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Abstract

Knowledge editing is a rising technique for ef-
ficiently updating factual knowledge in large
language models (LLMs) with minimal alter-
ation of parameters. However, recent studies
have identified side effects, such as knowledge
distortion and the deterioration of general abil-
ities, that have emerged after editing. Despite
these findings, evaluating the pitfalls of knowl-
edge editing often relies on inconsistent metrics
and benchmarks, lacking a uniform standard.
In response, this survey presents a comprehen-
sive study of these side effects, providing a uni-
fied perspective on the challenges of knowledge
editing in LLMs by conducting experiments
with consistent metrics and benchmarks. Addi-
tionally, we review related works and outline
potential research directions to address these
limitations. Our survey highlights the limita-
tions of current knowledge editing methods,
emphasizing the need for a deeper understand-
ing of the inner knowledge structures of LLMs
and improved knowledge editing methods. To
foster future research, we have released the
complementary materials publicly1.

1 Introduction

Recent advancements in large language models
(LLMs) have significantly improved NLP applica-
tions, enabling LLMs to understand and generate
language at a human-like level. However, the mech-
anisms of knowledge storage in LLMs remain un-
clear, raising concerns about the reliability of their
output, particularly in applications like chatbots. To
address these issues, researchers have explored var-
ious methods. Traditional methods like fine-tuning,
continual learning, and retraining are computation-
ally expensive and may degrade LLM performance.
Knowledge editing has emerged as a promising al-
ternative, offering efficient adjustments with mini-
mal computational costs and fewer alterations (Cao

1https://github.com/MiuLab/EditLLM-Survey
*Equal contribution.
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Figure 1: An overview of pitfalls in current knowledge
editing methods. The subsequent sections dive into
three key challenges: generalization issues (Section 3.1),
locality issues (Section 3.2), and deterioration of general
LLM abilities (Section 3.3).

et al., 2021; Dai et al., 2022; Meng et al., 2022,
2023; Dong et al., 2022; Mitchell et al., 2022a,b;
Hartvigsen et al., 2023; Huang et al., 2023; Yu et al.,
2024; Zheng et al., 2023; Li et al., 2023; Tan et al.,
2024; Gupta et al., 2024b; Wang et al., 2024). This
method allows precise LLMs refinement, enhanc-
ing their practical and reliable use in real-world
applications.

Knowledge editing can be divided into two main
categories: parameter-modifying and parameter-
preserving. Both aim to refine LLM knowledge
efficiently while avoiding the drawbacks of previ-
ous tuning methods (Yao et al., 2023). Parameter-
modifying methods, including meta-learning (Cao
et al., 2021; Mitchell et al., 2022a; Tan et al., 2024)
and locate-and-edit techniques (Dai et al., 2022;
Meng et al., 2022, 2023; Li et al., 2023; Gupta
et al., 2024b), strive to update model parameters ef-
fectively. By contrast, parameter-preserving meth-
ods introduce external components, like knowledge
bases (Mitchell et al., 2022b; Zhong et al., 2023) or
extra model parameters (Dong et al., 2022; Huang
et al., 2023; Hartvigsen et al., 2023; Yu et al., 2024)
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to maintain the integrity of pre-trained LLMs while
updating their knowledge.

Despite the success of knowledge editing, chal-
lenges remain. Recent studies have revealed side
effects that can harm the general capabilities and
intrinsic structures of LLMs. We categorize these
pitfalls into three main areas: (1) the inability to
perform logical inference (Cohen et al., 2023; Li
et al., 2024; Zhong et al., 2023; Hua et al., 2024;
Yao et al., 2023), (2) the unintended modification
of non-target knowledge (Cohen et al., 2023; Li
et al., 2024; Yao et al., 2023; Meng et al., 2022;
Hoelscher-Obermaier et al., 2023), and (3) the de-
terioration of general LLM abilities (Gupta et al.,
2024a; Gu et al., 2024; Yang et al., 2024). Al-
though various side effects have been identified,
they are evaluated using inconsistent metrics and
benchmarks in different studies, which lack a uni-
form standard. As a result, this survey aims to
provide a comprehensive overview of the current
issues in the knowledge editing paradigm and to
establish a fair platform for comparing the side ef-
fects of different editing methods. Additionally,
we encourage further investigation into the pitfalls
and underlying knowledge structures of LLMs. A
brief overview of the discussed pitfalls is shown in
Figure 1.

This paper is organized as follows: Section 2 in-
troduces the definition and methods of knowledge
editing. Section 3 discusses current challenges
and corresponding benchmarks. In Section 4, we
present experimental results evaluating different
editing methods. Finally, Section 5 explores re-
lated studies and future research directions. We
summarize our contributions as follows:

1. We are the first to provide a comprehensive
analysis of the side effects associated with
existing knowledge editing techniques.

2. We systematically organize previous research
and conduct experiments to benchmark the
side effects of knowledge editing, providing a
unified perspective on this issue.

3. We discuss related studies and potential direc-
tions to address existing challenges, encourag-
ing further exploration in this field.

2 Overview of Knowledge Editing

2.1 Problem Definition

Knowledge editing for LLMs entails modifying
the output of LLMs in response to specific edit
queries, with the aim of minimizing alterations to

Reliability

ParisQuery: Big Ben is
located in 

Generalization / Portability

FranceQuery: Big Ben
belongs to 

Locality

ItalyQuery: Colosseum is
located in

Edit: London -> Paris

Before Editing

LondonQuery: Big Ben is
located in 

Editing

Figure 2: Illustration of properties that knowledge edit-
ing methods should satisfy: reliability, generalizabil-
ity/portability, and locality.

their original behavior (Yao et al., 2023; Mazzia
et al., 2023; Zhang et al., 2024a). In this section,
we follow the notation from Mazzia et al. (2023).

We denote the input and output space as X and
Y, respectively. The function space F : X → Y is
estimated by the base model fθ0 parameterized by
θ0 ∈ Θ. Finally, let Ze = {(xe, ye) | fθ0(xe) ̸=
ye} be the set of edit queries we would like to apply
to the base model. The goal of knowledge editing
is to efficiently derive the edited model fθe from
the base model that satisfies the following:

fθe(xe) = ye, ∀(xe, ye) ∈ Ze (1)

The ideal edited model fθe should satisfy three
properties: reliability, generalization, and local-
ity. An illustration is shown in Figure 2.

Reliability Given an edit query (xe, ye), the
edited model fθe should output the target answer ye
when given the target input xe, i.e. fθe(xe) = ye.
The reliability of a editing method is measured by
calculating the average edit success rate:

E(x′
e,y

′
e)∼Ze

1{fθe(x′e) = y′e} (2)

Generalization The edited model should gener-
alize the edited knowledge to relevant instances.
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Meta-learning:
An additional hyper-network is
trained to update the parameters for
knowledge editing.

Locate and Edit:
Locate the knowledge storages with
predefined algorithms and update
the associated weights.

MHSA

Input
Em

bedding

FFN

Prediction
Layer

Transformer Layer 

Additional Parameters:
Introduce additional parameters or 
update intermediate embeddings
to learn the new facts.

External Memory and Others:
Leverage external memory and
additional training / sampling techniques
to utilize the new facts.

Parameter-Modifying
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Figure 3: Illustration of the two categories of model editing methods in transformer-based large language models,
which includes parameter-modifying (meta-learning and locate-and-edit) and parameter-preserving (additional
parameters, external memory, in-context learning, and decoding) methods. MHSA and FFN stand for multi-head
self-attention and feed-forward network, respectively.

The generalization metric is commonly formulated
as the average success rate on the neighboring set:

E(x′
e,y

′
e)∼N(xe,ye)1{fθe(x′e) = y′e}, (3)

where N(xe, ye) is the set of neighboring in-
stances of an edit query (xe, ye). Earlier works
evaluate this metric by rephrasing the input
prompts (Mitchell et al., 2022a; Meng et al., 2022;
Huang et al., 2023).

Locality The editing process should not affect
instances unrelated to the edit queries. The lo-
cality set of an edit query (xe, ye) can be defined
as L(xe) = {(xloc, yloc) ∈ X × Y s.t xloc /∈
N(xe, ye) ∧ fθ0(xloc) = yloc}. The locality, also
known as specificity, of an editing method is mea-
sured by calculating the level of invariance of
model output before and after the edits, which can
be calculated as follows:

E(xloc,yloc)∼L(xe)1{fθe(xloc) = yloc} (4)

2.2 Current Methods
Current knowledge editing methods are catego-
rized into parameter-modifying (Section 2.2.1)

and parameter-preserving (Section 2.2.2) editing
methods, each containing several strategies. An
overview and illustration of current methods are
included in Table 1 and Figure 3, respectively.

2.2.1 Parameter-Modifying
Meta-learning Meta-learning methods train a
hyper-network to predict network parameter up-
dates. For instance, KnowledgeEditor (Cao et al.,
2021) trains a deep network to predict weight up-
dates. MEND (Mitchell et al., 2022a) decomposes
the gradient matrix into two rank-one matrices and
utilized a hyper-network to update these matrices,
thereby accelerating the editing process. Built upon
MEND, MALMEN (Tan et al., 2024) refines the
process by formulating the aggregation of parame-
ter shifts into a least-squares problem, further im-
proving the scalability of meta-learning methods.

Locate and Edit Locate-and-edit methods iden-
tify specific knowledge locations in LLMs for con-
sequent editing. KN (Dai et al., 2022) utilizes
the proposed knowledge attribution method to pin-
point neurons expressing relational facts, allowing
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Category Strategy Method

Parameter-
modifying

Meta-
learning

Knowledge Editor (Cao et al., 2021)
MEND (Mitchell et al., 2022a)
MALMEN (Tan et al., 2024)

Locating
and

editing

Knowledge Neuron (Dai et al., 2022)
ROME (Meng et al., 2022)
MEMIT (Meng et al., 2023)
PMET (Li et al., 2023)
EMMET (Gupta et al., 2024b)

Parameter-
preserving

Additional
parameters

CaliNET (Dong et al., 2022)
T-Patcher† (Huang et al., 2023)
GRACE† (Hartvigsen et al., 2023)
MELO† (Yu et al., 2024)

External
memory

SERAC† (Mitchell et al., 2022b)
MeLLo† (Zhong et al., 2023)

In-context
learning IKE† (Zheng et al., 2023)

Decoding DeepEdit† (Wang et al., 2024)

Table 1: Overview of knowledge editing methods.
The methods are categorized into two major families,
parameter-modifying and parameter-preserving meth-
ods, each containing several strategies. Methods marked
with † have the ability to process sequential edits.

efficient updates or erasures without fine-tuning.
ROME (Meng et al., 2022) proposes causal trac-
ing method to identify neuron activations linked to
specific knowledge. The authors demonstrate the
significance of middle-layer feed-forward networks
(FFNs) in factual predictions when processing the
subject’s last token. Built upon the hypothesis that
the FFN modules in a transformer layer can be
viewed as key-value memories (Geva et al., 2021),
ROME injects new knowledge into the key-value
memories by deriving the closed form solution
from the least-squares problem. MEMIT (Meng
et al., 2023) scales up ROME by editing a set of
MLPs from consecutive middle-layers via solving a
normal equation. PMET (Li et al., 2023) proposes
to update multi-head self-attention (MHSA) mod-
ules in addition to FFNs. EMMET (Gupta et al.,
2024b) on the other hand, integrates the objectives
of ROME and MEMIT into a unified preservation-
memorization objective, facilitating batch-editing
capabilities for both methodologies.

2.2.2 Parameter-Preserving

Additional Parameters Some methods utilize
additional parameters, such as adding new neu-
rons or employing parameter-efficient techniques.
CaliNET (Dong et al., 2022) extends the FFN mod-
ules with calibration memory slots to adjust the pre-
dicted token distribution. T-Patcher (Huang et al.,
2023) adds neurons in the FFN’s last layer to rec-
tify classification errors and incorrectly generated

tokens, activating only in response to associated
mistakes. GRACE (Hartvigsen et al., 2023) wraps
a selected layer with an Adaptor that includes a
codebook and deferral mechanism, learning to de-
code desired outputs while caching embeddings
of error inputs. The GRACE layer stores the ed-
its and could be updated continuously over long
deployments. MELO (Yu et al., 2024) utilizes Dy-
LoRA (Valipour et al., 2023) modules to learn ed-
its, indexing them in an inner vector database to
dynamically activate corresponding LoRA blocks
during inference.

External Memory Other methods utilize exter-
nal memories for editing. SERAC (Mitchell et al.,
2022b) leverages a scope classifier to determine
whether an user-supplied edit example stored in
its memory is related to the inputs. If no example
exists, the inputs are passed to the base model; oth-
erwise, a counterfactual model generates modified
answers using the inputs and the related example.
MeLLo (Zhong et al., 2023) decomposes a multi-
hop question into subquestions iteratively. The
model then checks if the tentative answer gener-
ated by the base model contradicts the most rele-
vant facts retrieved from the edited fact memory
and adjusts the outputs accordingly.

In-Context Learning and Decoding Certain
strategies require no additional parameters.
IKE (Zheng et al., 2023) edits factual knowledge
via in-context learning with demonstrations to
guide the language model. DeepEdit (Wang et al.,
2024) employs decoding constraints, including
filtering step candidates, depth-first search to store
valid candidates in a stack, and a greedy search to
output the optimal path for multi-hop reasoning.

3 Challenges of Knowledge Editing

While knowledge editing methods have been exten-
sively researched, comprehensive studies on related
challenges are lacking. In this section, we discuss
the pitfalls of knowledge editing from three per-
spectives: inability to logically infer and robustly
generalize (Section 3.1), unintended alteration of
non-target knowledge (Section 3.2), and deteriora-
tion of general LLM abilities (Section 3.3).

3.1 Inability to Logically Inference and
Robustly Generalize

When a fact is updated, it is crucial not only to
revise the specific piece of knowledge but also to
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Challenge Benchmark Metric

Portability
and

Generalization

RippleEdits (Cohen et al., 2023) Logical Generalization, Compositionality I, Compo-
sitionality II

ConflictEdit (Li et al., 2024) Conflict Score, Conflict Magnitude, Success Score

MQuAKE (Zhong et al., 2023) Edit-wise Success Rate, Instance-wise Accuracy,
Multi-hop Accuracy

ReCoE (Hua et al., 2024) QA Accuracy

ZsRE + CounterFact† (Yao et al., 2023) Subject-Replace, Reverse-Relation, One-Hop

Locality

RippleEdits (Cohen et al., 2023) Subject Aliasing, Preservation, Relation Specificity

RoundEdit (Li et al., 2024) Success Score, Distortion (↓), Ignore Rate (↓), Fail-
ure Rate (↓), Tied Fact Damage (↓)

ZsRE + CounterFact† (Yao et al., 2023) Other-Attribution, Distract-Neighbor, Other-Task

CounterFact (Meng et al., 2022) Locality, Neighborhood Score, Neighborhood Mag-
nitude

CounterFact+ (Hoelscher-Obermaier et al., 2023) Neighborhood KL Divergence

Table 2: Performance benchmarks and evaluation metrics addressing generalization/portability and locality issues
in knowledge editing methods. Unless specifically indicated by a downward arrow, higher values signify better
performance in those evaluation metrics. CounterFact benchmark is proposed by (Meng et al., 2022), and
CounterFact with † mark is modified by (Yao et al., 2023) to further examine the proposed metrics.

evaluate the impact on the related reasoning chain.
Recently the term portability has been proposed
in (Yao et al., 2023) to evaluate whether an edited
fact can be logically inferred within the knowledge
chain, and to further assess the robustness of gener-
alization. In their study, they introduce three met-
rics to evaluate portability: Subject Replace (check-
ing if synonyms of the subject are edited), Reversed
Relation (checking if the reversed relation of the tar-
get is edited), and One Hop (assessing if modified
knowledge is usable for further derivation). Sim-
ilarly, RippleEdits benchmark and its correspond-
ing Logical Generalization and Compositionality
metrics are proposed to examine whether edited
knowledge can be inferred in composite relations
of facts (Cohen et al., 2023). Additionally, ReCoE
benchmark is proposed to assess the propagation
of updates in interconnected facts using various
reasoning schemes in complex question-answering
datasets (Hua et al., 2024). Furthermore, MQuAKE
benchmark is introduced to evaluate more complex
reasoning and inference ability on multi-hop ques-
tions (Zhong et al., 2023).

When multiple logically related facts are edited
simultaneously, models may become confused by
conflicts between their pre-existing knowledge and
the newly edited information. ConflictEdit bench-
mark is thus proposed to examine different editing
methods on conflicted edit facts (Li et al., 2024).
The different benchmarks and corresponding met-

rics and are arranged systematically in Table 2.

3.2 Unintended Alteration of Non-Target
Knowledge

Locality is conventionally assessed using a locality
dataset to evaluate the impact of edits on unrelated
facts by measuring the Neighborhood Score and
Neighborhood Magnitude (NS & NM; Meng et al.,
2022, 2023). However, current evaluation methods
do not adequately capture the post-edit effects on
content beyond the locality dataset, which means
the edited model could still contain unintended al-
terations. For example, while the location of the
Louvre is successfully modified from Paris to Lon-
don, the edited model might also output London
in an unrelated context or increase the probability
of words semantically related to London (e.g., Big
Ben) when mentioning the Louvre. Some modi-
fied benchmark (CounterFact+) and corresponding
metric (Neighborhood KL Divergence) (Hoelscher-
Obermaier et al., 2023) is then designed to dis-
close these previously implicit pitfalls. Another
study (Yao et al., 2023) extends this exploration to
three facets of locality: Other Relations (evaluat-
ing the retention of other attributes of the updated
subject), Distract Neighborhood (assessing whether
model will be swayed by edited cases when they are
concatenated before unrelated inputs), and Other
Tasks (examining the influence of edits on the per-
formance of other tasks).
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Unintended edits to unrelated facts may occur
because a single edit can implicitly change the pre-
dictive distribution among objects associated with
the same (subject - relation) pair. After multiple
consecutive edits, these alterations can accumulate
and distort the stored knowledge. To evaluate this
condition, the concept of Knowledge Distortion
has been introduced by Li et al. (2024), which esti-
mates the Jensen–Shannon divergence of the object
set distribution before and after editing. This can
be further extended to metrics such as the Ignore
Rate, measuring how objects other than the target
in the object set are neglected after editing, and
the Failure Rate, which measures the proportion of
instances where over half of the objects in the set
are overlooked.

3.3 Deterioration of General LLM Abilities

Current evaluation metrics are primarily limited
to scenarios where editing is performed only once
or infrequently, prompting some studies to extend
evaluations to the outcomes after consecutive edits.
A study by Gupta et al. (2024a) discovers that post-
edit models exhibit susceptibility to both gradual
forgetting and catastrophic forgetting in sequen-
tial editing scenarios. Notably, their findings in-
dicate that the extent of knowledge forgetting is
more pronounced in meta-learning-based methods
compared to locate-and-edit methods. Addition-
ally, models with parameters modified successively
show a decline in performance across various down-
stream NLP tasks (Gu et al., 2024). Furthermore,
perplexity is found to increase after consecutive
edits across all parameter-modified methods and
different LLMs, and is proposed as another met-
ric to indicate model collapse (Yang et al., 2024).
These findings further corroborate that model edit-
ing aimed at modifying parameters adversely af-
fects the general capabilities of the original LLMs.

4 Experiments

The experiments are done to evaluate robust gener-
alization and locality (Section 4.1.1 as well as de-
terioration of general LLM abilities (Section 4.1.2
across different editing methods.

4.1 Experimental Setup

Given the variety of benchmarks addressing differ-
ent challenges in knowledge editing, systematically
comparing model performance becomes difficult.
To address this, we select the most widely used

datasets for each category of pitfalls, ensuring a
fair and transparent comparison.

4.1.1 Robust Generalization and Locality
We use GPT-J (Wang and Komatsuzaki, 2021) as
the baseline model for editing and implement six
distinct editing methodologies to assess robust gen-
eralization and locality: MEND (meta-learning),
ROME and MEMIT (locate-and-edit), SERAC (ex-
ternal memory), and IKE (prompting).

Given the overlap in benchmarks for robust gen-
eralization and locality, we select a subset for our
experiments. The evaluation is divided into two
settings: single edit, where only one fact in a rea-
soning chain is modified, and multiple edits, where
several logically connected facts in the chain are
altered simultaneously. A detailed description is
provided in the Appendix A). Single edit metrics in-
clude Subject-Replace, Reverse-Replace, and One-
Hop reasoning (Yao et al., 2023). Multiple edit
metrics include multi-hop editing accuracy (Zhong
et al., 2023), and Conflict Score and Conflict Mag-
nitude for Reverse Conflict and Composite Conflict
respectively (Li et al., 2024). For locality, single
edit metrics include Other-Attribution, Distract-
Neighbor, and Other-Task (Yao et al., 2023), while
multiple edit metrics encompass Success Rate, Dis-
tortion, Ignore Rate, and Failure Rate (Li et al.,
2024).

4.1.2 Deterioration of General LLM Abilities
Following the settings of (Gu et al., 2024), we as-
sess deterioration of general LLM abilities post-
editing using six methodologies: ROME, MEMIT,
SERAC, MEND, KN, and GRACE. We evaluate
general abilities across four NLP downstream tasks:
open-domain question answering, sentiment analy-
sis, reasoning, and summarization. These tasks are
assessed after 10 to 40 edits on the Zero-Shot Rela-
tion Extraction (ZsRE) dataset(Levy et al., 2017),
comparing the results against pre-editing bench-
marks. More details on the selected downstream
tasks are in Appendix B.

4.2 Experimental Results and Discussion

In general, current editing methodologies show sub-
optimal performance in both robust generalization
and locality. Regarding robust generalization (Ta-
ble 3), IKE, which leverages prompt demonstra-
tions, excels in single edit but declines with multi-
ple edits. This suggests that prompt demonstrations
may become confused when editing multiple log-
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Single Edit Multiple Edit

One-Hop Multiple-Hop Reverse Conflict Composite Conflict

Methods SR RR OH MH CS CM CS CM

FT 72.96 8.05 1.34 1.6 80.28 71.11 75.45 64.28
MEND 42.45 0.00 11.34 9.2 88.89 60.50 84.85 43.45
ROME 37.42 46.42 50.91 7.6 65.92 -0.65 71.70 37.04
MEMIT 27.73 47.67 52.74 8.1 51.40 -1.60 57.15 -1.50
SERAC 17.79 1.30 5.53 7.9† 50.89† -0.02† 50.84† -0.02†

IKE 88.77 92.96 55.38 8.3† 58.20† -1.00† 50.52† -0.99†

Table 3: Experimental results for portability and generalization. SR: Subject-Replace, RR: Reverse-Relation, OH:
One-Hop Accuracy, MH: Multi-hop Accuracy, CS: Conflict score, CM: Conflict magnitude. Higher values indicate
better performance for all metrics in this table. Results marked with † are obtained in our own experiments, and
other results are taken from previous studies.

Single Edit Multiple Edit

Methods OA DN OT Succ. D (↓) IR (↓) FR (↓)

FT 12.88 9.48 49.56 100.0 16.12 97.48 97.32
MEND 73.50 32.96 48.86 99.12 14.35 87.64 86.56
ROME 78.94 50.35 52.12 99.80 13.95 78.98 77.60
MEMIT 86.78 60.47 74.62 99.72 13.50 72.03 70.44
SERAC 99.50 39.18 74.84 50.14† 3.78† 99.62† 99.64†

IKE 84.13 66.04 75.33 100.0† 13.43† 73.53† 73.00†

Table 4: Experimental results for locality. OA: Other-Attribution, DN: Distract-Neighbor, OT: Other-Task, Succ.:
Success rate, D: Distortion, IR: Ignore rate, FR: Failure rate. Unless specifically indicated by a downward arrow,
higher values signify better performance in those evaluation metrics. Results marked with † are obtained in our own
experiments, and other results are taken from previous studies.

ically related facts. Conversely, fine-tuning and
meta-learning-based methods are less susceptible
to confusion after editing multiple related facts.

Regarding locality (Table 4), IKE maintains
stable performance across metrics in single edit
settings. Parameter-modifying methods excel in
Other Attribution but decline in other metrics, ex-
cept MEMIT, which remains stable across all met-
rics. In multiple edit scenarios, all methods except
SERAC show similar performance. In the multiple
edit scenario, all methods except SERAC exhibit
relatively similar performance. SERAC displays
low edit success rate and distortion rate, suggesting
its scope classifier does not adopt most edits in this
scenario. This may be attributed to its weakness
in recovering edited facts, which is crucial in this
metric setting.

In terms of general LLM abilities (Figure 4), the
number of edits affects methods differently. Meta-
learning methods like MEND degrade significantly
after 10-20 edits. Locate-and-edit methods such
as ROME and KN degrade after 10 edits, while
MEMIT remains stable after 40 edits. This dispar-
ity can be attributed to MEMIT’s strategy of adjust-
ing parameters across multiple layers, as opposed

to ROME’s single-layer edits and KN’s approach
of modifying a few neurons. This distribution of
parameter modifications across layers may help
mitigate deterioration.

GRACE, which stores edited facts with addi-
tional parameters, shows no performance change
in downstream tasks after edits. One possible ex-
planation is that the edits are conducted on the
ZsRE dataset, which is distinct from the require-
ments of downstream tasks, leading to the stored
facts not being retrieved during inference. Simi-
larly, SERAC, utilizing external memory for edited
facts, preserves general NLP abilities post-editing.
This preservation stems from SERAC being trained
once before editing begins, solely performing infer-
ence during editing, thereby preventing changes in
the model’s output, even after multiple edits.

Overall, parameter-modifying methods degrade
downstream task performance by altering pre-
trained LLM parameters. In contrast, parameter-
preserving methods maintain the original param-
eters, resulting in stable downstream task perfor-
mance even after multiple edits.
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Figure 4: The experimental results for the deterioration of general abilities were obtained by editing GPT-J with
various editing algorithms, including ROME, MEMIT, MEND, KN, SERAC, and GRACE, each applied 10 to 40
times. The edited models were subsequently evaluated on four downstream tasks, including open-domain question
answering, sentiment analysis, summarization, and reasoning. The results for SERAC and GRACE are overlapping.

5 Future Prospects

5.1 Leveraging Information Retrieval and
External Memory

Research shows that using external knowledge
bases, rather than relying solely on internal knowl-
edge, benefits LLMs by guiding content generation
based on predefined facts. External knowledge
sources, such as text corpora, structured tables,
or key-value databases, can be utilized either to
finetune LLMs for improved information retrieval
or to employ prompting techniques for querying
these sources. These approaches separate factual
knowledge from inference process, thus preserves
the original model parameters and minimizes post-
editing damage. Moreover, they ensure that gen-
erated content aligns with predefined knowledge
bases, thereby enhancing accountability and accu-
racy.

5.2 Improving Understandings of LLMs’
Internal Knowledge Structures

While identifying where factual knowledge
is stored in LLMs has been extensively ex-

plored (Meng et al., 2022, 2023; Dai et al., 2022;
Hernandez et al., 2024; Geva et al., 2021), the cor-
relation between knowledge location and editing
success remains low (Hase et al., 2023). Addi-
tionally, despite evidence suggesting a strong con-
nection between factual knowledge and the feed-
forward network layers (Meng et al., 2022; Geva
et al., 2021, 2022), recent findings indicate that
updates to multi-head self-attention layers also im-
prove outcomes (Li et al., 2023). This suggests that
locating fact storage alone doesn’t fully explain
knowledge structures in LLMs. Further research
is needed to understand how knowledge locations
interact with model predictions in order to enhance
LLM interpretability and controllability.

Preserving LLMs’ general capabilities is also
crucial for model editing, as discussed in Sec-
tion 3.3. Recent breakthroughs in identifying re-
gions within models that correlate with general lin-
guistic abilities have opened up a direction for fu-
ture research in model editing (Zhang et al., 2024b).
By making targeted modifications, we can poten-
tially prevent the deterioration of general abilities
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and improve the specificity and effectiveness of
model editing methods.

5.3 Improving Robustness of Knowledge
Editing

Even after achieving fair scores on the existing met-
rics, models may revert to pre-edit versions or pro-
vide ambiguous answers if the altered knowledge
is conflicted with inherited concepts. Experiments
show that more popular knowledge is easier for
modified models to revert to (Ma et al., 2024), in-
dicating the lack of robustness in current editing
strategies. A deeper understanding of how LLMs
store and process interconnected knowledge enti-
ties is crucial for more robust editing and warrants
future research.

6 Conclusion

Although model editing techniques appear promis-
ing for cost-effectively updating knowledge, they
still have significant pitfalls. Current editing meth-
ods often struggle with making logical inferences
based on the edited facts, introducing unintended al-
terations of non-target knowledge and deterioration
in model performance, particularly with parameter-
modified methods. By harnessing information re-
trieval techniques and delving into how models
store and process knowledge, deviations in model
abilities can be mitigated, and the controllability
of edited facts can be enhanced, ultimately leading
to greater robustness. We hope our work illumi-
nates potential directions for future improvements
in knowledge editing.

Limitations

The field of knowledge editing is advancing at an
impressive pace, with numerous innovations in edit-
ing methodologies and evaluation metrics being
proposed. Despite our efforts to collect and orga-
nize previous work, some contributions may not be
included in this paper. However, we will continue
to monitor the latest developments in this field and
update our GitHub repository with recent related
works.
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A Detailed Explanation of Evaluation
Metrics and Examples

A.1 Portability / Generalization

Single Edit In the single edit scenario, we modify
only one fact in the logical chain with each edit. Let
Ze = {(xe, ye) | fθ0(xe) ̸= ye} be the set where
only a single fact is edited in each logical chain.
Single edit is conducted as:

fθe(xe) = ye, ∀(xe, ye) ∈ Ze (5)

This part consists of:

• One-Hop: This setting focuses on evaluating
the impact of a single edit on direct, one-hop
reasoning tasks.

For one-hop evaluations, we adopt the methods
proposed by (Yao et al., 2023). These include:

• Subject Replace: This metric tests the
model’s generalization ability by replacing
the subject in the question with an alias or
synonym, assessing if the edited attribute is
generalized to other descriptions of the same
subject.

• Reversed Relation: This metric evaluates the
model’s capability to handle reversed relations
by filtering for suitable relations (e.g., one-to-
one relation) and asking the reverse question
to check if the target entity is also updated.

• One-Hop Test: This metric assesses the
edited language model’s performance on
downstream tasks that require one-hop rea-
soning.

Multiple Edits In the multiple edits scenario,
we evaluate the model’s performance after ap-
plying several logically related edits. Let Ze =
{(xei, yei) | fθ0(xei) ̸= yei} represent a set of logi-
cally related facts within a reasoning chain intended
to be modified. Multiple edits are performed by
altering several facts within this chain:

fθe(xei) = yei,∀(xei, yei) ∈ Ze (6)

This part consists of:

• Multi-Hop editing: Evaluate whether the
model can infer edited knowledge in multi-
hop questions.
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• Conflict editing: Assess how the model han-
dles multiple conflicting edits.

In the multi-hop setting, we assess the model’s
performance on multi-hop questions using the eval-
uation methods proposed by (Zhong et al., 2023),
which include:

• Edit-wise Success Rate (EW): This metric
measures how many facts can be successfully
recalled from the edited language model.

EW = 1{f∗(s) = o∗} (7)

where f∗ is the model after editing, s refers to
the edited subject, and o refers to target object.

• Instance-wise Accuracy (IW): This metric
tests how many multi-hop instances the model
can recall all the individual single-hop facts.
This metric is crucial for multi-hop perfor-
mance, as the model must encode each fact to
answer the multi-hop question.

IW = 1{
∧

(s,r,o∗)∈C∗
[f∗(s) = o∗]} (8)

where C∗ = ⟨(s1, r1, o1), . . . , (sn, rn, on)⟩ is
the chain of facts of a multi-hop question. In
this chain, the object of the ith fact is the sub-
ject of the next fact. (i.e., oi = si+1)

• Multi-hop Accuracy (MH): This metric as-
sesses the accuracy of the original and edited
language models on multi-hop questions. In
the MQuAKE dataset (Zhong et al., 2023),
there are three generated multi-hop questions
for each instance. If any of the three ques-
tions is correctly answered by the model, we
consider it accurate.

MH = 1{
∨

q∈Q
f∗(q) = a∗} (9)

where Q is a set of similar multi-hop questions
with the same answer a∗.

As for Conflict editing, we use the setting and
evaluation methods from (Li et al., 2024). The
settings consist of:

• Reverse Conflict: This setting introduces con-
flicts by editing facts with reverse relations.
For example:
edit 1: (s1, r1, o1→o2)

Hamlet was written by Shakespeare → Agatha
Christie.
edit 2: (o2, r2, s1→s2)
The notable work of Agatha Christie is Ham-
let → Odyssey
the updated knowledge then could be repre-
sented as:

{
ko = (s1, r1, o2)
kn = (s2, r1, o2)

where ko refers to old knowledge, and kn
refers to new knowledge.

• Composite Conflict: This explores more
complex situations where the edits are associ-
ated with a fact that is not influenced by the
editing (tied fact). For example:
edit 1: (s1, r1, o1→o2)
Hamlet was written in English → French
edit 2: (s2, r2, o2→o3)
Shakespeare wrote in French → German
tied fact: (s1, r, s2)
The notable work of Shakespeare is Hamlet
where r ∧ r1 → r2 is a logical rule. The up-
dated knowledge then could be represented
as: 




kf = (s1, r, s2)
k0 = (s1, r1, o2)
kn = (s1, r1, o3)

where kf refers to a tied fact.

The evaluation methods include:

• Conflict Score (CS): Measures how well a
knowledge editing method handles knowledge
conflicts by calculating the ratio that the new
fact is more probable than the old fact after
knowledge editing.

CS =1{pf ′
θ
(kn) > pf ′

θ
(ko)} (10)

• Conflict Magnitude (CM): Estimates the de-
crease in probability of the old fact after edit-
ing.

CM =
pfθm (ko)− pfθ′ (ko)

pfθm (ko)
(11)

θm is the intermediate model parameters after
edit 1.
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A.2 Locality
Single Edit In the single edit scenario for local-
ity, we adopt the methods proposed by (Yao et al.,
2023), including:

• Other Attribution (OA): The modified ZsRE
and CounterFact datasets are applied to test
whether the non-target attributes of the edited
subjects remained the same. For example, if
we reset Lionel Messi as a basketball player,
his nationality should stay the same.

• Distract Neighbor (DN): Previous studies in-
dicate that if edit cases are concatenated with
unrelated context, the model tends to output
content related to the edit cases. For exam-
ple, if the original prompt is "Windows 11
is a product of __", an edit case is added in
front and be "Windows 11 is a product of
Google. Office 365, developed by __". It
testifies whether the model prediction would
be "distracted" by the edit case.

• Other Task (OT) The edited model is tested
on the multiple-choice QA task Physical In-
teraction QA (PIQA, Bisk et al. (2020)) and
the performance is evaluated by accuracy.

Multiple Edits We also test the model’s local-
ity in the multiple edits scenario by adopting the
methods and evaluations from (Li et al., 2024). The
settings consist of:

• Round Edit: This edits the knowledge triplet
back-and-forth, for example:
edit 1: (s, r, o1→o∗)
edit 2: (s, r, o∗→o1)

where o∗ is an intermediate object.

The evaluation metrics include:

• Distortion (D) (Li et al., 2024):

D = JS
(
pfθ(Obj | (s, r)), pfθ′ (Obj | (s, r))

)

(12)
estimates the JS divergence of the objects dis-
tribution before and after edit.

• Ignore Rate (IR) (Li et al., 2024):

IR =
1

|Obj| − 1

∑

o∈Obj\{o1}
1{pfθ(o | (s, r)) >

pf ′
θ
(o | (s, r))}

(13)

measures the extent to which objects in Obj
set (excluding the target object o1) are dis-
regarded or overlooked after the process of
knowledge editing.

• Failure Rate (FR) (Li et al., 2024):

FR =1{IR > 0.5} (14)

calculates the rate when Ignore Rate > 0.5

• Tied Fact Damage (TDF) (Li et al., 2024):

TFD =
pfθm (kf )− pfθ′ (kf )

pfθm (kf )
(15)

kf denotes the tied facts and θm is the inter-
mediate model parameters after edit 1.

Other Locality Metrics

• Neighborhood KL Divergence (Hoelscher-
Obermaier et al., 2023):

NKL
def
=

∑

w∈W
log

(
P (w)

P ∗(w)

)
(16)

• Neighborhood Score (NS) (Meng et al.,
2022): collect a set of "neighborhood" sub-
jects and evaluate the success fraction for
P [oc] > P [o∗], while the oc denotes the cor-
rect facts and o∗ denotes the false facts.

• Neighborhood Magnitude (NM) (Meng
et al., 2022): the differences of P [oc] and
P [o∗] for the "neighborhood" subjects.

B Detailed Experimental Details of the
Deterioration of General LLM Abilities

We follow the settings of (Gu et al., 2024) for
this part of experiments. Different evaluation met-
rics were applied for each downstream task: Ex-
act Match for open-domain question answering on
the Natural Question dataset (Kwiatkowski et al.,
2019), accuracy for sentiment analysis on the SST2
dataset (Socher et al., 2013), solve rate for reason-
ing on the GSM8K dataset (Cobbe et al., 2021),
and ROUGE score for summarization on the SAM-
Sum dataset (Gliwa et al., 2019).

9429


