
Findings of the Association for Computational Linguistics: EACL 2024, pages 9475–9495
November 12-16, 2024 ©2024 Association for Computational Linguistics

Instruct, Not Assist:
LLM-based Multi-Turn Planning and Hierarchical Questioning

for Socratic Code Debugging

Priyanka Kargupta∗, Ishika Agarwal∗, Dilek Hakkani-Tur, Jiawei Han
1Department of Computer Science, University of Illinois at Urbana-Champaign

{pk36, ishikaa2, dilek, hanj}@illinois.edu

Abstract

Socratic questioning is an effective teaching
strategy, encouraging critical thinking and
problem-solving. The conversational capabil-
ities of large language models (LLMs) show
great potential for providing scalable, real-time
student guidance. However, current LLMs of-
ten give away solutions directly, making them
ineffective instructors. We tackle this issue
in the code debugging domain with TreeIn-
struct, an Instructor agent guided by a novel
state space-based planning algorithm. TreeIn-
struct asks probing questions to help students
independently identify and resolve errors. It es-
timates a student’s conceptual and syntactical
knowledge to dynamically construct a ques-
tion tree based on their responses and current
knowledge state, effectively addressing both
independent and dependent mistakes concur-
rently in a multi-turn interaction setting. In
addition to using an existing single-bug debug-
ging benchmark, we construct a more challeng-
ing multi-bug dataset of 150 coding problems,
incorrect solutions, and bug fixes– all carefully
constructed and annotated by experts. Exten-
sive evaluation shows TreeInstruct’s state-of-
the-art performance on both datasets, proving it
to be a more effective instructor than baselines.
Furthermore, a real-world case study with five
students of varying skill levels further demon-
strates TreeInstruct’s ability to guide students
to debug their code efficiently with minimal
turns and highly Socratic questioning.

1 Introduction

With the rapidly expanding conversational and rea-
soning abilities of large language models (LLMs),
there has been a substantial rise in demand for
exploiting their capabilities within a multitude of
educational applications (Kasneci et al., 2023) in
order to widen accessibility via personalized feed-
back. Specifically, several recent works explore

*These authors contributed equally to this work.

Single-Turn Assistant: I'll be happy to help you. You made
an error in the recursive function. Here is the corrected code:

Multi-Turn Instructor: I'll be happy to help you. How is the
Fibonacci sequence defined and computed?

Student: The Fibonacci sequence is a series of numbers in
which each number is the sum of the two preceding ones.

Instructor: That is correct! Let's take a step further. How
are you utilizing recursion for computing the sequence?

Student: Oh, I see. I made an error in the recursive
condition. I should change n-2 to n-1.

Student: Hey, I really need help. My Fibonacci function
is not returning the correct number.

…

Figure 1: The Instructor’s goal is to generate multi-turn
Socratic questions while guiding the Student towards
the correct solution.

the use of LLMs for providing feedback and guid-
ance to students (Wang et al., 2023; Kazemitabaar
et al., 2024; Sheese et al., 2024; Lyu et al., 2024).
However, LLMs are typically optimized to gen-
erate customer-serving, assistant-like responses,
which also translates into the types of questions
asked. Especially for educational domains, this
style of questioning can be suboptimal (Cotton,
1988; Sahamid, 2016; Yang et al., 2005; Wilson,
1987). For instance, if a student is seeking help
from an instructor for correcting their mistakes
(e.g., debugging their buggy code), we consider
two forms of potential responses: assistant-like
and instructor-like. As shown in Figure 1, an
assistant-like response would not be a successful
educational interaction, as it leads to the Assistant
directly providing an answer. On the other hand,
an Instructor-like response reflects the educational
philosophy of Socratic questioning.

Socratic questioning is a teaching strategy where
the Student independently solves their problem
by answering guiding questions, instead of being

9475

given the solution directly (Wilson, 1987). This
is a more effective learning strategy because the
weight of learning falls on the Student as they must
put in effort to answer a question as opposed to
solely relying on the model (Cotton, 1988; Kasneci
et al., 2023). Therefore, we aim to re-orient an
LLM to be an Instructor, not an assistant, by asking
Socratic questions that (1) help the Student under-
stand their mistakes, and (2) do not directly provide
the answer. To tackle these challenges, we propose
TreeInstruct based on the following principles:

1. State space estimation: An Instructor plans its
conversation with a Student based on the “dis-
tance” between their initial answer and the op-
timal, correct answer within the estimated state
space. In other words, it tracks the knowledge
state of the Student within this space throughout
the Instructor-Student interactions.

2. Tree-based Socratic questioning: An Instruc-
tor generates turn-level Socratic questions con-
ditioned on both the Student’s current knowl-
edge state and misunderstanding(s), the latter
derived from their responses to the Instructor’s
questions. This step dynamically constructs a
Socratic question tree.

3. Adaptive conversation restructuring: An In-
structor updates their initial conversation plan
based on how the Student is progressing in
the conversation, as reflected by updates (or
lack thereof) to the Student’s knowledge state.
This planning can include both questioning and
teaching actions.

While these principles can apply to many edu-
cational domains, this paper focuses on code de-
bugging, which presents unique challenges. Real-
world code debugging often involves multiple, po-
tentially interdependent conceptual and syntactical
bugs. For instance, Figure 1 shows that first re-
solving the Student’s conceptual misunderstanding
of recursion in Fibonacci helps them identify their
recursive syntactical bug (Figure 1). However, ex-
isting work fails to account for such nuances and
assumes single-turn feedback (Kazemitabaar et al.,
2024; Wang et al., 2023; Lyu et al., 2024). This
ignores the sub-steps required for the Student to
understand each bug.

In contrast, TreeInstruct constructs a multi-turn
debugging plan (state representation), defined as
the set of Student misunderstandings and mistakes
(state variables) to be resolved in order to com-
prehend and correct their bug(s). We define all

potential paths to complete these tasks as the state
space. We traverse the space using Socratic ques-
tions and trace which variables have been resolved,
grounded based on the Student’s responses.

While existing LLM-based tutors are effective
in fixing the Student’s code with high success, they
are either prone to directly revealing code answers
or cannot be adapted to new Student responses.
For example, CodeAid (Kazemitabaar et al., 2024)
(specifically, the "Help Fix Code" and "Question
from Code" modules, as these are most similar to
our setting) directly provides code or pseudocode
57% of the time, and achieves a mere 55% rate
of helpfulness. On the other hand, TreeInstruct
exploits the state space to dynamically construct
a tree of questions based on (1) incorrect Student
responses, or (2) gaps in the Student’s knowledge.
The sibling and parent-child relationships between
questions reflect the manner in which they traverse
the state space. Finally, it exploits both the Stu-
dent’s knowledge state and any proposed bug fixes
to serve as the dynamic stopping condition. Overall,
TreeInstruct takes a more structured approach to
multi-turn conversational feedback, as (1) ground-
ing the conversation on the state space representa-
tion ensures that all bugs are sufficiently addressed,
and (2) constructing a tree based on the Student’s
current level of understanding allows for more rel-
evant and personalized question generation.
We summarize our contributions below:

• To the best of our knowledge, TreeInstruct is the
first work to explore state space estimation and
dynamic tree-based questioning for multi-turn
Socratic instruction.

• We construct a novel multi-bug debugging
dataset with 150 expert-annotated, challenging
conceptual and syntactical bugs and their fixes.

• Extensive experiments on an existing bench-
mark and our constructed dataset demonstrate
that TreeInstruct can be universally applied to
both open and closed source-settings. We also
showcase that TreeInstruct’s strong Socratic ques-
tioning abilities widely outperform all baselines
through both (1) rigorous quantitative and qual-
itative expert evaluation (on average, preferred
78.43% of the time; Student fixes code 24.55%
more) and (2) real-world interactions with stu-
dents of varying coding abilities.

Reproducibility: We release our data and source
code1 to facilitate further studies.

1https://github.com/agarwalishika/TreeInstruct

9476

Algorithm 1 TreeInstruct
Require: P (Problem Description), B (Buggy Code, Bug Descriptions), C (Corrected B Code, Bug Fixes)
1: S = {τ1, τ2, . . . , τk} ← GenerateState(P,B,C) ▷ Section 3.2: State representation: (resolved?, task)
2: l← 0, Q← {l : []}, H ← [], F ← {} ▷ Tree level, question list/level, conv. history, Student bug fixes
3: q ← GenerateQuestion(P,B,C, τ1) ▷ Section 3.3: Generate initial question

4: while ∃ τ ∈ S s.t. ¬isResolved (S, F,C) do ▷ Section 3.4: Process while tasks or bugs remain
5: r ← StudentResponse(q)
6: v, w ← VerifyResponse(q, r) ▷ Section 3.3: is r to q correct (v); why or why not (w)?
7: H.add(q, r)
8: Q[l].add(q)
9: if v = false then ▷ Incorrect student response

10: q ← GenerateSiblingQuestion(τ,Q[l], H,w) ▷ Section 3.3: factor in why the student was incorrect
11: else ▷ Correct student response
12: S,w ← UpdateUnderstanding(S, q, r) ▷ Section 3.3: tasks τi . . . τk resolved? If ¬S[τ], why (w)?
13: if ¬S[τ] then
14: q ← GenerateChildQuestion(τ,Q[l], H,w) ▷ Section 3.3: factor in why τ was unresolved
15: l← l + 1 ▷ Advance to next tree level
16: else ▷ Task τ resolved
17: F ← GetStudentBugFixes(H) ▷ Section 3.4: ask Student for bug fixes (if any)
18: l← 0, Q← {l : []} ▷ τ resolved→ create new tree

2 Related Works

2.1 Knowledge Tracing

Knowledge tracing tracks student knowledge to per-
sonalize their learning experience, including under-
standing specific concepts, behavior, and recall abil-
ity. There are two primary methods: probabilistic
and deep learning-based. Probabilistic knowledge
tracing, as it was first introduced, uses a Hidden
Markov Model (HMM) to maintain binary states,
learned and unlearned, for each skill as learners
engage with exercises. This approach, from which
we draw inspiration, updates the likelihood of these
states based on performance (Corbett and Ander-
son, 1994; Yudelson et al., 2013). Some models use
open-ended paths to states (Rafferty et al., 2016),
while others use deep learning-based, long-term
memory capabilities essential for learning (Piech
et al., 2015). These methods are performative, but
such state spaces hinder effectiveness and require
large amounts of annotated training data.

Our methodology addresses the challenge of
limited annotated data by dynamically generating
states during interactions between instructors and
students. We monitor these evolving states through
a component we refer to as the Verifier. Using these
dynamically generated states, we tailor the educa-
tional experience by personalizing the sequence
and type of questions posed to learners.

2.2 Socratic Reasoning in Educational AI

There have been several works exploring Socratic
reasoning in education (Herbel-Eisenmann and
Breyfogle, 2005; Wang and Demszky, 2024; Alic

et al., 2022; Demszky and Hill, 2022). More re-
cently, prior work (Al-Hossami et al., 2023b,a) has
highlighted the poor performance of prompting-
based methods in performing Socratic Reasoning
for the education domain (Achiam et al., 2023),
even with Chain-of-Thought (CoT) (Wei et al.,
2022), as they often give away answers without
asking clarifying questions, or the questions are
unrelated to the student’s response or original bug
(Achiam et al., 2023). In contrast, TreeInstruct miti-
gates this issue by explicitly grounding the question
generation step on both a target state variable τ and
any Student misunderstanding gauged from their
previous response.

2.3 LLMs for Interactive Education

Recent generative approaches within the AI tutor-
ing space have attempted to generate responses
which cater to the student’s type of mistake or re-
quest, but only in single-turn settings. CodeAid
(Kazemitabaar et al., 2024) is an assistive tool that
helps students debug their code. In their "Help
Fix Code" and "Question from Code" modules, the
Instructor provides single-turn responses to the Stu-
dent for answering questions, explaining concepts,
and helping to write code. However, these modules
direct the Student towards where their mistake is
and uses natural language to describe the bug fixes.
In contrast, TreeInstruct aims to instruct the Stu-
dent socratically through questions, such that even
in natural language, the bug fixes are not provided.
BRIDGE (Wang et al., 2023) is an Instructor-like
framework that aims to help students with math
mistakes. The LM estimates the type of error, the

9477

strategy of error remediation, and the instructor in-
tention behind the remediation (all are chosen from
a predetermined set). However, our methodology
makes use of a more structured planning approach
that accounts for the inherent multi-turn nature of
educational guidance.

Output:
Final bug fixes
from Student

State Space Estimation

Buggy Code → → Correct Code

Tree-Based Questioning

Input:
Problem Statement,
Buggy Code, Correct Code

Nodes:
Instructor’s state
variable guided
questions

Edges:
Path to new
understanding
based on Student
response and
Verifier analysis

Update state
representation
True, True, False

Instructor Student Verifier

State Variable Value

Task (e.g., Understand) False

Task (e.g., Recognize) False

Task (e.g., Modify) False

1

2

3

tasks to lead student to
understanding their conceptual

and syntactical mistakes

Figure 2: We propose TreeInstruct, a novel tree-guided
instructional questioning framework for meaningful ed-
ucational debugging guidance.

3 Methodology

As shown in Figure 2, TreeInstruct aims to dy-
namically guide the multi-turn conversation based
on its estimated state space. Section 3.1.2 provides
an overview of the three different agents we use
and their respective roles during the state space
generation/update and tree construction processes
(outlined in Figure 3). This allows TreeInstruct
to respond to the Student’s current level of under-
standing adequately. Algorithm 1 contains the pseu-
docode for all components in our method.

3.1 Preliminaries
3.1.1 Problem Description
As input, the Instructor is given the Student’s buggy
code that contains e errors, a problem statement,
bug descriptions, and their respective fixes. The
Instructor guides the Student to generate a list of
all bug fixes based on their interactions with the
Instructor. The overall goal is for the Student to
resolve their own conceptual and syntactical errors
in a Socratic fashion to reach the correct code. Note

that we assume bug fixes are provided, a common
scenario in educational settings (e.g., assignments,
exams) where ground-truth solutions are available
from human instructors or platforms like LeetCode.
As our focus is steering an LLM towards Socratic
guidance, generating these solutions for real-world
tutoring applications is left for future work.

3.1.2 Agents

In a real-world setting, a Socratic educator (e.g.,
an instructor, a teaching assistant) executes two
tasks when interacting with a Student: (1) ask rel-
evant questions to the Student, and (2) assess the
Student’s understanding based on their responses.
Following this cyclical pattern, we break down our
educator into two roles: an Instructor and a Verifier,
with persona prompts specified in Tables 12 and
14 in Appendix I, respectively. The Instructor and
Verifier perform their respective tasks specified in
Algorithm 1 via zero and one-shot prompting. The
Instructor agent’s job is to generate questions to
ask the Student (GenerateQuestion, GenerateSib-
lingQuestion, and GenerateChildQuestion in Alg.
1; details provided in Section 3.3). The Verifier
agent has a significantly more involved role:

1. State Space Estimation (Section 3.2): The
Verifier determines a set of tasks which will
lead a Student to understanding and correct-
ing their problem and buggy code. This is
GenerateState in Alg. 1.

2. Assess Student Response (Section 3.3): Once
the Student answers the Instructor’s question,
the Verifier must judge the response’s accuracy,
given the question-answer pair interaction. This
is VerifyResponse in Alg. 1.

3. Assess Student Understanding of Target State
Variable (Section 3.3): To update the Student’s
state space representation, the Verifier must de-
termine whether the Student would have needed
a sufficient understanding of the target state vari-
able in order to generate their response. This is
UpdateUnderstanding in Alg. 1.

4. Verify Student Bug Fixes (Section 3.4): Each
time the Student understands a target state vari-
able, they are asked to provide, if any, recom-
mended bug fixes based on the conversation his-
tory. This serves as an early stopping condition.
This is isResolved in Alg. 1.

9478

→ Instructor: I'll be happy to help you. How is the Fibonacci sequence defined and computed?

Student: The nth term in the Fibonacci sequence is the sum of the n-1 and n-2 terms.

 → Instructor: How are you utilizing recursion for computing the sequence?

Student: I recursively call the fibonacci function to get the sequence up till the (n-1)th term to retrieve the
preceding two terms.

 → Instructor: That's not entirely correct. Let’s walk through your code; if you call fibonacci(3), what will
sequence be initialized to?

Student: It will be set to [0].

 → Instructor: That’s correct! And is this sufficient for the computation on line 10?

Student: No, we expect [0,1] instead. I made an error in the recursive condition. I should change n-2 to n-1.

Tree-Based Questioning (Section 3.3) A→B indicates B is generated conditioned on A

Answers incorrectly

Use Answer Feedback
to Generate Sibling

Answers correctly & understands
target state attribute .

Update State and
Create New Tree #2

True Understand the definition of the Fibonacci Sequence.

1

1

Recognize that the recursive call only returns the sequence till the (n-2)th term.False2

2

Did not recognize that their recursive call uses the wrong argument (n-2).False2

2

2

True Recognize that the recursive call only returns the sequence till the (n-2)th term.
Modify the recursive call from fibonacci(n-2) to fibonacci(n-1).True

2

3

1

Answers correctly;
doesn’t understand

target state attribute. .

Use State Feedback to
Generate Child

2

Create New Tree #1
1

2

2

2

, Does not properly understand their code and hence answers incorrectly.

Figure 3: We detail the process for tree-based question generation. Blue and orange text/backgrounds indicate that
the Instructor and Verifier are performing the task, respectively.

3.2 State Space Estimation
The goal of state space estimation is to determine
the optimal criteria to track a Student’s global un-
derstanding of a problem P and their code, such
that from the initial buggy state B, we can traverse
the space to reach the goal state (correct code C).

We define the state space as the set of all possi-
ble tasks that a Student could perform to correct
their buggy code. We claim that the optimal state
space can be represented by a series S of k tasks
which leads the Student from their buggy code B
to (1) understanding their conceptual and syntacti-
cal mistakes and (2) correcting their code. Each of
these tasks is a state variable τi which either has
a value of True or False based on whether the Stu-
dent has completed it. At the very beginning of the
Instructor-Student conversation, all of these vari-
ables are set to “False”. We provide the estimated
state space used in Figures 2 and 3.

1. τ1: False, Understand the definition of the Fi-
bonacci Sequence.

2. τ2: False, Recognize that the recursive call only
returns the sequence till the (n− 2)th term.

3. τ3: False, Modify the recursive call from fib-
onacci(n-2) to fibonacci(n-1).

The state variables τi are structured such that
earlier tasks have a higher priority, as their com-
pletion may consequently resolve later tasks. For
instance, a student’s buggy code may reflect that
they do not conceptually understand the definition

of the Fibonacci sequence. However, once this
misunderstanding is resolved, the Student may si-
multaneously correct their related syntactical mis-
takes. On the other hand, attempting to resolve
their syntactical mistakes, “Modify the recursive
call”, beforehand may lead to an unproductive and
less structured conversation overall.

3.3 Tree-Based Questioning

Tree-based questioning helps to structure the log-
ical flow of the conversation and allows for more
relevant, personalized questions. We use a tree to
encode the Student’s path to understanding at least
one specific target state variable τi. In each tree, (1)
nodes are questions, (2) sibling nodes reflect ques-
tions which aim to sequentially solidify the current
misunderstanding, and (3) each of the parent-child
edges connect nodes that guide to new understand-
ing. Guided by the state space in Section 3.2, each
level l in the tree has questions q of a similar diffi-
culty and depth; the last level of the tree indicates
that a specific state variable has been resolved. The
Verifier agent dictates the movement from level to
level and tree to tree.

Conditional generation of sibling questions.
The Instructor conditionally generates sibling ques-
tions at level l if and only if the Student incorrectly
answers the Instructor question (lines 6 and 10 in
Alg. 1). As shown in the second and third question
of Figure 3, these questions must lead to the same
level of target understanding as the original gener-

9479

ated question intended therefore, the question can
be rephrased or made more specific. To ensure this,
we ground the question generation based on two
things: (1) the previous questions from level l, and
(2) the Verifier’s explanation for why the Student
got the question wrong.

Conditional generation of child questions. The
Instructor conditionally generates child questions
at level l+1 if and only if the Student correctly an-
swers the Instructor question (addresses the ques-
tion and has no mistakes in their answer), but still
does not understand the target state variable τi (line
14 in Alg. 1). As shown in the fourth question of
Figure 3, these questions aim to guide the Student
to a more complete understanding of the target state.
To ensure this, we ground the question generation
on two things: (1) the previous questions from level
l − 1, and (2) the Verifier’s explanation of the gaps
in the Student’s target state understanding.

3.4 Adaptive Conversation Restructuring

Once the Verifier agent determines that the target
state/task has been resolved, we exploit the same
process to update all remaining tasks τ ∈ S, as
multiple dependent bugs may have been concur-
rently resolved within the same tree. After at least
the target state variable has been resolved (line 13
in Alg. 1), we create a new tree for any remaining
tasks, as shown in the first interaction of Figure 3.
This step is crucial to the multi-bug setting, as inde-
pendent bugs would benefit from having separate,
distinct trees of questioning.

For further adaptiveness to the conversation, we
additionally provide (1) an early stopping condition
based on the Student’s intermediate bug fixes, and
(2) a maximum tree width and depth threshold, af-
ter which TreeInstruct chooses to teach the Student
their remaining gap in knowledge.

• Bug fixes: After a task τ has been resolved, the
Student is prompted to provide a list of natu-
ral language bug fixes (e.g. “Replace i with
i+1 on line 6.”) based on their entire conver-
sation history with the Instructor. The Verifier
will determine if all the ground-truth bug fixes
have an isomorphic counterpart within the set of
suggested Student bug fixes. Isomorphism can
be defined as (1) having the same conclusion or
output, (2) sharing the same underlying logical
structure or pattern, and/or (3) being convertible
to each other through a series of logical transfor-

mations2. If all ground-truth bug fixes have been
resolved, then we may stop early.

• Teaching: After generating a maximum number
of sibling questions q or depth l, the Instructor
appends the correct answer to Q[l][0] and re-ask
Q[l][−1] to the Student. This ensures that the
conversation flows in case the Student gets stuck.

4 Experiments

4.1 Experimental Setup
In order to evaluate TreeInstruct, we uti-
lize a proxy Student agent based on the
Mistral-7B-Instruct model (Jiang et al.,
2023) to mimic the abilities of a student while re-
sponding to the Instructor. The prompt we use to
define the Student persona is outlined in Table 13
of Appendix I. We additionally provide GPT-4 API
experimental setup details in Appendix G.

4.2 Datasets
We evaluate our method on two datasets. First,
we use the Socratic Debugging Benchmark dataset
from (Al-Hossami et al., 2023b), which consists of
149 problems– each with a problem statement, stu-
dent buggy code, bug fixes and descriptions in En-
glish, and correct code. However, these problems
lack sufficient difficulty, often requiring small fixes
and minimal problem comprehension. To evalu-
ate TreeInstruct on more challenging problems, we
craft a novel dataset, MULTI-DEBUG, based on
50 popular programming problems3 (16 easy, 29
medium, and 5 hard according to their correspond-
ing LeetCode labels). It features longer problems
and more involved concepts, requiring TreeInstruct
to have more extensive reasoning capabilities for
guiding the Student.

For each problem, expert annotators (Appendix
D) injected 1, 2, and 3 syntactical or conceptual
bug(s) that a typical student would make (a total of
150 different samples for MULTI-DEBUG). Con-
ceptual bugs usually cause runtime errors or result
in incorrect output. Examples include misunder-
standing the problem statement, encountering an
infinite loop, or incorrectly using a library or math-
ematical operator (/ vs // in Python). Syntacti-
cal bugs cause compilation errors due to incorrect

2For example, the bug fixes "Replace if i <= 0 with
if i < 0" and "Check if i is strictly less than 0" are iso-
morphic because they have the same conclusion and share the
same underlying pattern of the mathematical operator <.

3https://github.com/Garvit244/LeetCode

9480

Table 1: Results on Socratic Debugging Benchmark (Single Bug). Bolded and † values denote the top 2 methods.

Syntactical (42 samples) Conceptual (107 samples)

Methods #T Success Relevant Indirect Logic Success Relevant Indirect Logic

Vanilla 3.23 80.95 83.72† 76.19 78.70† 76.64† 87.35† 80.32† 78.79†

Bridge 6.00 78.57† 76.50 82.24† 41.72 62.14 78.12 79.86 34.38

TreeInstruct 5.41 77.27 92.01 96.48 88.95 80.26 95.63 89.10 94.63

Python syntax (e.g., missing a colon). For each
bug, we keep track of its fix and description.

4.3 Baselines

We compare TreeInstruct to several baselines and
their variants. Given that LLM-based Socratic in-
struction is a new evolving area with few exist-
ing work and no multi-turn methods, we adapt a
prompting and an existing single-turn method to
our task. The first baseline, Vanilla, is given the
same input as TreeInstruct’s Instructor. The base
model is prompted to ask Socratic questions to the
Student– it does not use any explicit conversational
structure or estimate the Student’s knowledge. We
use both Meta-Llama-3-8B-Instruct (Touvron
et al., 2023) and GPT-4 (Achiam et al., 2023)
as base models for the Vanilla baseline.

Second, we use BRIDGE (Wang et al., 2023).
Since we are adapting this for Socratic code de-
bugging, we use their predetermined error types,
remediation strategies, and remediation intentions
to guide the question generation, along with the
problem-specific input given to TreeInstruct’s In-
structor. For both baselines, we limit the conversa-
tions to 20 turns per number of bugs.

4.4 Evaluation Metrics:

We perform qualitative and quantitative evaluation
of our methods. The scores are averaged across all
turns and then averaged across all problems. In the
result tables, we scale the scores by 100.

Qualitative: We develop a binary scale to assess
the Socratic quality of questions. (Al-Hossami
et al., 2023b) identifies multiple dimensions of So-
cratic questioning, including relevance to specific
bugs, implicitness of the answer, and structural co-
herence. For each question, we measure the below
attributes of the conversation manually (giving a
score of 1 if the attribute is met, and 0 otherwise):

• Relevance (Relevant): The instructor’s question
was pertinent to the errors in the student’s code.

• Indirectness (Indirect): The instructor’s ques-
tion refrained from directly revealing solutions
to the bugs.

• Logical Flow (Logic): The instructor’s question
promoted a coherent conversation, facilitating
the student’s problem-solving process.

Quantitative: We apply quantitative metrics to
objectively evaluate the effectiveness and efficiency
of our framework.

• Overall Success Rate (Success): We check
whether the final list of bug fixes generated by
the Student, BS , and the ground truth set of big
fixes, BGT , are isomorphic (Section 3.4). The
success rate is calculated as |BGT ∪BS |/|BGT |.

• Average Number of Turns (#T): We compute
the average number of turns required by the
method to reach the goal state. This metric pro-
vides insight into the efficiency and depth of the
interaction process.

4.5 Overall Results
In Tables 1 and 2, we see that with more struc-
tured representations of student knowledge and
conversation state, TreeInstruct demonstrates sig-
nificant improvements beyond the baselines.
Across all multi-bug settings, we see an overall
improvement of 16.6% and 11.59% in the success
rates for syntactical and conceptual bugs, respec-
tively. We also see an improvement of 13.47%
and 14.89% for syntactical and conceptual bugs,
respectively, across the three conversation metrics.
For 1-bug, we see that the Vanilla baseline has
the highest success for conceptual bugs, and the
lowest Indirectness score, indicating that questions
were very direct, and gave hints towards the bug
fixes, which evidently increased the success rate.
We see the same trend in the syntactical, single bug
on Vanilla setting in Table 1. Overall, TreeIn-
struct demonstrates strong performance despite
drastically different base models, and .
TreeInstruct’s runtime performance is detailed in
Appendix G.3.

9481

Table 2: Results on the MULTI-DEBUG dataset. In total, 1-bug has 29 syntactical and 21 conceptual bugs, 2-bug
has 50 syntactical and 50 conceptual bugs, and 3-bug has 78 syntactical and 72 conceptual bugs. Bolded and †
values denote the top 2 methods, respectively. The bottom two rows are ablation studies performed on 3-Bug setting.

Syntactical Conceptual

Bugs Methods #T Success Relevant Indirect Logic Success Relevant Indirect Logic

1

Vanilla 2.36 71.43 92.16 55.12 84.15 78.57 94.58 59.17 84.17
BRIDGE 16.60 50.00 93.93 98.04 24.23 68.00 97.27 96.67 35.38

TreeInstruct 7.24 76.19 93.98† 94.08 85.28† 71.43 97.57† 93.02† 86.02†

TreeInstruct 3.94 75.00† 100.00 95.59† 96.63 76.92† 100.00 88.01 94.76

2

Vanilla 8.32 53.26 83.45 74.41 60.82 62.50 86.96 74.13 59.90
BRIDGE 15.28 34.88 89.47 89.33 52.40 42.71 89.67 88.06 46.64

TreeInstruct 9.04 66.67† 93.00† 92.17† 84.59† 72.62† 94.15† 92.58† 81.46†

TreeInstruct 6.14 69.32 97.96 98.47 90.14 73.91 99.58 98.47 94.45

3

Vanilla 17.48 44.00† 69.88 64.31 52.38 67.00 84.68 84.68 41.51
BRIDGE 8.44 19.00 87.78 83.95 64.95 43.00 90.09 85.78 44.65

TreeInstruct 10.46 43.00 95.68† 88.88 80.94† 72.00† 96.76† 97.95 83.28†

TreeInstruct 10.46 73.00 100.00 99.27 95.57 92.00 98.40 95.89† 93.63

No State 16.34 25.51 51.61 97.21 41.09 53.00 47.57 94.70 20.36
No Teaching 9.69 30.61 90.75 97.61† 72.84 50.00 94.62 95.17 68.78

Table 3: Results on the side-by-side evaluation. Bolded
and † values denote the top 2 comparisons, respectively.
Note: S-bug refers to the Socratic Debugging Bench-
mark. We abbreviate TreeInstruct as TI.

Comparison 3-bug 2-bug 1-bug S-bug

TI vs BRIDGE 71.43† 68.00† 83.67 94.63
TI vs Vanilla 100.00 90.00 69.39† 50.33†

BRIDGE vs Vanilla 57.14 62.00 40.82 24.83

Side-by-Side Evaluation: Using the same eval-
uation metrics (Section 4.4), we performed a side-
by-side evaluation that measures how often a user
prefers TreeInstruct over the baselines. The re-
sults are shown in Table 3, in which we see that
on average, TreeInstruct is given a higher rank-
ing than BRIDGE 79.43% of the time, and a
higher ranking than Vanilla 77.43% of the time.
The details of this computation are in Appendix C.
When specifically comparing TreeInstruct against
BRIDGE, the key differences were that BRIDGE
began with specific questions which revealed bug
fixes and ended with general questions, lacking
a logical flow in the conversation. In addition to
being limited in a multi-bug setting, it posed less
effective follow-up questions. In contrast, TreeIn-
struct prioritized high-level conceptual questions
early on in order to build the foundation for later

code-specific questions. Additionally, it asked for
new information each turn and handled multiple
bugs effectively. This is explicitly demonstrated in
the example shown in Appendix B, Table 4.

Human Student Interaction: We conducted a
separate case study where human students directly
interacted with TreeInstruct. We gathered five hu-
man volunteers of varying levels of programming
backgrounds and knowledge, and presented each
volunteer with three Single Bug problems and three
3-bug (MULTI-DEBUG) problems. The study
shows that TreeInstruct can adapt to various lev-
els of students effectively, as the scores are mostly
comparable between our volunteers. The volun-
teers mentioned that TreeInstruct helped them
learn programming concepts by forcing them to
critically think about their mistakes, instead of
trying random solutions. Also, our volunteers had
better interactions with TreeInstruct than Tree-
Instruct because the Verifier is of higher
quality. Appendix F includes further details of this
study, with quantitative results in Table 10.

4.6 Ablation Studies

We perform two ablations on all 50 3-bug problems
(bottom two rows of Table 2). For No State,
we remove the state space representation, basing
the question generation on the conversation history,

9482

Verifier feedback on the Student’s answer, and the
Student-proposed bug fixes. For No Teaching,
we remove the teaching functionality that kicks in
after three consecutive incorrect Student answers.
The conversation is still guided by the state space
representation, tree-based questioning, its updates,
and the Student-proposed bug fixes.

When compared to TreeInstruct , No State
success rates drop by 18.25%, Relevance by
46.63%, and Logic by 51.39%. Without the
grounding provided by the state space represen-
tation, the conversations deviate from the real bugs
and contain many repeated questions that the Stu-
dent already answered. Additionally, when com-
pared to TreeInstruct , No Teaching success
rates and Logic scores for drop by 17.20% and
11.32%, respectively. When the Student does not
know some base-level of foundational knowledge,
it is better to break the unnecessary cycle of asking
questions and allow the Instructor to teach these
concepts. Overall, these performance differences
demonstrate the impact of each component.

Verifier Subtask Performance: To understand
the Verifier’s abilities to perform its designated sub-
tasks (Section 3.1.2), given their complexity, we
evaluate the Verifier on each subtask for the 3-bug
setting. We demonstrate that for both and ,
on the most difficult setting, both Verifier mod-
els feature high accuracy rates across all subtasks
(86.3% average performance across all subtasks),
most notably generateState, which shows
that the base model does not have significant im-
pact. Overall, this shows that TreeInstruct can reli-
ably depend on the Verifier to complete such tasks.
The detailed results are included in Appendix A.

4.6.1 Analysis
Fine-grained and dependency-aware state
spaces improve conversation quality. In our
evaluation, we saw that state spaces typically con-
tain 4–5 state variables, evenly distributed across
all bugs. In other words, the number of bugs is
inversely proportional to the number of variables
allocated to each bug. Thus, 1-bug uses all state
variables– each featuring a more fine-grained sub-
task to solve the bug, whereas 2- or 3-bug would
use fewer variables for each bug (example provided
in Appendix E). 1-bug’s fine-grained state variables
lead to increased Success and Relevance scores as
the conversation delves deep into the Student’s root
misunderstanding of the bug. On the other hand,

3-bug features more coarse-grained state variables
with a higher inter-bug dependency. Consider the
(recursive) Fibonacci problem in Figure 1. Sup-
pose the student is missing a base case and incor-
rectly calling the recursive function. Solving one
bug requires adequate understanding of the other,
thereby making it easier to solve. Another exam-
ple can be found in Appendix B, Table 4. The
2-bug setting does not fully experience the ben-
efits of fine-grained state variables or high bug-
interdependency, resulting in a slight dip in scores:
on average, a 7.62%, 0.83%, and 2.85% drop in
Success, Relevant, and Logic scores, respectively–
nonetheless, better than the baselines.

TreeInstruct tackles challenging problems more
effectively. Given the increase in problem diffi-
culty between (1) the Socratic Debugging Bench-
mark (SDB) and MULTI-DEBUG (MD) datasets,
and (2) from the 1 to 3-bug settings within MD,
TreeInstruct is able to tackle challenging problems
more effectively than baselines. The state space
estimation breaks down problems into simple sub-
tasks which the Instructor and Verifier can target
using tree-guided questioning, even in complex
conversations. Concretely, TreeInstruct’s perfor-
mance in the SDB setting (Table 1) is comparable
to that of the MD setting (Table 2), with only a
2.44% drop in performance from SDB to MD 1-
bug and 1.53% drop from MD 1-bug to MD 3-bug.
Comparatively, Vanilla drops by 14.55% from
1-bug to 3-bug. Overall, TreeInstruct’s Relevant,
Indirect, and Logic scores remain high regardless
of difficulty.

5 Conclusion

This paper proposes a novel method, TreeInstruct,
for state space estimation and dynamic tree-based
questioning for multi-turn Socratic instruction. We
construct a novel multi-bug debugging dataset,
MULTI-DEBUG, with 150 expert-annotated con-
ceptual and syntactical problems and buggy solu-
tions/fixes. Extensive experiments on an existing
benchmark and MULTI-DEBUG demonstrate that
TreeInstruct can be universally applied to both open
and closed source models. We also showcase that
TreeInstruct’s strong Socratic questioning abilities
widely outperform all baselines through both (1)
rigorous quantitative and qualitative expert eval-
uation (preferred over 77.94% of the time), and
(2) real-world interactions with students of varying
coding abilities.

9483

6 Limitations & Future Work

While TreeInstruct provides an intuitive framework
which demonstrates promising results for effective
multi-turn Socratic instruction, it contains a few
limitations that form the foundation for future, im-
pactful research areas.

Firstly, Tables 1 and 2 shows high qualitative
scores for the questions asked by TreeInstruct.
While these are encouraging, the success rates still
have large room for improvement– the highest suc-
cess rate is 77.27%. This indicates that Socratic
questions alone are not sufficient for teaching a stu-
dent to debug their code. We judge the efficacy of
questions locally, whereas the next step would be
to judge them globally across the conversation. We
leave it to future work to devise an effective global
questioning scheme and evaluation metric.

Additionally, our method is dependent on the
base model’s reasoning capabilities, specifically for
the Verifier agent. In our results, with a stronger
model, we see higher scores for Logic and Success.
Although our method shows comparable results
between GPT-4 and Llama-3-8b, this may be a
bottleneck, as stronger and bigger models require a
higher deployment cost.

Next, in the few failure cases, we see some ad-
verse effects of our method’s reliance on the rea-
soning capabilities of the base model. First, our
method can get stuck into a cyclical conversation
with the Student if they are particularly weak in an
area and cannot understand the target state even af-
ter multiple rounds of direct questioning and teach-
ing. In these cases, the number of turns rises to
20-30.

Moreover, syntactical bugs might be “harder to
see” for the language model, as it goes against the
generation process to generate syntactically incor-
rect code. Breaking it down, a language model is
trained to generate code with a colon at the end of
for loops, if-statements, and method signatures, so
if buggy code has a missing colon, the language
model might ignore it. This results in syntactical
bugs being harder to solve.

These limitations give way to exciting future
work. Firstly, we can make use of vision lan-
guage models to provide students with multi-modal
teaching strategies, instead of relying solely on lan-
guage. Additionally, we can enhance the frame-
work, so it will explore new instruction methods
when the questioning becomes cyclical. This can
also help make the Instructor more reliable to gen-

erate consistent output across multiple runs on the
same problem. Furthermore, we can utilize a struc-
tured fine-tuning approach to help the model bet-
ter leverage the Verifier feedback and tree-based
question generation process to make hierarchical
Socratic planning and questioning inherent to a
model. Overall, TreeInstruct can also be extended
to automatically generalize to different teaching
domains (e.g., quantitative reasoning).

7 Ethics Statement

We are committed to the transparency and repro-
ducibility of our research. We encourage our re-
search community to make use of our open-source
code and dataset to further improve our method-
ology. Our research involves the evolving inter-
section of large language models (LLMs) and edu-
cation, where the deployment of language model
instructors and their interactions with students have
been relatively unexplored. The role of technology
and language models is being widely discussed
with respect to its impact on student dependence
and lack of critical thinking. Given the rapid and
wide-scale deployment of LMs to the public, we
emphasize the importance of designing Socratic
dialogue systems in the hopes of bettering educa-
tional support for all students and educators.

8 Acknowledgements

This research project has benefited from the Mi-
crosoft Accelerate Foundation Models Research
(AFMR) grant program, through which leading
foundation models hosted by Microsoft Azure and
access to Azure credits were provided to conduct
the research. Furthermore, we would like to thank
Mihir Kavishwar, Krish Agarwal, Sonia Agarwal,
Nirav Diwan, and Shradha Sehgal for their help
and feedback on our work.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Erfan Al-Hossami, Razvan Bunescu, Justin Smith, and
Ryan Teehan. 2023a. Can language models employ
the socratic method? experiments with code debug-
ging. arXiv preprint arXiv:2310.03210.

Erfan Al-Hossami, Razvan Bunescu, Ryan Teehan, Lau-
rel Powell, Khyati Mahajan, and Mohsen Dorodchi.

9484

2023b. Socratic questioning of novice debuggers: A
benchmark dataset and preliminary evaluations. In
Proceedings of the 18th Workshop on Innovative Use
of NLP for Building Educational Applications (BEA
2023), pages 709–726.

Sterling Alic, Dorottya Demszky, Zid Mancenido,
Jing Liu, Heather Hill, and Dan Jurafsky. 2022.
Computationally identifying funneling and focusing
questions in classroom discourse. arXiv preprint
arXiv:2208.04715.

Albert T Corbett and John R Anderson. 1994. Knowl-
edge tracing: Modeling the acquisition of procedural
knowledge. User modeling and user-adapted inter-
action, 4:253–278.

Kathleen Cotton. 1988. Classroom questioning. School
improvement research series, 5:1–22.

Dorottya Demszky and Heather Hill. 2022. The ncte
transcripts: A dataset of elementary math classroom
transcripts. arXiv preprint arXiv:2211.11772.

Beth A Herbel-Eisenmann and M Lynn Breyfogle. 2005.
Questioning our patterns of questioning. Mathemat-
ics teaching in the middle school, 10(9):484–489.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Enkelejda Kasneci, Kathrin Seßler, Stefan Küchemann,
Maria Bannert, Daryna Dementieva, Frank Fischer,
Urs Gasser, Georg Groh, Stephan Günnemann, Eyke
Hüllermeier, et al. 2023. Chatgpt for good? on op-
portunities and challenges of large language models
for education. Learning and individual differences,
103:102274.

Majeed Kazemitabaar, Runlong Ye, Xiaoning Wang,
Austin Z Henley, Paul Denny, Michelle Craig, and
Tovi Grossman. 2024. Codeaid: Evaluating a class-
room deployment of an llm-based programming assis-
tant that balances student and educator needs. arXiv
preprint arXiv:2401.11314.

Wenhan Lyu, Yimeng Wang, Tingting Rachel Chung,
Yifan Sun, and Yixuan Zhang. 2024. Evaluating
the effectiveness of llms in introductory computer
science education: A semester-long field study. arXiv
preprint arXiv:2404.13414.

Chris Piech, Jonathan Bassen, Jonathan Huang, Surya
Ganguli, Mehran Sahami, Leonidas J Guibas, and
Jascha Sohl-Dickstein. 2015. Deep knowledge trac-
ing. Advances in neural information processing sys-
tems, 28.

Anna N Rafferty, Emma Brunskill, Thomas L Griffiths,
and Patrick Shafto. 2016. Faster teaching via pomdp
planning. Cognitive science, 40(6):1290–1332.

Husniah Sahamid. 2016. Developing critical thinking
through socratic questioning: An action research
study. International Journal of Education and Liter-
acy Studies, 4(3):62–72.

Brad Sheese, Mark Liffiton, Jaromir Savelka, and Paul
Denny. 2024. Patterns of student help-seeking when
using a large language model-powered programming
assistant. In Proceedings of the 26th Australasian
Computing Education Conference, pages 49–57.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Rose E Wang and Dorottya Demszky. 2024. Edu-
convokit: An open-source library for education con-
versation data. arXiv preprint arXiv:2402.05111.

Rose E. Wang, Qingyang Zhang, Carly Robinson, Su-
sanna Loeb, and Dorottya Demszky. 2023. Bridging
the novice-expert gap via models of decision-making:
A case study on remediating math mistakes.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in Neural
Information Processing Systems, 35:24824–24837.

Judith D Wilson. 1987. A socratic approach to helping
novice programmers debug programs. ACM SIGCSE
Bulletin, 19(1):179–182.

Ya-Ting C Yang, Timothy J Newby, and Robert L Bill.
2005. Using socratic questioning to promote criti-
cal thinking skills through asynchronous discussion
forums in distance learning environments. The amer-
ican journal of distance education, 19(3):163–181.

Michael V. Yudelson, Kenneth R. Koedinger, and Geof-
frey J. Gordon. 2013. Individualized bayesian knowl-
edge tracing models. In Artificial Intelligence in Edu-
cation, pages 171–180, Berlin, Heidelberg. Springer
Berlin Heidelberg.

A Breakdown of the Verifier Agent’s
Subtask Performance

We perform ablation studies for each module
on our most difficult setting (MULTI-DEBUG
3-bug), with both GPT-4 and Llama-3-8B Ver-
ifier Agents. For the sake of time, we
used 20% of the dataset. For each sub-
task (generateState, verifyResponse,
updateUnderstanding, isResolved), we
define the following metrics of success:

9485

http://arxiv.org/abs/2310.10648
http://arxiv.org/abs/2310.10648
http://arxiv.org/abs/2310.10648

Table 4: A comparison of questions asked by BRIDGE and TreeInstruct - between Q1 and Q2, and Q2 and Q3, the
Student gave a correct answer.

BRIDGE TreeInstruct

Q1 What is the difference between a list and a set in Python,
and how might this affect the performance of your code
when checking if an item is in ’temp’?

Can you explain the difference between a list and a set in
Python, and how their properties might affect the function-
ality of your code?

Q2 Can you explain why you chose to use a list to store the
characters of the string and what might be the implications
of this choice?

That is correct! Let’s take a step further. Given that a set
only contains unique items, how might this property of a
set be useful in solving this problem?

Q3 N/A Can you explain how you are currently adding elements
to your ’temp’ collection in your code?

• generateState: the proportion of bugs
that would be sufficiently resolved if the tasks
(state space variables) were followed by the
Student.

• verifyResponse: a binary 0/1 for cor-
rect Verifier judgment and 0/1 for the correct
explanation behind the Verifier’s judgment:
verification_score+explanation_score

2 .

• updateUnderstanding: the proportion
of state variables that were correctly validated
(whether to update the state variable) and 0/1
for the correct explanation behind the Veri-
fier’s judgment: validation_score+explanation_score

2 .

• isResolved: the proportion of Student pro-
posed bug fixes which the Verifier correctly
identifies as isomorphic/non-isomorphic to
the corresponding ground truth bug fixes.

The results are in Table 5. Despite this being
our most difficult setting, both Verifier models fea-
ture high accuracy rates across all subtasks, most
notably generateState, which shows that the
choice of base model does not have significant im-
pact. Note: isResolved is primarily used for
early stopping (e.g., if a student proposes all cor-
rect bugs during the first turn, then TreeInstruct
stops early), so this subtask is not necessary. This
subtask simply reduces computational costs.

Table 5: Performance of each Verifier subtask.

Subtasks Llama-3-8B GPT-4

generateState 90.0 100.0
verifyResponse 85.7 86.7
updateUnderstanding 88.6 85.9
isResolved 72.2 81.4

B Code Bug Interdependency

Table 4 shows an example of the effect of interde-
pendent bugs, taken from real conversations that
BRIDGE and TreeInstruct had with our student
simulator Mistral-7B-Instruct. The ques-
tions aim to solve: (1) using a set instead of a list,
and (2) using .add() instead of .append() to
add items. As shown, Questions 1 and 2 tackle Bug
1, and Question 3 tackles Bug 2. The interdepen-
dency of changing the data structure first makes it
easier to resolve the second bug, yielding higher
success rates for the 3-bug setting.

C Side by Side Evaluation

As mentioned in the main text, we perform a side-
by-side evaluation to measure the percentage of
times a user prefers our method TreeInstruct over
the baselines. Preference was measured as the av-
erage of all conversation metrics across syntactical
and conceptual bugs. Based on the metrics, we
assign each method a ranking (1, 2, or 3). Table
3 shows that TreeInstruct was preferred 68-94.6%
of the time over the baselines. On average, TreeIn-
struct was preferred over BRIDGE 79.43% of the
time, and over Vanilla 77.43% of the time.

Interpretation. When we say TreeInstruct was
preferred 79.43% more over BRIDGE, this means
that across all 50 3-bug problems and ranking con-
figurations, TI was given a higher ranking than
BRIDGE (TI is ranked #1 while BRIDGE is ranked
#2, TI is ranked #1 while BRIDGE is ranked #3, TI
is ranked #2 while BRIDGE is ranked #3) 79.44%
of the time. Each of the 50 problems can have
multiple preferences (TI over BRIDGE, TI over
Vanilla, Bridge over Vanilla, etc.) which is why
they will not necessarily add up to 100.

Table 4 shows a comparison between the ques-
tions asked by BRIDGE and TreeInstruct. Ap-

9486

Table 6: Inter-annotator agreement on the relevance, indirectness, logic scores, and bug type determination.
Conducted on a random subset of the Single-Bug (SB) and MULTI-DEBUG 3-Bug (3-Bug) datasets.

Cohen’s κ % Agreement

Setting Success Relevant Indirect Logic Success Relevant Indirect Logic

SB 61.97 71.88 76.62 1.0 91.67 94.44 88.89 1.0
3-Bug 1.0 78.90 78.90 1.0 1.0 97.83 97.83 1.0

pendix B specifies the details behind the targeted
problem in the Table. On the left, we see that
BRIDGE asks very similar questions regarding the
design choice of using a list versus a set. TreeIn-
struct, on the right, asks one question regarding
the design choice, one question about how to add
elements to the correct data structure, and one in-
termediate question about why the design choice
is suited towards the problem. Updating the state
space, grounding questions towards the Student’s
capabilities, and connecting concepts back to the
problem are principles that rank TreeInstruct higher
than BRIDGE.

D Human Expert Evaluators

As mentioned before, the injected bugs into the
dataset (Section 4.2) and evaluation in Tables 1 and
2 were obtained using volunteer human expert eval-
uators: two computer science teaching assistants
with at least four years of high-school, undergradu-
ate, and graduate-level teaching experience, with
proficiency in Python and located in the USA. Their
experiences equipped them with the first-hard expe-
rience of mistakes made by beginner programmers,
leading to more realistic injected bugs. Further-
more, for evaluation, they were given the same set
of instructions and the following set of guidelines:

• Assign a score of 1 for Relevance if the ques-
tion will eventually lead the Student to under-
stand their bug(s).

• Assign a score of 0 for Indirect if a question
explicitly or implicitly states a solution.

• Assign a score of 0 for Logic if the current
question does not naturally flow from the Stu-
dent’s previous answer.

They were given a CLI-based annotation sys-
tem. In our GitHub repository, we have pro-
vided the script (question_human_evaluation.py)
and an example of the evaluation interaction (eval-

uation_example.pdf). Below are some special cas-
es/considerations the evaluators were also given:

• If the Verifier is wrong and asks the same ques-
tion despite the Student getting the question
correct, give a score of 0 for Relevance.

• If a question seems out of order, give a score
of 0 for Logic.

• If a question deep into the conversation is
vague, gives a score of 0 for Relevance and
Logic.

• If the answer is provided in a hint after 2
rounds of similar questions, and the Student
still does not understand, do not penalize the
Instructor for Indirect.

• For determining Success, do not penalize the
Student if the bug fix is in natural language
rather than code.

On a random subset of the Single-Bug and
MULTI-DEBUG 3-Bug datasets, we computed the
inter-annotator agreement on the relevance, indi-
rectness, and logic scores (Section 4.4) and bug
type determination. We show these agreement re-
sults in Table 6.

E Comparing State Space
Representations in Multi-Bug Settings

Here, we compare the state space representations
of the 1-bug, 2-bug, and 3-bug settings for the two
sum problem. In the two sum problem, given is an
array of integers and a target value. The goal is to
return the indices of two numbers that add up to
the target value. Below is the correct code.

1 . d e f twoSum (s e l f , nums , t a r g e t) :
2 . d = {}
3 . f o r i i n r a n g e (l e n (nums)) :
4 . d i f f e r e n c e = t a r g e t −nums [i]
5 . i f d i f f e r e n c e i n d :
6 . r e t u r n [d [d i f f e r e n c e] , i]

9487

https://github.com/agarwalishika/TreeInstruct/blob/main/evaluation/question_human_evaluation.py
https://github.com/agarwalishika/TreeInstruct/blob/main/evaluation/evaluation_example.pdf
https://github.com/agarwalishika/TreeInstruct/blob/main/evaluation/evaluation_example.pdf

7 . d [nums [i]] = i
8 . r e t u r n d

In the 1-bug setting, the Student mis-
takenly writes nums[i]-target instead of
target-nums[i] on line 4. In the 2-bug set-
ting, along with the previous bug, the Student also
initializes d as a list (d=[]) instead of a dictionary
on line 2. Finally, in the 3-bug setting, the Student
forgets to add a colon at the end of the if-statement
on line 5.

Tables 7, 8, and 9 outline the state space repre-
sentations for the 1-bug, 2-bug, and 3-bug settings.
As shown, 1-bug uses 3 states (states 1, 2, and 3) to
solve the same but that 3-bug uses 1 state (state 1)
to solve. This means the 1-bug state representation
is much less compact than that for 3-bug.

1. Understand the problem statement and the
requirement to find two numbers that add up to
a specific target.
2. Understand the logic behind calculating the
difference as target - nums[i].
3. Correctly implement the difference calcula-
tion in the code.

Table 7: State space representation for 1-bug on the
two-sum problem.

1. Understand how to correctly calculate the
difference between the target and the current
number in the array.
2. Understand the difference between lists and
dictionaries in Python.
3. Correctly initialize a dictionary in Python.
4. Understand how to use a dictionary to store
and retrieve values in Python.

Table 8: State space representation for 2-bug on the
two-sum problem.

F Interactive Evaluation with Human
Students

For our main evaluation, we used
Mistral-7B-Instruct to represent a
Student. We noticed that Mistral is an overconfi-
dent model that (1) suggests incorrect bug fixes
in between the conversations and (2) jumps to fix
bugs that do not exist in the code. Therefore, we
worked with human students to test our method
on the following two settings: Socratic Debugging

1. Understand how to correctly calculate the
difference as ‘target-nums[i]‘.
2. Understand how to initialize a dictionary
using ‘‘ instead of ‘[]‘.
3. Understand how to use a dictionary to store
and retrieve values.
4. Understand the correct syntax for an if-
condition, including the necessary colon at the
end.

Table 9: State space representation for 3-bug on the
two-sum problem.

on TreeInstruct and 3-bug on TreeInstruct .
We gathered 5 human volunteers of varying levels
of programming backgrounds and knowledge
(ensuring to anonymize their identities):

• Level 1: Student knows how TreeInstruct
works; they act as an adversary to intention-
ally provide bad inputs that will try to make
the method fail.

• Level 2: Student is new to TreeInstruct; they
are a basic programmer who has been learning
to code in Python for a few months.

• Level 3: Student is new to TreeInstruct; they
are a non-computer science major who does
not use Python often, but knows the basic high
level concepts of data structures and syntax.

• Level 4: Student is new to TreeInstruct; they
have been using Python for 2 years and are in
their final year of undergraduate education in
computer science.

• Level 5: Student knows how TreeInstruct
works; they act as an ally to intentionally pro-
vide good inputs, so the method can resolve
the bugs in as little turns as possible.

When conducting the study, we adhered to the fol-
lowing experimental process:

1. We presented the student with the problem
statement and gave them as much time as they
needed to fully understand it.

2. The students were given two minutes to review
the buggy code. We noted down how many
bugs each of the students were able to identify
before their conversation.

9488

Table 10: Results of human student evaluation across S(ingle)-bug (Socratic Debugging benchmark) and 3-bug
(MULTI-DEBUG dataset) settings, broken down by the student level (Lvl).

Syntactical Conceptual

Bugs Lvl Avg. Turns Success Relevant Indirect Logic Success Relevant Indirect Logic

S-bug

1 6.0 100.00 66.67 66.67 100.00 100.00 91.67† 100.00 50.79
2 12.0 100.00 66.67 83.33† 75.00† 50.00† 100.00 100.00 50.00
3 8.0 0.00† 87.50† 100.00 50.00 100.00 67.50 90.00† 42.50
4 1.0 100.00 100.00 0.00 100.00 100.00 57.14 100.00 64.29†

5 1.0 100.00 100.00 100.00 100.00 100.00 100.00 75.00 75.00

3-bug

1 19.0 83.33† 75.93 97.92† 74.77 100.00 100.00 88.89† 79.49
2 11.7 83.33† 100.00 100.00 78.57 100.00 100.00 86.67 82.50
3 6.67 100.00 100.00 100.00 85.71† 100.00 100.00 100.00 100.00
4 4.7 100.00 93.33† 100.00 76.67 100.00 100.00 83.33 88.89†

5 3.0 100.00 100.00 83.33 100.00 100.00 83.33† 100.00 83.33

3. The students conversed with TreeInstruct until
they were able to identify all the bugs present
in the code.

We provide the results of this interactive study in
Table 10. We used the same three single and 3-bug
questions for all students, leading to 30 human
student interactions in total. We also conducted a
post-interaction interview with each of the students
and provide an overview of their feedback below:

Socratic questioning helped students learn
programming concepts. The Level 3 student
stated that, "If there was no conversation, I would
be put off from attempting to fix and just try a
bunch of different things based on the errors."
Overall, students of Levels 2-4 (students with no
knowledge of the system) were not able to identify
all the bugs before their interactions, but ended
up solving them independently under the Socratic
guidance of TreeInstruct.

Underlying model had a significant impact on
user experience. Students had a significantly
better experience with TreeInstruct compared
to TreeInstruct . Specifically, the quality of the
Verifier determined whether the questions posed
by the Instructor would be overly repetitive or not.

F.1 Analysis
Table 10 contains the results. We see that from
Level 1 to Level 5, the conversation have fewer
turns, especially in the 3-bug setting. Additionally,
we see that syntactical bugs are harder to solve
for weaker students (on average, a success rate of
86.67%), which is intuitive as these students do not

have a strong foundation in Python syntax. On the
other hand, conceptual bugs are easier to solve (on
average, a 95% success rate). Overall, the results
show that our method can adapt to various levels
of students effectively.

G Model Inference Experimental Setup

G.1 GPT-4 API

For GPT-4, we made use of OpenAI’s GPT-4 API.
Overall, we use temperature sensitivity t = 0 for
all generation tasks, except for t = 0.1 for state
space estimation and t = 0.3 for instructor question
generation. Using $30 / 1M input tokens and $60 /
1M output tokens, we break down the cost for each
method. TreeInstruct uses an average of 35,000
input tokens and 4,000 output tokens, which adds
up to $1.29 per conversation. BRIDGE uses an
average of 18,000 input and 5,500 output tokens,
which adds up to $0.87 per conversation. Vanilla
uses an average of 31,000 output and 2,200 output
tokens, which adds up to $1.06 per conversation.

G.2 Mistral and Llama

We run the Mistral-7B-Instruct-0.2 and Llama mod-
els locally on 2 NVIDIA-RTX A6000 GPUs. For
one pass on a dataset (i.e., 150 problems/conversa-
tions), TreeInstruct takes approximately 4 hours.

G.3 Runtime Comparison

We present the per-turn runtime for TreeInstruct
(TI) across all multi-bug settings in Table 11.
Llama was run on 1 NVIDIA Tesla V100 32GB,
and OpenAI’s GPT-4 API was used for serverless
inference. While the table indicates that Llama
takes approximately 1 min per turn, this is due to

9489

a hardware bottleneck. With better hardware, TI-
Llama should be able to run much faster to provide
close to real-time tutoring. This is indicated by
TI-GPT4 taking approximately 7 seconds per turn.

Table 11: Average runtime (in seconds) TreeInstruct
takes for each turn, for each setting.

Setting Llama-3-8B GPT-4

1-bug 56.27 7.09
2-bug 65.69 7.77
3-bug 61.22 7.65

H License

All the datasets used in this work, including our
own, are under the Apache 2.0 License. Our use
of existing artifact(s) is consistent with their in-
tended use, specifically for the Socratic Debugging
benchmark and in general, programming practice
and feedback for the problems used in the MULTI-
DEBUG dataset.

I Prompts

A few of the prompts use one-shot learning, and the
fields are prefixed with "example". These examples
are hand chosen, with no criteria in mind. The
example problem relates to a solution that outputs
the Fibonacci sequence of length n, where n is the
input. We provide the specific prompts starting
from the next page.

9490

You are an Instructor helping a Student debug their code to solve the following problem statement
(after tag ’problem’). You have access to their buggy code (after tag ’bug_code’). Do not ask questions
that explicitly or implicitly mention the following:

Table 12: Instructor agent persona prompt

You are a Student writing code to solve the above problem statement (after tag ’problem’), and you
have written the below buggy code (after tag ’buggy_code’). You are seeking help from your Instructor
help solve your ’buggy_code’. Your role is to answer the questions that the Instructor asks you as if
you were an introductory programmer with a beginner’s level of coding knowledge.

Table 13: Student agent persona prompt

You are an assistant to the Instructor helping a Student debug their code to solve the following problem
statement (after tag ’problem’). Your role is to determine the Student’s understanding (or lack thereof)
within the Instructor-Student interactions. You have access to the correct code (after tag ’correct_code’).
Assume the Student is a introductory programmer with a beginner’s level of coding knowledge.

Table 14: Verifier agent persona prompt

Given the student’s buggy code (after tag ’buggy_code’), bug description (after tag ’bug_description’),
bug fixes (after tag ’bug_fixes’), and the correct code (after tag ’correct_code’) for solving the problem
statement (after tag ’problem’), we define the state representation of a set of Instructor-Student
interactions as a series of necessary tasks which lead the Student from their ’buggy_code’, with
bugs described in ’bug_description’, to understanding and correcting their conceptual and syntactical
mistakes to reach ’correct_code’ with the ’bug_fixes’.

We define a state representation as a list of state attributes, where each attribute denotes a specific task
that is NECESSARY for the student to successfully understand and implement the given problem.
A NECESSARY task directly addresses at least one of the ’bug_description’s and thus, is NOT
ALREADY ADDRESSED in ’buggy_code’. In other words, if a task is not successfully completed,
the Student will never be able to correct their ’buggy_code’ to ’correct_code’.

If the student’s ’buggy_code’ shows that they have already understood and implemented a specific task,
DO NOT INCLUDE that task as a state attribute since it is REDUNDANT.

The list should be ordered, with earlier attributes/tasks given priority over later ones (e.g., conceptual
understanding tasks are a pre-requisite and thus more important than syntactical tasks). The following
is an example of the state representation for the given example problem statement: example problem:
Implement a Fibonacci sequence using recursion.
—
In-context example from Table 16
—
In the above example format (’example_explanation’ and ’example_state_representation’), output an
’explanation’ for your plan on which state_attributes to output and the ’state_representation’ with all
NECESSARY ’state_attribute’s for the following ’problem’ statement based on ’correct_code’, the
Student’s ’buggy_code’, the ’bug_description’s, and its respective ’bug_fixes’:

Table 15: Internal Verifier prompt to estimate the state space representation; corresponds to the GenerateState()
method in line 1 of Alg 1.

9491

Input:
example_problem:
Implement a fibonacci sequence using recursion.

example_buggy_code:
def Fibonacci(n): if n <= 0: print("Incorrect input") elif n == 1: return 1 else: return Fibonacci(n-1)

example_bug_description:
On line 7, the function only recursively calls ‘Fibonacci(n-1)‘, which will then only return ‘1‘ from the
edge case on line 5. Instead, the function should consider that the nth term of the Fibonacci sequence
is computed as the sum of the preceding n-1 and n-2 values.

example_bug_fixes:
Replace ‘return Fibonacci(n-1)‘ with ‘return Fibonacci(n-1) + Fibonacci(n-2)‘ on line 7.

example_correct_code:
def Fibonacci(n): if n <= 0: print("Incorrect input") elif n == 1: return 1 else: return Fibonacci(n-1) +
Fibonacci(n-2)

Output:
example_explanation: Based on the ’bug_description’, the bug involves an incorrect recursive call,
which indicates that the Student does not understand that the Fibonacci sequence requires taking the
sum of the preceding two terms for getting the current value. An example where ‘n‘ is equal to ‘2‘
points this mistake out. Finally, based on the ’bug_fixes’, the Student must modify the recursive call to
add ‘Fibonacci(n-2)‘ in order to reach the ‘correct_code‘ state.

example_state_representation:
state_attribute_1: Understand the definition of the Fibonnaci Sequence.
state_attribute_2: Consider the preceding two items in the sequence for computing the current value in
the Fibonacci Sequence.
state_attribute_3: Consider the example when ‘n‘ is equal to ‘2‘.
state_attribute_4: Correctly recursively call ‘Fibonacci(n-2)‘ and add it to the existing ‘Fibonacci(n-1)‘.

Table 16: In context example for Table 15

9492

The Student has written code (after tag ’student_code’) to solve the problem (after tag ’problem’) and
is answering a question (after tag ’Student’) from the Instructor (after tag ’Instructor’) based on their
understanding of the ’problem’ and their ’student_code’. IF the Student suggests a solution to a bug
they identify, also consider the following:

Ensure that the Student’s suggestion is isomorphic to any one of the bug fixes mentioned in the provided
’bug_fixes’; if not, then ’answer_has_no_mistakes’ should be "False". A Student’s suggestion is isomor-
phic to a bug fix if they (1) have the same conclusion or output, (2) share the same underlying logical
structure or pattern, and (3) are convertible to each other through a series of logical transformations.

Answer the following questions and within your reasoning, think about how you would answer the
"instructor_question" yourself and include this in your "explanation".: answer_addresses_question:
<Does the Student’s response (after tag ’Student’) directly answer the Instructor’s question (after tag
’Instructor’)? Output "True or "False"> answer_has_no_mistakes: <Is the Student’s response (after tag
’Student’) to the Instructor’s question (after tag ’Instructor’) logical (no logical errors or mistakes)?
Output "True or "False">

Instructor: {Instructor question}
Student: {Student response}
bug_fixes: {bug fixes}
student_code: {student code}

Table 17: Internal Verifier prompt to assess the accuracy of the Student response with respect to the Instructor’s
question; corresponds to the VerifyResponse() method in line 6 of Alg 1.

A Student has sufficient understanding of a certain topic (specified at tag "target_understanding")
when the responses that they provide to the Instructor (specified in the "conversation_history") would
REQUIRE them to comprehend "target_understanding". This can either be demonstrated (1) explicitly,
where the Student directly mentions "target_understanding", OR (2) implicitly, where their reasoning
is isomorphic to completing the task in "target_understanding". A Student’s reasoning is isomorphic
to the "target_understanding" if they (1) have the same conclusion or output, (2) share the same
underlying logical structure or pattern, and (3) are convertible to each other through a series of logical
transformations.

Based on the Student’s response (after tag ’student_response’) to the Instructor’s question (after tag
’instructor_question’) and the conversation history (after tag ’conversation_history’), do you believe
that the Student needed to sufficiently comprehend the "target_understanding" in order to provide
their responses (after tag ’Student’ in ’conversation_history’) to the Instructor’s questions (after tag
’Instructor’ in ’conversation_history’) throughout the conversation history? Include specific quotes
from the "conversation_history" in your "explanation". Within your reasoning, think about how you
would answer the "instructor_question" yourself and include this in your "explanation".

Instructor: {Instructor question}
Student: {Student response}
target_understanding: {target understanding}

Table 18: Internal Verifier prompt to update the state space with respect to a single-turn Instructor-Student interaction;
corresponds to the UpdateUnderstanding() method in line 12 of Alg 1.

9493

Are any bug fixes mentioned in the conversation that you have had with the Instructor (under tag
"conversation_history")? If no, return "None". If yes, then follow the format below:

First, based on your current understanding of the problem (tag "problem") and your conversation with
the Instructor, summarize (after tag "bug_summarization") the bugs in the code explicitly mentioned
within the "conversation_history" that you believe will revise your buggy code (after tag "buggy_code")
to a correct implementation of the "problem" statement. Then, based on this summary, output a list of
the explicitly mentioned bug fixes (from "bug_fix_1" to "bug_fix_n", where n is the number of bug
fixes to make), each described briefly.

An example format/wording of a brief bug fix would be: "Replace ‘i‘ with ‘i+1‘ on line 6."

conversation history: {convo history}

Table 19: Instructor to Student prompt that asks the Student to generate a list of bug fixes; corresponds to the
GetStudentBugFixes() method in line 17 of Alg 1.

For the problem description given above (after tag ’problem’), you are given two sets of bug fixes
(under tags ’suggested_bug_fixes’ and ’correct_bug_fixes’). For each bug fix in ’correct_bug_fixes’, is
there at least one bug fix in ’suggested_bug_fixes’ that is isomorphic? Two bug fixes are isomorphic if
they (1) have the same conclusion or output, (2) share the same underlying logical structure or pattern,
and (3) are convertible to each other through a series of logical transformations. Output "True" or
"False" as your answer with an explanation.

suggested bug fixes: {student_bf}

correct bug fixes: {correct_bf}

Table 20: Internal Verifier prompt check if the Student has suggested all the correct bug fixes that are present in the
ground truth set of bug fixes, corresponds to isResolved() in line 4 of Alg. 1.

Based on the student’s current level of understanding, as demonstrated through their conversation
history (tag "conversation_history"), what is 1 follow-up question with the same level of depth and
difficulty RELATIVE to the ’previous_questions’ that you could ask based on the Student’s explanation
that would help them reach the "target_understanding"? Make sure that the question addresses the
reasons why the Student got the previous question(s) wrong, as detailed in tag "misunderstanding",
such that the Student is more likely to resolve these misunderstandings. You must generate a question
such that any correct answer to your question should automatically reflect the "target_understanding"
and resolve the "misunderstanding".

target_understanding: {target}
conversation_history: {conversation history}
previous_questions: {previous questions}
previous_misunderstanding: {explanations}
These questions should help the Student arrive at the answer themselves; do NOT give any direct hints
towards the solution (under tag "bug_fixes" and tag "bug_description").
bug_fixes: {bug fixes}
bug_descriptions: {bug descriptions}

Table 21: Internal Instructor prompt to generate a sibling question; corresponds to the GenerateSiblingQuestion()
method in line 10 of Alg 1.

9494

Based on the student’s current level of understanding, as demonstrated through their conversation
history (tag "conversation_history"), what is 1 follow-up question with increasing depth and difficulty
RELATIVE to the ’previous_questions’ that you could ask based on the Student’s explanation that
would help them reach the "target_understanding"? Make sure that the question addresses the reasons
why the Student has not reached the "target_understanding", as detailed in tag "misunderstanding",
such that the Student is more likely to resolve these "misunderstanding"s by answering your question.

target_understanding: {target}
conversation_history: {conversation history}
previous_questions: {previous questions}
previous_misunderstanding: {explanations}
These questions should help the Student arrive at the answer themselves; do NOT give any direct hints
towards the solution (under tag "bug_fixes" and tag "bug_description").

bug_fixes: {bug fixes}
bug_descriptions: {bug descriptions}

Table 22: Internal Instructor prompt to generate a child question; corresponds to the GenerateChildQuestion()
method in line 14 of Alg 1.

Based on the buggy code and the target understanding state (under tag "target_understanding"), what is
one question (k=1) that you could ask that would help the Student reach the "target_understanding"?
These questions should help the Student arrive at the answer themselves; do NOT give any direct hints
towards the solution (after tag ’bug_fixes’).

These questions should help the Student arrive at the answer themselves; do NOT give any direct hints
towards the solution (under tag "bug_fixes" and tag "bug_description").

target_understanding: {target}
bug_fixes: {bug fixes}
bug_descriptions: {bug descriptions}

Table 23: Internal Instructor prompt to generate the initial question; corresponds to the GenerateQuestion() method
in line 3 of Alg 1.

9495

