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Abstract

This study aims to address the pervasive chal-
lenge of quantifying uncertainty in large lan-
guage models (LLMs) without logit-access.
Conformal Prediction (CP), known for its
model-agnostic and distribution-free features,
is a desired approach for various LLMs and
data distributions. However, existing CP meth-
ods for LLMs typically assume access to the
logits, which are unavailable for some API-
only LLMs. In addition, logits are known
to be miscalibrated, potentially leading to de-
graded CP performance. To tackle these chal-
lenges, we introduce a novel CP method that
(1) is tailored for API-only LLMs without logit-
access; (2) minimizes the size of prediction
sets; and (3) ensures a statistical guarantee of
the user-defined coverage. The core idea of this
approach is to formulate nonconformity mea-
sures using both coarse-grained (i.e., sample
frequency) and fine-grained uncertainty notions
(e.g., semantic similarity). Experimental results
on both close-ended and open-ended Question
Answering tasks show our approach can mostly
outperform the logit-based CP baselines.

1 Introduction

Large Language Models (LLMs) have made signif-
icant advancements (Thoppilan et al., 2022; Wei
et al., 2022, 2023; Xie et al., 2023), highlighting
the research potential of natural language genera-
tion (Peinl and Wirth, 2023). However, they often
generate information that is not accurate, factual, or
grounded in reality, referred to as "hallucination"
(LeCun, 2023). Therefore, it is crucial to quantify
LLM uncertainty to ensure responsible responses.

However, uncertainty quantification (UQ) for
LLMs is challenging due to the complex data dis-
tributions and inner model mechanism, as well as
the often limited access to logit information. A
potential solution is to use conformal prediction
(CP) (Vovk et al., 2005; Angelopoulos and Bates,

∗*Corresponding authors.

2021; Kato et al., 2023; Wang et al., 2023), which
is known for being model-agnostic and distribution-
free, and with rigorous coverage guarantees. Given
a user-defined error rate α, CP provides a guar-
anteed coverage rate for prediction sets/intervals.
It measures the uncertainty from a model predic-
tion using nonconformity score functions, e.g.,
1− f(X)Y (Sadinle et al., 2019), where f(X)Y is
the softmax score for the true label Y .

Most of the existing CPs for LLMs rely on the
access to model logits to measure nonconformity
scores. For instance, Kumar et al. (2023) define
nonconformity scores as softmax scores for logits
of different options in the multi-choice question an-
swering (MCQ) task and Quach et al. (2023) apply
the conformal risk control framework (Angelopou-
los et al., 2021), an extension of CP, to LLMs by
utilizing model-based log probability. However,
for some API-only LLMs like Bard (Manyika and
Hsiao, 2023), logit-access is almost impossible for
end users. Even though the logits are available
(e.g., GPT 4V (OpenAI, 2023)), they are known to
be miscalibrated and can lead to degraded perfor-
mance of CP w.r.t. estimating the prediction sets or
intervals (Nguyen and O’Connor, 2015; Lin et al.,
2022), e.g., a large set size (i.e., low efficiency).

To enable CP without logit-access, a straightfor-
ward way is to calculate the frequency of each re-
sponse via sampling and approximate model-based
probabilities. However, we theoretically prove
that this approach is extremely computationally
expensive (Lemma 3.1). As nonconformity scores
typically measure the level of uncertainty, CP de-
pends on the ranking of the nonconformity mea-
sures rather than their actual values (Shafer and
Vovk, 2008). Therefore, we propose to sample re-
sponses for a certain number of times (e.g., 30)
for each input and then utilize the frequency of
each response as a coarse-grained uncertainty no-
tion. This approach reduces the overall sampling
costs and eliminates the dependence on the logits.
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Figure 1: Illustrations of the proposed problem and solution. Three uncertainty notions for measuring nonconformity:
(1) Frequency-only, where the nonconformity score is calculated as 1− the frequency of a response out of 10 samplings.
Concentration issues arise at scores of 0.6, 0.7, and 0.8. For instance, responses from different prompts (e.g., "Big Bill Broonzy"
and "Joan Rivers") have the same score of 0.6, as well as responses within the same prompt (e.g., "Bill Boonzy" and "Sir William
Rockington") which both have a score of 0.7, and so forth. (2) Frequency combined with NE, where the nonconformity score
is calculated as 1− frequency + NE, revealing concentration issues at scores of 0.75 and 0.86. (3) Frequency, NE, and SS
combined, where the nonconformity score is calculated as 1− frequency + NE − SS, with no observed concentration issues.

However, when using frequency as the only non-
conformity measure, we observe that nonconfor-
mity scores concentrate on certain values as some
responses may share the same frequency even if
they have varied levels of uncertainty (see Figure
1), consequently diminishing the efficiency of pre-
diction sets.

To distinguish between responses that share the
same frequency, we first identify two potential
causes: the respective concentration issues across
different prompts and within the same prompt,
which indicates we need to integrate prompt-wise
and response-wise notions to respectively miti-
gate these two causes. We then propose two ad-
ditional fine-grained uncertainty notions: normal-
ized entropy (NE), measuring prompt-wise self-
consistency to alleviate concentration issues across
different prompts; and semantic similarity (SS),
measuring response-wise similarity to the most fre-
quent response within the same prompt, to mitigate
internal concentration issues specific to the prompt.
Figure 1 illustrates the different scores defined us-
ing frequency-only, frequency combined with NE,
and frequency combined with NE and SS as non-
conformity measures, respectively. By considering
various uncertainty information, the proposed non-
conformity score function can better distinguish
the uncertainty of different responses.

Our contributions are summarized as follows:
• To our knowledge, this is the first CP work dedi-

cated to LLMs without logit-access that provides
a coverage guarantee for the prediction set with

a small size.
• We propose a novel CP approach that uses both

coarse-grained and fine-grained uncertainty no-
tions as the non-conformity measures. We also
theoretically prove (1) it is computationally infea-
sible to use response frequency to approximate
model output probability, and (2) our approach
ensures a rigorous statistical coverage guarantee.

• We conduct experiments on both close- and open-
ended QA tasks and demonstrate the effective-
ness of our method. Notably, we mostly surpass
all baselines, including four logit-access methods
and one method without logit-access.

2 Preliminaries of Conformal Prediction

Conformal prediction (CP) (Vovk et al., 2005) is a
model-agnostic method offering distribution-free
uncertainty quantification, which produces predic-
tion sets/intervals containing ground-truth labels
with a desired error rate α. One of the widely used
CP methods is split CP. Formally, let (X,Y ) be a
sample, where X represents features and Y repre-
sents the outcome. We denote the calibration set as
(Xi, Yi)i=1,...,n and the test set as (Xtest, Ytest). CP
presents the following nesting property:

α1 > α2 ⇒ C1−α1(X) ⊆ C1−α2(X). (1)

where C : X → 2Y is a set-valued function that
generates prediction sets over the powerset of Y
given an input X .

Theorem 2.1 (Conformal coverage guarantee).
Suppose (Xi, Yi)i=1,...,n and (Xtest, Ytest) are

980



independent and identically distributed (i.i.d.).
C1−α(Xtest) is a set-valued mapping satisfying
the nesting property in Eq. 1. Then the following
holds:

P (Ytest ∈ C1−α(Xtest)) ≥ 1− α, (2)

where α ∈ (0, 1) is the user-defined error rate.

Nonconformity Measures. The nonconformity
measure N is a core element in CP. It measures
uncertainty in the model’s output by assessing the
deviation of a specific instance or output from pat-
terns observed in the training data. Typically, we
have logit access to models to measure nonconfor-
mity, e.g., 1− f(X)Y . For LLMs, N is typically
derived from the post-hoc logits.

Split CP Steps. Split CP typically involves four
steps (Angelopoulos and Bates, 2021):

1. Establish heuristic uncertainty notions.

2. Define the nonconformity measures/score func-
tion N(x, y) ∈ R.

3. Compute q̂ as the ⌈(n+1)(1−α)⌉
n quantile of the

nonconformity scores.

4. Use q̂ to generate prediction sets for new exam-
ples: C(Xtest) = {Y : N(Xtest, Y ) ≤ q̂}.

3 Methodology

Our method considers two pivotal challenges aris-
ing from the LLMs without logit-access: how to ap-
proximate the logit information of LLMs; and how
to further improve CP efficiency, i.e., small predic-
tion sets. We propose the Logit-free Conformal
Prediction for LLMs (LofreeCP), where its non-
conformity measures consist of three notions: fre-
quency, representing coarse-grained uncertainty;
NE, representing prompt-wise fine-grained uncer-
tainty; and SS, representing response-wise fine-
grained uncertainty.

3.1 Frequency As the Rankings Proxy
A straightforward way is to approximate real pre-
dictive probabilities through a sufficiently large
number of samplings. However, as we show in
Lemma 3.1, a minimum of 9,604 samples is re-
quired to achieve a 95% confidence level with a 1%
margin of error. Therefore, the implementation is
impractical due to computational constraints.

Lemma 3.1 (Minimum Sample Size for Confident
Probability Estimation). Let freq(Yi) be the abso-
lute frequency of outcome Yi in the sampling, Ntotal

be the total number of samplings, pi be the desired
estimated probability, ϵ be the estimation error, and
δ be the target confidence level. To determine the
minimum sample size for confident probability es-
timation, for any given ϵ > 0 and 0 < δ < 1, the
following inequality must hold:

P

{∣∣∣∣
freq(Yi)

Ntotal
− pi

∣∣∣∣ ≤ ϵ

}
≥ δ. (3)

Then, the minimum sample size Ntotal satisfying
Inequality 3 is given by:

Ntotal ≥
(u1−(1−δ)/2

2ϵ

)2

, (4)

where u1−(1−δ)/2 is the quantile of the standard
normal distribution corresponding to the confi-
dence level 1− (1− δ)/2. The proof of Lemma 3.1
is given in Appendix A.1.

Since nonconformity measures are grounded
in assessing the model’s predictive uncertainty
(Shafer and Vovk, 2008), the primary focus lies
in the rankings of uncertainty inherent in noncon-
formity measures rather than the absolute values
themselves. Further, self-consistency theory (Wang
et al., 2022; Li et al., 2022) states that a repetitively
sampled response is viewed as a form of consis-
tency linked to higher confidence in the response.
To empirically validate this intuition, we randomly
select 2000 questions from the TriviaQA dataset
(Joshi et al., 2017). We conduct 20 samplings from
the Llama-2-7b model (Touvron et al., 2023), ex-
tracted logits, and subsequently computed model
output probabilities. The observed results depicted
in Figure 2a indicate a direct positive correlation
between response frequency and average real prob-
ability. As the response frequency climbs, there is
a corresponding increase in the average real prob-
ability, suggesting a growing level of confidence
and certainty in the model’s responses. Therefore,
we propose to use frequency as the proxy of proba-
bility ranking. It is defined as

F (ŷ(i)
a ,m) =

p̃[ŷ
(i)
a ]

m
, (5)

where p̃ represents the empirical absolute fre-
quency, ŷ(i)a is the a-th non-repeated sampled re-
sponse for i-th prompt, m is the sampling quantity
from LLMs for each prompt. However, only using
response frequency as nonconformity measures re-
sults in the concentration of nonconformity scores
on certain values. This issue makes it challenging
to discern nonconformity differences among re-
sponses with the same scores, rendering ineffective
calibration in CP.
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Figure 2: Empirical findings with TriviaQA dataset.

3.2 Fine-grained Uncertainty Notions

To resolve the concentration issue, we propose two
fine-grained uncertainty measures. Firstly, inspired
by self-consistency theory (Wang et al., 2022; Li
et al., 2022), we incorporate NE, a prompt-wise
fine-grained uncertainty notion, to mitigate the con-
centration issue across different prompts. NE is
a measure of the uncertainty or diversity in the
model’s predictions when generating responses to
a given prompt. It is defined as

H(x(i)|{ŷ(i)
j }mj=1) = |

∑n
a=1 F̃ (ŷ

(i)
a ) log(F̃ (ŷ

(i)
a ))

logm
|, (6)

where x(i) is the i-th instance of the prompt dataset,
m is the number of sampled responses, n is the
number of non-repeated responses, ŷ(i)j is the j-
th sampled response. Following experiments in
Section 3.1, we show that as NE increases, the
number of unanswered questions also increases
(Figure 2b), indicating a rise in uncertainty.

Secondly, to address concentration issues within
a prompt, we introduce SS as a response-wise fine-
grained uncertainty measure. This metric semanti-
cally assesses the similarity between each non-top-
1 response and the top-1 response within a prompt.
Intuitively, when two non-top-1 responses share the
same frequency, the one more semantically similar
to the top-1 response is more likely to express high
confidence and low uncertainty. We use the cosine

similarity to express SS. It is defined as

SS(ŷ(i)
a , P

(i)

highest) =
v(ŷ

(i)
a ) · v(P (i)

highest)

∥v(ŷ(i)
a )∥ · ∥v(P (i)

highest)∥
, (7)

where v(x) is the vector representation of x,
P

(i)
highest is the response having the highest frequency

for i-th prompt. However, if the response to be mea-
sured is the one with the highest frequency, we do
not consider SS with itself.

3.3 CP for LLMs Without Logit-Access
Considering both the coarse-grained and fine-
grained uncertainty notions, the final nonconfor-
mity score function of LofreeCP is defined as

N (i) = −F (ŷ(i)
a ,m) + λ1 ·H(x(i)|{ŷ(i)

j }mj=1)

− λ2 · SS(ŷ(i)
a , P

(i)
highest),

(8)

where λ = (λ1, λ2) representing a hyperparam-
eter configuration controls the balance between
the coarse-grained and fine-grained uncertainty no-
tions. LofreeCP has the coverage guarantee:

Proposition 3.2 (Coverage guarantee of LofreeCP).
Suppose (Xi, Yi)i=1,...,n and (Xtest, Ytest) are i.i.d.
Let C1−α(Xtest) be defined as in Step 3. Then we
have the coverage guarantee:

P {Ytest ∈ C1−α (Xtest)} ≥ 1− α,

where α ∈ (0, 1) denotes the desired error rate.
The proof of the coverage guarantee of LofreeCP
is provided in Appendix A.2.

LofreeCP consists of three stages: calibration,
validation, and testing. The calibration stage aims
to find the quantile based on the desired error rate.
We sample m responses from the LLM for each
prompt and store them in a response pool. Then, we
obtain the nonconformity scores of the true labels
with the following rules: if the true label exists in
the pool, we use the nonconformity measures from
Equation 8 to calculate its nonconformity score;
otherwise, we set the nonconformity score as ∞
to signify that it is nearly impossible to for the
LLM to generate the true response. After obtaining
all nonconformity scores of the calibration set, we
find the quantile based on the desired error rate.
We use this quantile as a threshold value for both
the validation and test stages.

We then use the validation set to choose the op-
tima hyperparameter configuration λ = (λ1, λ2).
Subsequently, we conduct evaluations on the test
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set using the chosen configuration. Both stages
follow identical sampling steps to the calibration,
traversing all responses and calculating the noncon-
formity scores. We preserve the responses whose
nonconformity score is less than the threshold in
our final prediction set. The pseudocode of the
LofreeCP method is provided in Appendix B.10.

4 Experiments

4.1 Experimental Setup

Backbone LLMs and Evaluation Tasks. Since
we need to compare LofreeCP with logit-based
methods, from where logits can be retrieved di-
rectly, we consider different open-source LLMs,
including Llama-2-7B, Llama-2-13B, WizardLM-
v1.2(13b) (Xu et al., 2023) and Vicuna-v1.5(7b)
(Chiang et al., 2023) models as our backbone mod-
els. Note that our method uses these LLMs as if
they were API-only LLMs, i.e., it assumes no ac-
cess to any internal information of LLMs. We use
both open-ended Question-Answering (QA) and
close-ended Multi-Choice Question-Answering
(MCQ) tasks for evaluation.

Datasets. We use standard benchmarking
datasets TriviaQA and MMLU (Hendrycks et al.,
2020), following (Kumar et al., 2023) and (Quach
et al., 2023). We also include the WebQuestions
benchmark (Berant et al., 2013). For QA, we use
the TriviaQA dataset, which consists of trivia
questions spanning a wide range of topics such
as history and science, and the WebQuestions
dataset, which is focused on questions asked by
users on a search engine. MMLU dataset, covering
57 subjects (e.g., mathematics, history), is used for
MCQ. We focus on a subset of 16 subjects out of
the total 57, as in Kumar et al. (2023).

Baselines. Baselines include methods without
logit-access and those based on logit:
• Top-Kwhite. A logit-based non-CP method

without coverage guarantee, which includes re-
sponses with the first K highest probabilities for
each prompt in the prediction set.

• Standard Split Conformal Prediction (SCP)
(Vovk et al., 2005). A logit-based CP method,
which follows the steps shown in Section 2.

• Sorted Adaptive Prediction Sets (SAPS)
(Huang et al., 2023). A logit-based CP method,
which uses the highest probability and replaces
other probabilities with some weighted values to
mitigate the miscalibration issue.

• Top-Kblack. A non-CP method without logit-
access and coverage guarantee, which includes
responses with the first K highest frequency for
each prompt in the prediction set.

• Conformal Language Modeling (CLM)
(Quach et al., 2023). The state-of-the-art
logit-based CP method, which uses the general
risk control framework. This baseline is only
used in QA as it is not applied to MCQ.

Metrics. We use following metrics for evaluation
(Angelopoulos and Bates, 2021):
• Empirical Coverage Rate (ECR) assesses

whether the conformal procedure has the correct
coverage with the theoretical guarantee.

• Size-Stratified Coverage (SSC) (Angelopoulos
et al., 2020) assesses the worst coverage rate of
each bin among different set sizes.

• Average Prediction Set Size (APSS) assesses the
efficiency of CP. We expect the APSS of an effi-
cient CP method to be small.

4.2 Results for QA

We perform QA using TriviaQA and WebQuestions
datasets. The results for Llama-2-13b are reported
in Tables 1-2, those for Llama-2-7b are shown in
the sensitivity analysis of Section 4.5 and those for
WizardLM-v1.2(13b) and Vicuna-7b-v1.5 can be
found in Appendix D. In Table 1, the LofreeCP
method excels on TriviaQA across all error rate
settings, outperforming the second-best method,
CLM, by 7.7% in terms of APSS at an error rate
of 0.25. Regarding SSC, our LofreeCP method
surpasses the second-best method, First-Kwhite, by
1.6%. In Table 2, our method demonstrates superior
performance on WebQuestions in most settings.
For instance, at an error rate of 0.45, our LofreeCP
method outperforms the second-best method, CLM,
by 11.6% in terms of APSS. Regarding SSC, we
outperform the second-best method, SCP, by 4.3%.
WizardLM-v1.2(13b) and Vicuna-7b-v1.5 exhibit
similar trends to Llama-2-13b.

The smallest APSS indicates that our method
can produce the most efficient prediction sets. The
highest SSC indicates that our method is attentive
to the conditional coverage rate, achieving well-
calibrated uncertainty estimates within diverse size
categories. The rationale behind the observed su-
perior performance is that our nonconformity mea-
sure can capture the coarse-grained uncertainty of
responses and effectively optimize nonconformity
through fine-grained considerations, thereby miti-
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Table 1: Results for TriviaQA using Llama-2-13b: Among all baselines, only First-Kwhite and First-Kblack are non-CP-based,
while the rest are CP-based methods. In the results, bold indicates that the method produces the best performance among all
methods; ✗ denotes that the method fails to produce the set with the desired error rate.

Methods Logit-Access
Error Rate

0.2 0.25 0.3
ECR SSC↑ APSS↓ ECR SSC↑ APSS↓ ECR SSC↑ APSS↓

First-Kwhite ✓ 82.1 76.6 3.39 76.1 72.9 1.90 ✗ ✗ ✗
CLM ✓ 80.2 73.4 2.29 75.2 69.1 1.55 70.1 68.3 1.28
SCP ✓ 80.3 75.7 2.25 75.1 70.0 1.59 70.3 74.5 1.21

SAPS ✓ 80.0 77.9 2.74 75.1 64.2 1.80 70.0 49.4 1.55
First-Kblack ✗ 80.1 76.8 2.70 76.4 72.2 1.90 ✗ ✗ ✗

LofreeCP (Ours) ✗ 80.1 79.0 2.19 75.3 74.5 1.43 70.3 76.7 1.08

Methods Logit-Access
Error Rate

0.35 0.4 0.45
ECR SSC↑ APSS↓ ECR SSC↑ APSS↓ ECR SSC↑ APSS↓

First-Kwhite ✓ ✗ ✗ ✗ 62.4 62.5 1.00 ✗ ✗ ✗
CLM ✓ 65.0 69.3 0.96 60.1 72.7 0.81 55.2 83.3 0.70
SCP ✓ 65.1 76.4 1.02 60.3 75.7 0.85 55.3 82.5 0.74

SAPS ✓ 65.1 57.4 1.28 60.1 70.7 0.85 55.1 76.5 0.72
First-Kblack ✗ 66.5 66.5 1.00 ✗ ✗ ✗ ✗ ✗ ✗

LofreeCP (Ours) ✗ 65.1 78.5 0.90 60.0 81.0 0.75 55.2 84.1 0.66

Table 2: Results for WebQuestions using Llama-2-13b.

Methods Logit-Access
Error rate

0.35 0.4 0.45 0.5
ECR SSC↑ APSS↓ ECR SSC↑ APSS↓ ECR SSC↑ APSS↓ ECR SSC↑ APSS↓

First-Kwhite ✓ 66.4 57.5 6.18 61.6 58.1 3.81 57.5 55.0 2.91 50.6 49.0 1.97
CLM ✓ 65.3 50.5 4.54 60.5 52.9 2.86 55.0 51.6 1.81 50.1 56.8 1.27
SCP ✓ 65.1 46.7 4.61 61.6 49.3 3.01 55.2 55.8 2.02 50.2 57.8 1.39

SAPS ✓ 65.2 46.2 5.19 60.6 56.2 3.39 55.5 37.7 2.40 50.8 21.7 1.86
First-Kblack ✗ 65.1 54.9 6.20 60.0 55.3 3.78 56.9 54.4 2.91 53.7 52.4 1.97

LofreeCP (Ours) ✗ 65.1 61.1 5.33 60.0 60.0 2.68 55.1 60.1 1.60 50.3 59.9 1.06

gating the inherent miscalibration issue in LLMs.

4.3 Ablation Study

To demonstrate the impact of our fine-grained un-
certainty notions (NE and SS) on mitigating the
concentration issues, we conduct a series of ab-
lation studies using the TriviaQA dataset with a
sampling quantity of 20. We compare LofreeCP
with its different variants: we remove one fine-
grained notion at a time (Freq&SS, removing the
NE notion; and Freq&NE, removing the SS no-
tion), and finally remove both fine-grained notions
(Freq-Only). We report APSS and ECR, the direct
indicators of the concentration issue, in Figure 3.

Impact of Concentration Issue. As introduced
in Section 3, the concentration issue occurs when
the nonconformity score is concentrated on cer-
tain values. When we use the frequency-only vari-
ant (Freq-Only), this issue can be observed in all
error rate settings, as shown in Figure 3: Freq-
Only has the largest APSS and the most conser-
vative ECR. Due to its coarse-grained uncertainty
notion, Freq-Only tends to generate similar non-
conformity scores clustered into several groups,
making it hard to differentiate granular uncertain-
ties to produce efficient prediction sets.

Full Method Mitigates Concentration Issue.
We further observe that the concentration issue is
mitigated in all error rate settings by incorporating
fine-grained notions (NE & SS). For example, at
an error rate of 0.2, Freq-Only exhibits an APSS of
nearly 6.5, while the full method LofreeCP has an
APSS of 4.27, resulting in a drop of more than 23%.
The method including only SS or NE also mitigates
the concentration issue to some extent, while the
full method performs the best in terms of APSS and
ECR. The results suggest that NE and SS both have
a significant impact on improving the efficiency of
prediction sets by mitigating concentration issues
of nonconformity scores.

4.4 Results for MCQ

In addition to open-ended tasks, e.g. QA, LofreeCP
is also effective at close-ended tasks that can be con-
verted into a generation pipeline, e.g. MCQ. We
conduct MCQ experiments on the MMLU dataset
using Llama-2-13b with a sampling quantity of 20.
We present the results in Figure 4.1 LofreeCP ex-
hibits superior performance. When compared with
SCP and SAPS across all 16 subjects, LofreeCP

1We omit the results from top-K methods as they exhibit
much larger APSS than other methods for MCQ.
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Figure 3: Ablation study. The blue bar chart represents APSS,
while the gray line represents ECR.

achieves the best performance in 9 subjects and ties
for the best in subjects of professional medicine,
college chemistry, and marketing, resulting in the
overall best performance in 12 out of 16 subjects.
In contrast, SCP only ties for the best in 3 sub-
jects. SAPS achieves the solo best performance in
3 subjects and ties for the best in 1 subject.

An intriguing observation is related to subjects
in the business and management (B&M) category
(e.g., marketing and public relations). When us-
ing LofreeCP method, these subjects show slightly
larger APSS than the two logit-based methods,
SCP and SAPS. This suggests that the logits for re-
sponses to B&M questions predicted by the Llama-
2-13b model are better calibrated than the remain-
ing subjects from the Science, Technology, Engi-
neering, and Mathematics (STEM) category. Our
LofreeCP method mitigates the model miscalibra-
tion issue by refraining from directly using logits.

4.5 Sensitivity Analyses
BackBone Models. To investigate the influence
of different backbone models on the performance
of LofreeCP, we conduct experiments using Llama-
2-7b and Llama-2-13b with a sampling quantity of
20. Results of SSC and APSS are shown in Figure
5. We observe that better performance of APSS
and SSC in the 13b setting than in the 7b setting.
We believe this is because Llama-2-13b is more
powerful than Llama-2-7b, and produces more con-
fident and calibrated responses, thereby providing
more efficient prediction sets. Results for Vicuna-
v1.5(7b) are provided in Appendix D, indicating

2 2.5 3 3.5
APSS

Professional accounting
Business ethics

Management
Public relations

Marketing
College chemistry

Professional medicine
College medicine

Clinical knowledge
Anatomy

High school biology
Formal logic

Machine learning
College computer science

High school computer science
Computer security

SCP
SAPS
LICP
(Ours)

Figure 4: Results on MMLU for MCQ task, with the error
rate of 0.2. Our method and baselines are applied individually
to each of the 16 subjects.

that Vicuna-v1.5(7b) can only produce prediction
sets with higher error rates compared to Llama-2
backbones. This is because Vicuna-v1.5(7b) is less
powerful for these two datasets. This demonstrates
that CP performance for LLMs is largely dependent
on the performance of the backbone models.

Sampling Quantity The sampling quantity regu-
lates the number and types of sampled responses ac-
quired from LLMs, thereby influencing frequency,
NE and SS. We vary the sampling quantity from 10
to 40 on the TriviaQA dataset using Llama-2-13b,
incrementing by 5 each time. Results shown in Fig-
ure 6 suggest that a larger sampling quantity tends
to present better performance w.r.t. efficiency. This
is because, with a higher sampling quantity, the fre-
quency notion more accurately represents response
rankings. Of particular interest is that, at an error
rate of 0.2, the sampling quantity of 15 exhibits in-
ferior performance compared to the quantity of 10.
We hypothesize it is because a sampling quantity
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Figure 5: Results of the sensitivity analysis for different
backbone models: Llama-2-7b and Llama-2-13b.
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Figure 7: Results of sensitivity analysis of temperature.

of 15 remains insufficient to adequately represent
rankings meanwhile introducing more non-robust
randomness in responses. In addition, we observe
a larger impact of the sampling quantity on APSS
when a small error rate guarantee is required.

Temperature Scaling. The temperature (Hinton
et al., 2015) in LLMs adjusts the randomness in
generated outputs by scaling logits during the soft-
max operation. Higher temperatures boost the di-
versity of the output, which may further affect the
performance of LofreeCP. In this experiment, we
vary temperatures2 (0.5, 0.75, 1.0, 1.25, and 1.5) in
the Llama-2-13b model. Results for the TriviaQA
dataset are presented in Figure 7. The smallest
(best) APSS is observed at a temperature of 0.75.
We observe an overall growing trend as the temper-
ature increases from 0.75 to 1.50. This indicates
that excessive diversity can result in uncertain and
suboptimal predictions. The decline from 0.50 to
0.75 implies that too much determinism may hurt
CP efficiency due to a lack of randomness and
diversity. We also note a significant temperature
influence on APSS when aiming for low error rates.

5 Related Work

Conformal Prediction for NLP. CP has already
found diverse applications in NLP, e.g., text infill-
ing and part-of-speech prediction Dey et al. (2021),
sentiment analysis Maltoudoglou et al. (2020), and
Automatic Speech Recognition Ernez et al. (2023).
In the application of CP to LLMs, existing meth-
ods are predominantly logit-based. For instance,

2Temperature ranges between 0 and 2.

Kumar et al. (2023) apply standard CP (Vovk et al.,
2005) to Llama-2-13b (Touvron et al., 2023) for the
MCQ task by computing softmax scores of token
logits for options to measure nonconformity. Simi-
larly, Quach et al. (2023) extend CP to LLMs using
the general risk control framework (Angelopoulos
et al., 2021). However, recent studies have pointed
out that relying solely on logits may be flawed (Xi
et al., 2024) due to hallucinations in LLMs (LeCun,
2023). Consequently, there is ongoing research
aiming to reduce reliance on logits. Huang et al.
(2023) propose to use the highest probability and
replace other probabilities with weighted values.
All these methods involve the utilization of logits.

Uncertainty Estimation in LLMs. Recent de-
velopments in LLMs have highlighted the im-
portance of estimating their uncertainty. While
there has been significant research on uncer-
tainty in NLP (Van Landeghem et al., 2022; Ul-
mer et al., 2022; Wang et al., 2024; Da et al.,
2024), several methods exist to estimate the confi-
dence of LLMs, including Deep Ensemble meth-
ods (Lakshminarayanan et al., 2017), Monte Carlo
dropout (Gal and Ghahramani, 2016), Density-
based estimation (Yoo et al., 2022), Confidence
learning (DeVries and Taylor, 2018), as well as
approaches based on logits. However, recent stud-
ies highlight concerns that LLMs may generate
unfaithful and nonfactual content (Maynez et al.,
2020; Yang et al., 2024). Additionally, logits of
LLMs often exhibit overconfidence when produc-
ing incorrect answers, indicating that logits alone
may not be entirely reliable for studying uncer-
tainty (Desai and Durrett, 2020; Miao et al., 2021;
Vasconcelos et al., 2023).

6 Conclusion

We study the critical problem of CP for API-only
LLMs without logit-access. We propose a novel
solution to define the nonconformity score func-
tion by leveraging uncertainty information from
diverse sources. In particular, under a limited sam-
pling budget, we first use the response frequency as
the coarse-grained proxy of uncertainty levels. We
then propose two fine-grained uncertainty notions
(NE and SS) to further distinguish uncertainty at
a nuanced level. Our proposed approach does not
rely on model logits and can alleviate the known
miscalibration issue when using logits. Experi-
ments demonstrate the superior performance of our
approach compared to logit-based and logit-free
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baselines. Our work opens up a new avenue to un-
certainty estimation in LLMs without logit-access.

Limitations

Our approach encounters a common limitation of
open-ended Natural Language Generation (NLG)
tasks: the unbounded output space. In our work, we
address this challenge by sampling a fixed number
of times for every prompt from LLMs to achieve
a comprehensive output space, but we recognize
the potential for more effective and convincing ap-
proaches to handle this issue within the framework
of CP. Secondly, another future direction is to ex-
pand our CP method to non-exchangeability sce-
narios, particularly in NLG domains, where cal-
ibration and test sets may not adhere strictly to
the assumption of being independent and identi-
cally distributed (i.i.d.). Finally, due to financial
constraints, we do not evaluate our approach on
several proprietary LLMs (e.g., GPT 4) that allow
users to obtain token log probabilities. Thus future
work can validate our method on these models.
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A Theoretical Proofs

A.1 Proof of Lemma 3.1

Proof. When Ntotal is sufficiently large, the Linde-
berg–Lévy central limit theorem yields the follow-
ing equation:

freq(Yi)
Ntotal

− pi√
pi(1− pi)/Ntotal

∼ N(0, 1),

From this, we conclude that

P

{∣∣∣∣∣

freq(Yi)
Ntotal

− pi√
pi(1− pi)/Ntotal

∣∣∣∣∣ ≤ u1−(1−δ)/2

}
≥ δ.

Approximately replacing pi in the denominator
with freq(Yi)

Ntotal
, we obtain

P





∣∣∣∣∣∣

freq(Yi)
Ntotal

− pi√
freq(Yi)
Ntotal

(1− freq(Yi)
Ntotal

)/Ntotal

∣∣∣∣∣∣
≤ u1−(1−δ)/2





≥ δ.

This equation is equivalent to

P{−u1−(1−δ)/2 ≤
freq(Yi)
Ntotal

− pi√
freq(Yi)
Ntotal

(1− freq(Yi)
Ntotal

)/Ntotal

≤ u1−(1−δ)/2} ≥ δ.

We can then reformulate the above equation as:

P{freq(Yi)
Ntotal

− u1−(1−δ)/2 ·

√
freq(Yi)
Ntotal

(1− freq(Yi)
Ntotal

)

Ntotal

≤ pi ≤
freq(Yi)

Ntotal

+ u1−(1−δ)/2 ·

√
freq(Yi)
Ntotal

(1− freq(Yi)
Ntotal

)

Ntotal
}

≥ δ.

In the left part of this equation, freq(Yi)
Ntotal

rep-
resents the absolute frequency, pi represents the
desired estimated probability, and u1−(1−δ)/2 ·√

freq(Yi)

Ntotal
(1− freq(Yi)

Ntotal
)

Ntotal
is the error term between

them. Recall that we aim to ensure:

P

{∣∣∣∣
freq(Yi)

Ntotal
− pi

∣∣∣∣ ≤ ϵ

}
≥ δ.

Therefore, we need to guarantee:

u1−(1−δ)/2 ·

√
freq(Yi)
Ntotal

(1− freq(Yi)
Ntotal

)

Ntotal
· 2 ≤ 2ϵ.

This implies that we must control the error term
to not exceed our predetermined estimation error.
Note that the left part of this equation reaches its
maximum value when freq(Yi) = 1

2 . Hence, to
achieve this, we only require:

√
1/4

Ntotal
· u1−(1−δ)/2 · 2 ≤ 2ϵ.

This simplifies to

Ntotal ≥
(u1−(1−δ)/2

2ϵ

)2
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A.2 Proof of Proposition 3.2

Proof. Let N denote the nonconformity measures
of the calibration set (Xi, Yi)i=1,...,n, and let α1

and α2 be the desired error rates, where α1 > α2.
As indicated in Step 2, we have q̂1 ≤ q̂2. Given
C(Xtest) = {Y : N(Xtest, Y ) ≤ q̂}, it follows that
C1−α1(X) ⊆ C1−α2(X). Consequently, the nest-
ing property, as defined in Equation 1, is satisfied.
Therefore, Proposition 3.2 holds.

B Implementation Details

B.1 Dataset

The TriviaQA benchmark (available at https:
//nlp.cs.washington.edu/triviaqa/ or can
be accessed from Hugging Face at https:
//huggingface.co/datasets/trivia_qa) and
the WebQuestions benchmark (available at
worksheets.codalab.org or can be accessed
from Hugging Face at https://huggingface.
co/datasets/web_questions) are employed for
QA. Both datasets operate within a closed-book
setting, where LLMs refrain from using supporting
text when answering questions.

The MMLU benchmark (can be accessed
from Hugging Face at https://huggingface.
co/datasets/lukaemon/mmlu) is designed for
MCQ, which covers 57 subjects across STEM, the
humanities, the social sciences, and more. For our
MCQ experiments, we leverage the dataset con-
taining 16 subjects from the MMLU: computer
security, high school computer science, college
computer science, machine learning, formal logic,
high school biology, anatomy, clinical knowledge,
college medicine, professional medicine, college
chemistry, marketing, public relations, manage-
ment, business ethics, professional accounting.

For the TriviaQA dataset, we randomly select
10,000 question-answer pairs. Similarly, for the
WebQuestions dataset, we randomly select 5,000
question-answer pairs. Regarding the MMLU
dataset, we use all available data for each of the 16
subjects. Across all three datasets, we apply the
same splitting strategy: 50% of the data serves as
the calibration set, 25% as the validation set, and
25% as the test set for each trial.

B.2 Backbone LLMs

We utilize the Hugging Face API to access
open-source LLMs in our experiments, includ-
ing Llama-2-7B (accessible at huggingface.

co/meta-llama/Llama-2-7b-hf), Llama-
2-13B (accessible at huggingface.co/
meta-llama/Llama-2-13b-hf), WizardLM-
v1.2(13b) (accessible at huggingface.co/
WizardLM/WizardLM-13B-V1.2), and Vicuna-
v1.5(7b) (accessible at huggingface.co/lmsys/
vicuna-7b-v1.5). Access to Llama-2-7b and
Llama-2-13b requires requesting approval via
the Meta website (https://llama.meta.com/).
Upon approval, access to these resources will be
granted.

B.3 Length-Normalization

We use length normalization (Wu et al., 2016) on
logits to obtain response probability/likelihood:

p(x, yk) = exp(
logpθ(yk|x)

lp(yk)
)

where

lp(y) =
(5 + |y|)0.6
(5 + 1)0.6

B.4 Evaluation

We extract an answer by analyzing the text until
we encounter the first line break, comma, or pe-
riod. This implies that in the dataset, we will disre-
gard data whose answers contain line breaks, com-
mas, or periods. Following this, we standardize the
answers by converting them to lowercase, remov-
ing articles, punctuation, and duplicate whitespace.
The generated answers are then evaluated using the
exact match metric, where an answer is considered
correct only if it exactly matches the provided an-
swer. These guidelines align with those described
in Quach et al. (2023).

For SSC, We focus exclusively on bins with a set
size greater than 0 and a sample number exceeding
10% of the total test samples. This is because bins
with a size of 0 and fewer samples lack reliability
for coverage measurement.

B.5 LLMs Parameters

We employ the default Transformer generative LMs
parameters for our experiments, using default stan-
dard sampling with do_sample set to True, top_k
set to 0, top_p set to 1, and Temperature set to
1, except when conducting model hyperparameter-
tuning experiments. In such hyperparameter-tuning
cases, we explicitly mention the parameters in main
body of the paper.
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B.6 Semantic Similarity

The measure of semantic similarity was established
leveraging the FastText model available within the
gensim package. The configuration parameters
were carefully selected, defining a vector size of
200 and imposing a minimum count threshold of 1
to ensure robustness and inclusivity in the model’s
representations.

B.7 Experiment trails

We conduct 50 trials for all experiments, then aver-
age the results to eliminate randomness during the
calibration.

B.8 Error Rate Settings

We do not apply the same error rate settings across
different models or datasets. This is because each
model varies in its coverage ability for the same
dataset. Likewise, the same model doesn’t possess
identical coverage abilities for different datasets.
Therefore, we adjust error rate settings for different
combinations of model and dataset accordingly.

B.9 GPUs

We utilize six NVIDIA RTX 3090 graphics cards
to support experiments.

B.10 Pseudocode

We show the pseudocode in Method 1, where we
do not explicitly display the repetitive process of
using various hyperparameter configurations to de-
termine the best one. In our actual implementations,
we explore the range [0:0.05:2] for both λ1 and λ2.
This range spans from 0 to 2, with each step incre-
menting by 0.05, thus covering values such as 0,
0.05, 0.1, 0.15, and so forth up to 2. Subsequently,
we form different combinations to execute the cali-
bration and validation stages. Ultimately, we utilize
the best hyperparameter configurations for testing
purposes.

C Prompts

C.1 Few-shot Prompts of TriviaQA

We use the 32-shot question-answer pair prompts
from the TriviaQA dev set, the same as those in
Quach et al. (2023).

Answer these questions.
Q: Which American-born Sinclair won the
Nobel Prize for Literature in 1930?
A: Sinclair Lewis

Method 1 LofreeCP method
Require: Prompt x(i), LLM fθ , response ŷ

(i)
j , current sam-

pling number j, required sampling number m, response
pool P (i), response with the highest frequency P

(i)
highest,

semantic similarity between response a and b: S(a,b)
1: for x(i), i = 1 to n do

P (i) = {} ▷ Calibration stage starts
2: for j = 1 to m do

ŷ
(i)
j ←− fθ(x

(i)) ▷ Sample response from LLM
given the prompt

3: if ŷ(i)
j in P (i) then

p̃[ŷ
(i)
j ] ++ ▷ Increment frequency for existing

response
4: else

p̃[ŷ
(i)
j ] = 1 ▷ Initialize frequency for new response

5: end if
6: end for
7: Sort(P (i))
8: Get P (i)

highest ▷ Get the response with the highest
frequency

9: if y(i) in P (i) then
N (i) = p̃[ŷ

(i)
a ]
m

+ λ1 · H(x(i)|{ŷ(i)
j }mj=1) - λ2 ·

S(ŷ
(i)
a , P

(i)
highest)

10: else
N (i) =∞ ▷ Nonconformity measures

11: end if
12: end for
13: q̂α = Quantile({N (1), N (2), ..., N (n)}, ⌈(n+1)(1−α)⌉

n
) ▷

Find quantile q̂α ▷ Calibration stage ends
14: for sampling same as 1 ~ 7 do ▷ Validation / Test stage

starts
15: for each ŷ

(i)
α in P (i) do

N
(i)
α = P (i)[ŷ

(i)
α ]

m
+ λ1 · H(x(i)|{ŷ(i)

j }mj=1) - λ2 ·
S(ŷ

(i)
α , P

(i)
highest)

16: end for
17: C(x

(i)
test) = {ŷ(i)

a : N
(i)
α ≤ q̂} ▷ Nonconformity

measures
18: end for ▷ Validation / Test stage ends

Q: Where in England was Dame Judi Dench
born?
A: York
Q: In which decade did Billboard
magazine first publish an American hit
chart?
A: 30s
Q: From which country did Angola achieve
independence in 1975?
A: Portugal
Q: Which city does David Soul come from?
A: Chicago
Q: Who won Super Bowl XX?
A: Chicago Bears
Q: Which was the first European country
to abolish capital punishment?
A: Norway
Q: In which country did the widespread
use of ISDN begin in 1988?

991



A: Japan
Q: What is Bruce Willis’ real first
name?
A: Walter
Q: Which William wrote the novel Lord Of
The Flies?
A: Golding
Q: Which innovation for the car was
developed by Prince Henry of Prussia in
1911?
A: Windshield wipers
Q: How is musician William Lee Conley
better known?
A: Big Bill Broonzy
Q: How is Joan Molinsky better known?
A: Joan Rivers
Q: In which branch of the arts is
Patricia Neary famous?
A: Ballet
Q: Which country is Europe’s largest
silk producer?
A: Italy
Q: The VS-300 was a type of what?
A: Helicopter
Q: At which university did Joseph
Goebbels become a doctor of philosophy?
A: Heidelberg
Q: Which prince is Queen Elizabeth II’s
youngest son?
A: Edward
Q: When did the founder of Jehovah’s
Witnesses say the world would end?
A: 1914
Q: Who found the remains of the Titanic?
A: Robert Ballard
Q: Who was the only Spice Girl not to
have a middle name?
A: Posh Spice
Q: What are the international
registration letters of a vehicle from
Algeria?
A: DZ
Q: How did Jock die in Dallas?
A: Helicopter accident
Q: What star sign is Michael Caine?
A: Pisces
Q: Who wrote the novel Evening Class?
A: Maeve Binchy
Q: Which country does the airline Air
Pacific come from?
A: Fiji

Q: In which branch of the arts does
Allegra Kent work?
A: Ballet
Q: Banting and Best pioneered the use of
what?
A: Insulin
Q: Who directed the movie La Dolce Vita?
A: Federico Fellini
Q: Which country does the airline LACSA
come from?
A: Costa Rica
Q: Who directed 2001: A Space Odyssey?
A: Stanley Kubrick
Q: Which is the largest of the Japanese
Volcano Islands?
A: Iwo Jima
Q: (Question)
A:

C.2 Prompts of Webquestions

We also use 32-shot question-answer pair prompts
from the Webquestions train set.

Answer these questions.
Q: What country is the Grand Bahama
Island in?
A: Bahamas
Q: What two countries invaded Poland in
the beginning of WW2?
A: Germany
Q: Which countries border the US?
A: Canada
Q: Where is Rome, Italy located on a
map?
A: Rome
Q: What is Nina Dobrev’s nationality?
A: Bulgaria
Q: What country does Iceland belong to?
A: Iceland
Q: What does Thai mean?
A: Language
Q: Who was Ishmael’s mom?
A: Hagar
Q: What are the major cities in France?
A: Paris
Q: What city did Esther live in?
A: Susa
Q: What sport do the Toronto Maple Leafs
play?
A: Ice Hockey
Q: What is Martin Cooper doing now?
A: Inventor
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Q: What county is the city of Hampton,
VA in?
A: Hampton
Q: What county is Heathrow Airport in?
A: London
Q: What type of car does Michael Weston
drive?
A: Wishcraft
Q: What was Tupac’s name in Juice?
A: Bishop
Q: Who does Maggie Grace play in Taken?
A: Kim
Q: What style of music did Louis
Armstrong play?
A: Jazz
Q: Where does Jackie French live?
A: Australia
Q: Where is Jack Daniels factory?
A: Tennessee
Q: What is Charles Darwin famous for?
A: Evolution
Q: Where to visit in N. Ireland?
A: Antrim
Q: What are dollars called in Spain?
A: Peseta
Q: Who plays Meg in Family Guy?
A: Mila Kunis
Q: Where did Martin Luther King get
shot?
A: Memphis
Q: What was Nelson Mandela’s religion?
A: Methodism
Q: Who will win the 2011 NHL Stanley
Cup?
A: Canada
Q: What is Henry Clay known for?
A: Lawyer
Q: What is the money of Spain called?
A: Euro
Q: Where are Sunbeam microwaves made?
A: Florida
Q: Where was Kennedy when he got shot?
A: Dallas
Q: Where did the Casey Anthony case take
place?
A: Orlando
Q: (Question)
A:

C.3 Prompts of MMLU
Each subject in MMLU uses similar prompts. We
take the high school biology as examples.

Please engage in the multiple-choice
question-answering task. You should
generate the option (A, B, C, or D) you
think is right. Examples are provided.
(Select 8-shot randomly from other
subjects)

This is a question from high school
biology.
A piece of potato is dropped into a
beaker of pure water. Which of the
following describes the activity after
the potato is immersed into the water?
(A) Water moves from the potato into the
surrounding water.
(B) Water moves from the surrounding
water into the potato.
(C) Potato cells plasmolyze.
(D) Solutes in the water move into the
potato.
The correct answer is option: B.

You are the world’s best expert in high
school biology. Reason step-by-step and
answer the following question.
From the solubility rules, which of the
following is true?
(A) All chlorides, bromides, and iodides
are soluble
(B) All sulfates are soluble
(C) All hydroxides are soluble
(D) All ammonium-containing compounds
are soluble
The correct answer is option:
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D Additional Results

D.1 Ablation Study

Table 3: SCC Results of Ablation Study

Error Rate 0.20 0.25 0.30 0.35 0.40 0.45

Freq-Only 77.1 72.9 75.3 77.2 79.4 81.7
Freq + NE 78.8 74.0 76.8 77.9 80.2 83.3
Freq + SS 78.2 74.7 76.6 78.7 80.0 82.9
All (Ours) 79.2 74.3 76.5 78.6 81.5 84.0

Table 4: Portion of Concentration

Method Portion of Concentration (%)

Freq-Only 66.6
Freq + NE 45.5
Freq + SS 59.8
All (Ours) 35.1

D.2 Sensitivity Experiments
More results regarding sampling quantity and tem-
perature sensitivity are included in Figures 8-9 due
to the page limit in the main body.
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Figure 8: All results of the sensitivity analysis to variations
in sampling quantity.

D.3 Results for WizardLM-v1.2 (13B) and
Vicuna-v1.5 (7B)

To save on computation costs, we use float16 preci-
sion (half-precision) for experiments in this section.
We use standard sampling with sampling quantity
of 30. Results for TriviaQA are shown in Table 5,
for WebQuestions are shown in Table 7. Results
for TriviaQA are shown in Table 6, for WebQues-
tions are shown in Table 8. Results for WizardLM-
v1.2 (13B) and Vicuna-v1.5 (7B) consistently align
with the main body results, demonstrating that the
LofreeCP method mostly outperforms baselines.
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Figure 9: All results of the sensitivity analysis to variations
in temperature.
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Table 5: Results for TriviaQA using WizardLM-v1.2.

Methods Logit-Access
Error Rate

0.25 0.3 0.35
ECR SSC↑ APSS↓ ECR SSC↑ APSS↓ ECR SSC↑ APSS↓

First-Kwhite ✓ 75.1 68.7 3.19 71.0 65.8 2.56 66.4 63.3 1.84
CLM ✓ 75.1 63.3 3.01 70.1 64.9 2.20 65.0 63.3 1.43
SCP ✓ 75.4 57.9 3.29 70.1 62.2 2.15 65.2 56.4 1.68

SAPS ✓ 75.1 70.6 3.83 70.1 53.2 2.30 65.1 54.9 1.37
First-Kblack ✗ 75.7 58.0 4.94 71.5 66.6 2.59 68.4 65.6 1.84

LofreeCP (Ours) ✗ 75.1 68.0 4.07 70.0 67.7 1.92 65.1 70.1 1.27

Methods Logit-Access
Error Rate

0.4 0.45 0.5
ECR SSC↑ APSS↓ ECR SSC↑ APSS↓ ECR SSC↑ APSS↓

First-Kwhite ✓ ✗ ✗ ✗ 55.2 56.0 0.99 ✗ ✗ ✗
CLM ✓ 60.1 65.3 1.25 55.1 69.1 0.92 50.1 71.3 0.81
SCP ✓ 60.0 65.9 1.30 55.1 67.8 1.01 50.1 70.1 0.82

SAPS ✓ 60.0 47.3 1.37 55.2 53.7 1.05 50.1 60.6 0.83
First-Kblack ✗ ✗ ✗ ✗ 56.9 57.4 0.99 ✗ ✗ ✗

LofreeCP (Ours) ✗ 60.2 69.8 0.98 55.3 70.4 0.81 50.2 72.5 0.69

Table 6: Results for TriviaQA using Vicuna-v1.5.

Methods Logit-Access
Error Rate

0.475 0.5 0.525
ECR SSC↑ APSS↓ ECR SSC↑ APSS↓ ECR SSC↑ APSS↓

First-Kwhite ✓ 53.0 42.1 2.23 50.4 42.4 1.63 ✗ ✗ ✗
CLM ✓ 52.5 45.1 2.60 50.1 45.5 1.39 47.5 47.7 1.21
SCP ✓ 52.6 39.0 2.66 50.0 40.5 1.43 47.9 49.3 1.14

SAPS ✓ 52.7 40.1 2.30 50.3 48.8 1.59 47.5 45.6 1.24
First-Kblack ✗ 53.4 44.1 2.75 50.9 42.3 1.62 ✗ ✗ ✗

LofreeCP (Ours) ✗ 52.5 39.3 2.27 50.0 39.1 1.33 47.6 50.1 1.12

Methods Logit-Access
Error Rate

0.4 0.45 0.5
ECR SSC↑ APSS↓ ECR SSC↑ APSS↓ ECR SSC↑ APSS↓

First-Kwhite ✓ 45.0 46.7 0.99 ✗ ✗ ✗ ✗ ✗ ✗
CLM ✓ 45.2 50.7 1.01 42.5 50.6 0.85 40.1 56.2 0.83
SCP ✓ 45.4 52.4 0.96 42.6 48.6 0.85 40.5 52.0 0.76

SAPS ✓ 45.0 46.2 1.04 42.6 50.8 0.84 40.1 57.9 0.75
First-Kblack ✗ ✗ ✗ ✗ 44.6 46.2 0.97 ✗ ✗ ✗

LofreeCP (Ours) ✗ 45.1 55.3 0.96 42.7 58.0 0.82 40.2 58.5 0.73

Table 7: Results for WebQuestions using WizardLM-v1.2.

Methods Logit-Access
Error rate

0.45 0.5 0.55 0.6
ECR SSC↑ APSS↓ ECR SSC↑ APSS↓ ECR SSC↑ APSS↓ ECR SSC↑ APSS↓

First-Kwhite ✓ 55.5 42.5 3.40 53.0 40.6 2.70 49.1 39.0 1.91 ✗ ✗ ✗
CLM ✓ 55.1 52.3 3.02 50.2 40.1 2.01 45.2 28.6 1.58 40.4 31.2 1.19
SCP ✓ 55.2 45.9 3.63 50.1 40.8 2.04 45.0 37.1 1.55 40.2 47.8 1.04

SAPS ✓ 55.0 45.7 3.38 50.1 41.1 2.15 45.2 28.6 1.58 40.4 31.2 1.19
First-Kblack ✗ 56.7 43.6 3.40 50.9 45.0 1.91 ✗ ✗ ✗ 41.4 41.1 1.00

LofreeCP (Ours) ✗ 55.0 45.3 2.87 50.0 46.5 1.88 45.1 49.9 1.18 40.1 51.7 0.82

Table 8: Results for WebQuestions using Vicuna-v1.5.

Methods Logit-Access
Error rate

0.575 0.6 0.625 0.65
ECR SSC↑ APSS↓ ECR SSC↑ APSS↓ ECR SSC↑ APSS↓ ECR SSC↑ APSS↓

First-Kwhite ✓ 43.2 23.8 1.99 41.7 26.9 1.57 ✗ ✗ ✗ 36.6 36.6 1.00
CLM ✓ 42.5 32.3 1.88 40.1 36.2 1.32 37.6 38.2 1.08 35.0 41.8 0.83
SCP ✓ 42.6 31.1 1.91 40.1 34.4 1.28 38.2 37.3 1.06 35.2 43.7 0.87

SAPS ✓ 42.5 32.3 1.88 40.1 36.2 1.32 37.6 38.2 1.08 35.0 41.8 0.83
First-Kblack ✗ 43.7 25.9 2.01 40.9 25.5 1.57 ✗ ✗ ✗ 36.8 36.8 1.00

LofreeCP (Ours) ✗ 42.5 32.4 1.73 40.1 36.7 1.22 37.5 39.6 0.97 35.0 39.3 0.81
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