQP SST2 QNLI MNLI Avg.

BERT-base 1.00 12.00 61.10 70.75 89.22 89.82 93.11 91.85 83.96 82.83

PABEE 0.94 8.59 57.54 65.34 85.55 89.18 91.39 88.96 83.39 80.19
PALBERT 1.18 9.67 58.22 65.70 86.19 89.16 91.74 90.07 83.56 80.66
DREE 1.27 9.77 49.43 67.87 86.55 88.80 91.62 88.37 76.12 78.39
LoRAExit 0.78 6.56 58.45 69.67 87.13 89.33 91.86 90.53 83.58 81.51

ALBERT-base 1.00 12.00 51.71 76.90 89.44 80.11 91.51 88.30 74.93 78.99
PABEE 0.88 8.64 43.23 76.53 89.11 80.46 88.30 87.04 72.91 76.80
PALBERT 1.12 9.65 51.24 73.65 91.27 80.21 89.11 87.13 73.70 78.04
DREE 1.24 9.47 51.83 77.62 89.75 80.12 89.56 88.38 41.02 74.04
LoRAExit 0.79 7.19 53.03 77.26 90.99 79.25 91.40 87.31 73.95 79.03

Table 3: Experimental results with BERT and ALBERT backbone on the GLUE benchmark. Latency is measured as
the normalized inference time of each method, calculated by dividing the method’s time by that of the base model.
The term "Layer" refers to the average number of layers utilized for inference across methods. "Average" denotes
the mean performance score across all tasks.

PALBERT. PALBERT improves the perfor-
mance of PonderNet with a novel deterministic
Q-exit criterion and a revisited model architec-
ture (Balagansky and Gavrilov, 2023). Given the
absence of the BERT model implementation within
PALBERT, we adapted its principles to BERT fol-
lowing (Ji et al., 2023b).

DREE. DREE is an adapter-based method for
Early Exit to disentangle two conflicting representa-
tions, namely generic linguistic representations for
subsequent layers and task-specific representations
for internal classifiers (Ji et al., 2023b).

SWEET. SWEET is an Early-Exit fine-tuning
method that assigns each classifier its own set of
unique model weights, not updated by other classi-
fiers, which relieves the conflicts between different
exit classifiers (Rotem et al., 2023).

MM. MM uses a set of independent models of
increasing capacity, each fine-tuned separately for
the same task. We use the implementation of MM
in (Rotem et al., 2023).

To enable a fair comparison with other baselines,
we adopt specific settings considering the varia-
tions in backbone usage across different methods.
In particular, we evaluate our proposed LoRAExit
against PABEE, PALBERT, and DREE using both
BERT and ALBERT backbones, as these methods
provide implementations for these backbones. Ad-
ditionally, we compare LoRAExit against SWEET
and MM, specifically on the DeBERTa backbone.

The detailed training and inference setup of these
models can be found in Appendix A.2.

4.3 Main Results

We first present the results using BERT and AL-
BERT backbones on GLUE datasets, comparing
our approach with PABEE, PALBERT, and DREE,
as shown in Table 3. Our analysis indicates that
our technique necessitates a minimal number of
layers and achieves the quickest inference times in
all cases. Remarkably, it demands only 78% and
79% of the inference duration needed by the BERT-
base and ALBERT-base models, respectively. Con-
versely, despite PALBERT and DREE employing
around 10 layers for inference, their inference du-
rations surpass those of the base models due to
the computational burdens introduced by early exit
mechanisms. Although PABEE expends less time
compared to both PALBERT and DREE, owing to
its reduced layer count, it still consumes about 10%
more time than our strategy.

From a performance perspective, our method
registers the topmost scores on all tasks using the
BERT backbone. In the case of the ALBERT
backbone, while our lead is not consistent across
every task, we attain the highest overall average
score, eclipsing even that of the base model. These
demonstrate the effectiveness of the novel architec-
ture that fundamentally addresses the conflicting
gradient issue. Among the competitors, PALBERT
notches the best average scores aside from ours,
albeit at the cost of excessive layer usage. PABEE
finds a more equitable compromise between layer
count and performance outcomes. DREE, partic-
ularly underwhelming on the MNLI task, ends up
with the lowest composite average score due to its
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Vanilla Train KD SEGD

Layer 3 71.05 71.47 71.74
Layer 6 76.66 78.34 78.61
Layer 9 80.93 82.13 82.13

Table 4: The performance of different training schemes.
Layer 12 (the last layer) is omitted since SEGD does
not affect this layer.

BERT ALBERT DeBERTa

LoRAExit 7.83 9.08 14.90
ForLoop 12.58 12.47 19.00

Table 5: Inference time (ms) of once inference the entire
model with LoRAExit and conventional ForLoop.

limited model expressiveness. Coupled with its
high-layer requisites and the additional computa-
tional expense of its adapters, DREE’s extended
inference time culminates in the least favorable
comprehensive assessment.

4.4 Ablation Study
We initially demonstrate the effectiveness of our
superior-exit guided distillation (SEGD) approach
by contrasting its performance with that of vanilla
training without distillation (Vanilla Train) and dis-
tillation from the final layer (KD). The outcomes,
presented in Table 4, reflect the average scores
across all tasks in the GLUE benchmark utilized in
our study. Analysis of the results at layers 3 and
6 indicates that our method outperforms the other
two approaches. Moreover, distillation proves more
effective than direct training at layers 3, 6, and 9.
For layer 9, both superior-exit guided distillation
and final-layer distillation employ layer 12 as the
teacher model, resulting in identical outcomes.

Furthermore, to highlight the benefits of the in-
ference algorithm in LoRAExit, we compared it
against traditional ForLoop computation across the
three backbones. The findings, presented in Table
5, demonstrate that ForLoop computation leads to
substantial overhead, whereas the SGMV operator
achieves a speedup of 38%, 27% and 22% respec-
tively, underscoring its efficiency and the advantage
of using SGMV for adding the LoRA adapter.

4.5 Different Model Sizes
To further evaluate the capability of our method
across different model sizes, we compare its per-
formance with SWEET on three sizes of the De-

Size Method Exit Layer
1 4 6 12

BASE
SWEET 42.97 66.01 75.02 80.38
LoRAExit 57.88 73.82 77.96 80.78

1 6 12 24

LARGE
SWEET 41.96 65.81 75.92 83.59
LoRAExit 57.33 73.55 79.40 85.10

1 12 24 48

XLARGE
SWEET 42.62 77.58 84.61 84.94
LoRAExit 57.91 78.56 85.74 86.00

Table 6: The accuracy of each exit of SWEET and
LoRAExit on three model sizes. Bold value is the highest
accuracy in each layer.

(a) QNLI (b) QQP

(c) SST2 (d) MRPC

Figure 3: Time-accuracy curve of four tasks obtained
using a DeBERTa model.

BERTa model: base, large, and extra-large (He
et al., 2020). As shown in Table 6, LoRAExit
consistently outperforms SWEET at all exit lay-
ers across the three model sizes. Particularly for
smaller exit layers, such as layers 1, 4, and 6,
LoRAExit achieves significantly higher accuracy
than SWEET regardless of the model size. Fur-
thermore, Table 7 presents the performance and
inference latency of both methods across low and
high ranges. The results clearly indicate that Lo-
RAExit not only delivers better performance but
also maintains lower inference latency and a re-
duced number of layers. Specifically, LoRAExit
shows more pronounced advantages in low-range
and smaller models, making it suitable for environ-
ments with limited computing resources. Overall,
these findings demonstrate that LoRAExit provides
robust performance across various model sizes.
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Size Method Low Range High Range
Latency (ms) Layer Accuracy Latency (ms) Layer Accuracy

BASE
SWEET 5.75 2.65 59.18 15.92 10.44 80.40

LoRAExit 4.12 1.60 62.14 15.60 9.06 80.64

LARGE
SWEET 10.13 5.49 64.04 25.08 18.34 83.57

LoRAExit 8.52 3.77 67.56 24.97 16.49 84.65

XLARGE
SWEET 10.79 6.85 64.12 35.22 27.69 84.89

LoRAExit 8.97 4.86 65.78 35.12 26.98 85.71

Table 7: The performance of SWEET and LoRAExit on three model sizes. Latency is the average inference time for
a single sample. "Low Range" indicates selections with low accuracy and low latency, while "High Range" indicates
selections with high accuracy and high latency.

4.6 Speeds-Accuracy Tradeoff

To evaluate the trade-off between speed and ac-
curacy of LoRAExit, we conducted a comparison
with SWEET and MM, utilizing the DeBERTa-
base backbone. Following (Rotem et al., 2023),
we evaluate all methods across a spectrum of in-
ference speeds by employing 51 threshold values,
evenly distributed within the range ( 1

# of labels , 1),
where # of labels denotes the number of labels for
a given task. We focus our analysis on four dis-
tinct tasks: two larger datasets, QNLI and QQP,
and two smaller datasets, SST2 and MRPC. Illus-
trated in Figure 3, our findings indicate that Lo-
RAExit achieves a superior trade-off between speed
and accuracy compared to the other methods. No-
tably, LoRAExit excels in achieving the highest
score under conditions of limited inference time.
In contrast, SWEET exhibits poor performance at
shorter inference times due to inadequate training
of its lower layers. Meanwhile, MM requires sig-
nificantly longer inference times.

5 Related Work

5.1 Adaptive Inference

Adaptive inference has emerged as an effective
means to enhance the efficiency of pre-trained lan-
guage models during inference (Miao et al., 2023).
A naive approach to addressing the limitations of
single-model inference is the use of multi-model
approaches (Li et al., 2020). These methods se-
quentially try a series of models, ranging from sim-
ple to complex. While this approach can effectively
handle a batch of input examples, it can result in
longer inference latency when processing a single
sample. Additionally, it may require more memory
to store all the models, which can be impractical
for LLMs. In contrast, early exit strategies involve
incorporating auxiliary classifiers at different lay-

ers of the model. To train models that perform well
for both intermediate and final classifiers, various
techniques have been proposed (Teerapittayanon
et al., 2016; Hou et al., 2023a,c; Pu et al., 2024).
Joint training methods simultaneously train all clas-
sifiers using weighted loss functions to combine
losses from different classifiers (Zhou et al., 2020;
Zhu et al., 2023; Zhang et al., 2022). Two-stage
methods separate training of the backbone and in-
termediate classifiers, considering it unreasonable
to merge the last layer with intermediate heads (Xin
et al., 2020, 2021; Zhou et al., 2020). Addressing
conflicts in training all classifiers, local training
methods assign losses from each classifier to spe-
cific subsets of parameters (Rotem et al., 2023; Ji
et al., 2023a). These adaptive inference techniques
have shown promise in improving the efficiency of
LLMs during inference. However, achieving a bal-
ance between the final classifier and intermediate
classifiers remains a challenge, requiring intricate
tradeoffs.

5.2 Parameter Efficient Fine Tuning
The computational challenges entailed in fine-
tuning LLMs have prompted the exploration of
parameter-efficient techniques (Xu et al., 2023).
Adapter-based methods have emerged as notable
approaches, involving the integration of small-
scale adapter modules into LLM Transformer lay-
ers, with updates limited to these adapters dur-
ing fine-tuning (Hu et al., 2023). Among these,
the low-rank adapter (LoRA) has shown promise
in fine-tuning LLMs by effectively reducing pa-
rameters and computational costs while preserving
model performance (Hu et al., 2022). Extensive
research, such as that by (Pfeiffer et al., 2020),
has demonstrated that adapter-based methods can
achieve performance on par with full-parameter
fine-tuning across diverse NLP tasks. In an effort
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to further minimize the parameter count of adapter
modules, (Davison, 2021) proposed Compacter, a
lightweight adapter employing a combination of hy-
percomplex multiplication and parameter sharing.
These advancements have significantly contributed
to the efficient fine-tuning of LLMs, enabling their
broader adoption in various applications (Liu et al.,
2023). However, existing works have primarily
focused on the training phase, overlooking the po-
tential of these techniques in the inference phase.

6 Conclusion

In this work, we have introduced LoRAExit, a novel
approach that addresses the limitations of exist-
ing early exit networks. By combining a low-rank
adapter with the early exit network and implement-
ing a superior-exit guided distillation method, we
have demonstrated the effectiveness of LoRAExit in
improving the efficiency of LLMs during inference.
Our experimental results showcase a better speed-
accuracy tradeoff compared to existing methods,
positioning LoRAExit as a promising solution for
deploying LLMs in resource-limited settings. This
advancement opens new avenues for real-time, on-
device language processing applications, offering
practical benefits without degrading performance.

7 Limitations

While our LoRAExit framework has demonstrated
effectiveness in improving the performance of
early-exit models, it is important to acknowledge
certain limitations that should be addressed in
future research: (a) LoRAExit introduces addi-
tional parameters and computational overhead of
the LoRA modules. Investigating novel execution
methods that can alleviate this overhead is an av-
enue worth investigating in future work. (b) Our
work primarily focuses on the performance of Lo-
RAExit in classification tasks. To broaden the scope
of our research, it is crucial to extend our investi-
gations to encompass a wider range of tasks, such
as sequence labeling, relation extraction, and text
generation. (c) In our current work, we exclusively
utilize discriminative LLMs as the backbone. In-
vestigating the use of generative LLMs would be
an intriguing direction for future research. Explor-
ing the potential benefits and implications of in-
corporating generative LLMs (e.g., GPT) into our
framework could yield valuable insights. In addi-
tion, the recently proposed Mamba model (Gu and
Dao, 2023; Dao and Gu, 2024) tends to be a better

backbone for LoRAExit since it can work without
the memory-intensive KV cache.

8 Ethics Statement

Our proposed LoRAExit aims to enhance the ef-
ficiency of LLMs. By improving efficiency, our
work has the potential to facilitate the deployment
and utilization of pre-trained models on devices
with limited computational capabilities, thereby in-
creasing accessibility to state-of-the-art models for
a broader range of users. We also anticipate that
the adoption of our technology can contribute to re-
ducing the carbon footprints associated with NLP-
based applications. By optimizing the resource
utilization and improving the efficiency of LLMs,
we aim to minimize the environmental impact of
these applications. Furthermore, it is worth noting
that the GLUE datasets utilized in our experiments
are widely employed in previous research. As such,
we have taken precautions to ensure that our work
does not introduce any new ethical concerns related
to data collection, usage, or privacy.
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A Appendix

A.1 Dataset information
The General Language Understanding Evaluation
(GLUE) benchmark is a collection of nine nat-
ural language understanding (NLU) tasks. As
shown in Table 8, it includes question answer-
ing (Rajpurkar et al., 2016), linguistic accept-
ability (Warstadt et al., 2018), sentiment analy-
sis (Socher et al., 2013), text similarity (Cer et al.,
2017), paraphrase detection (Dolan and Brockett,
2005), and natural language inference (NLI) (Da-
gan et al., 2006; Bar-Haim et al., 2006; Giampic-
colo et al., 2007; Bentivogli et al., 2009; Levesque
et al., 2012; Williams et al., 2018). The diversity
of the tasks makes GLUE very suitable for eval-
uating the generalization and robustness of NLU
models. Numerous Early Exit-related studies, such
as SWEET(Rotem et al., 2023), PABEE (Zhou
et al., 2020), PALBERT (Balagansky and Gavrilov,
2023), and DREE (Ji et al., 2023b), utilize GLUE
to evaluate their performance.

A.2 Experiment settings
A.2.1 Training
We train different backbones with different settings
for a fair comparison with previous methods.

BERT-base. For BERT-base backbone, we set
the training batch size to 32 and determine the
optimal learning rate from {1e − 5, 2e − 5, 3e −
5, 5e− 5} for PABEE, PALBERT, and DREE, ad-
hering to the training configurations specified in
(Ji et al., 2023b). For LoRAExit, classifiers are de-
ployed at layers (3, 6, 9, 12), and LoRA Adapters
are integrated into the query and value modules of
each transformer layer. For training the 12-layer
model, we explore the best learning rate within
{5e − 5, 4e − 4, 8e − 4, 1e − 3}, maintaining a
batch size of 32. During the distillation of other
layers, we adjust the temperature T in Equation 5
among {2, 10, 20}, the balance weight λ in Equa-
tion 4 within {1, 0.95, 0.2}, and the learning rate
between {1e− 3, 4e− 4}. The utilization of LoRA
Adapters for training necessitates a learning rate
adjustment distinct from other methods.

ALBERT-base. For the ALBERT-base back-
bone, we limit the training set size for each task
in GLUE to 6K for faster training. If the train-
ing set size of a task is smaller than 6K, we use
the entire dataset. Other settings for PABEE, PAL-
BERT, DREE and LoRAExit are the same as the
BERT-base backbone.

DeBERTa-base. For the DeBERTa-base back-
bone, we adopt a similar approach to dataset size
limitation as with the ALBERT-base, capping each
task in GLUE at 6,000 instances to streamline
training. For training, we adjust the batch size
to 16 and explore the optimal learning rate within
{1e−5, 2e−5, 3e−5, 4e−5, 5e−5} specifically for
SWEET and MM methods. Classifiers are strategi-
cally positioned at layers (1, 4, 6, 12) for SWEET,
MM, and LoRAExit. Additionally, LoRA Adapters
are integrated into the pos_proj and pos_q_proj
modules of each layer to accommodate DeBERTa’s
unique transformer layer structure, which lacks tra-
ditional query and value modules. The remaining
configuration settings for our method align with
those used for the BERT-base backbone.

We take the original weight from the pre-trained
model and use the randomly initialized LoRA
weight to tune it. We train all models with enough
epochs and choose the best checkpoint for infer-
ence.

A.2.2 Inference
For all experiments, we standardize the batch size
for inference at 1. For PABEE and DREE, we set
the patience parameter to 6, and for PALBERT,
we adjust the early exit threshold to 0.5, in line
with the guidelines provided in (Ji et al., 2023b).
For SWEET, MM, and LoRAExit, we apply task-
specific confidence thresholds to optimize perfor-
mance. Inference operations utilize the float16
data type to enhance processing efficiency and are
conducted on the NVIDIA 40G A100 platform to
ensure high computational power. The inference
speed, determined by the time taken to process the
development set for all tasks, serves as our primary
performance metric. We calculate the average in-
ference time from 10 separate runs for each task to
ensure reliability, with the exception of the QQP
task. Given the extensive size of the QQP evalua-
tion datasets, we limit our measurements to a single
run to maintain feasibility.

A.3 Effectiveness of batching

To evaluate the effectiveness of the batched CUDA
GEMM operator used in the first part of Equation
6, we recorded the inference times of three base
models across varying batch sizes, from 1 to 8.
As depicted in Figure 4, the batch size exhibits
minimal impact on the inference times across all
three models, indicating that our approach remains
efficient even with a batch size of 4 per sample.
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Corpus Task #Train #Dev #Test #Label Metrics
General Language Understanding Evaluation (GLUE)

CoLA Acceptability 8.5k 1k 1k 2 Matthews corr
SST Sentiment 67k 872 1.8k 2 Accuracy
MNLI NLI 393k 20k 20k 3 Accuracy
RTE NLI 2.5k 276 3k 2 Accuracy
WNLI NLI 634 71 146 2 Accuracy
QQP Paraphrase 364k 40k 391k 2 Accuracy/F1
MRPC Paraphrase 3.7k 408 1.7k 2 Accuracy/F1
QNLI QA/NLI 108k 5.7k 5.7k 2 Accuracy
STS-B Similarity 7k 1.5k 1.4k 1 Pearson/Spearman corr

Table 8: Summary information of the NLP application benchmarks.

Model Parameter (M) Layer Number Exit Layer

BASE 100 12 (1, 4, 6, 12)
LARGE 350 24 (1, 6, 12, 24)

XLARGE 700 48 (1, 12, 24, 48)

Table 9: The configurations and exit layer settings for
different sizes of DeBERTa model.

Figure 4: The inference time across different batch sizes
of a single execution under three used models.

A.4 Memory Consumption Analysis
To evaluate the memory overhead of LoRAExit , we
measure the memory consumption of SWEET and
LoRAExit on four different sizes of the DeBERTa
model during single-sample inference. As shown
in Table 10, LoRAExit adds less than 8% mem-
ory overhead, and this overhead becomes relatively
smaller with larger model sizes.

A.5 Error Analysis
Here we provide five failure cases from RTE
Dataset on BERT-base model in Table 11. Specifi-
cally, in the first exit, the model provides the correct

SWEET LoRAExit

deberta-base 280 303 (7.6%)
deberta-large 786 830 (5.3%)
deberta-v2-xlarge 1,717 1,809 (5.1%)
deberta-v2-xxlarge 3,023 3,158 (4.3%)

Table 10: The memory consumption (MB) of SWEET
and LoRAExit on four different model sizes.

prediction, yet the confidence exceeds our prede-
fined threshold. Conversely, at the second exit, the
model delivers an incorrect prediction, with a con-
fidence below the threshold. These discrepancies
highlight instances of the model’s “overthinking”,
leading to incorrect outcomes.
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Sentence Label Exit 1
(label, confidence)

Exit 2
(label, confidence)

’sentence1’: ’Without a natural green-
house effect, the temperature of the
Earth would be about zero degrees
F (-18C) instead of its present 57F
(14C).’, ’sentence2’: ’Greenhouse ef-
fect changes global climate.’

0 (0, 0.0594177) (1, 0.6367187)

’sentence1’: ’About 33.5 million peo-
ple live in this massive conurbation. I
would guess that 95% of the 5,000 offi-
cially foreign-capital firms in Japan are
based in Tokyo.’, ’sentence2’: ’About
33.5 miilion people live in Tokyo.’

0 (0, 0.6640625) (1, 0.0120086)

’sentence1’: ’Napkins, invitations and
plain old paper cost more than they did
a month ago.’, ’sentence2’: ’The cost of
paper is rising.’

0 (0, 0.0000116) (1, 0.1921386)

’sentence1’: ’NASA estimated, Mon-
day, that it will cost 104 billion to return
astronauts to the moon, by 2018, in a
new rocket that combines the space shut-
tle with the capsule of an earlier NASA
era.’, ’sentence2’: ’The new space vehi-
cle design uses shuttle rocket parts and
an Apollo-style capsule.’

1 (1, 0.01651) (0, 0.0122222)

’sentence1’: ’California voters re-
call Gray Davis and elect Arnold
Schwarzenegger as their governor.’,
’sentence2’: ’California voters dumped
Gov. Gray Davis and replaced him with
Arnold Schwarzenegger.’

0 (0, 0.0017108) (1, 0.1357421)

Table 11: Five failure cases from RTE Dataset on BERT-base backbone.
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