
Findings of the Association for Computational Linguistics: EACL 2024, pages 9609–9619
November 12-16, 2024 ©2024 Association for Computational Linguistics

Enhancing Tool Retrieval with Iterative Feedback from
Large Language Models

Qiancheng Xu, Yongqi Li†, Heming Xia, Wenjie Li
Department of Computing, The Hong Kong Polytechnic University, China

{qiancheng.xu, he-ming.xia}@connect.polyu.hk
liyongqi0@gmail.com cswjli@comp.polyu.edu.hk

Abstract

Tool learning aims to enhance and expand large
language models’ (LLMs) capabilities with ex-
ternal tools, which has gained significant atten-
tion recently. Current methods have shown that
LLMs can effectively handle a certain amount
of tools through in-context learning or fine-
tuning. However, in real-world scenarios, the
number of tools is typically extensive and ir-
regularly updated, emphasizing the necessity
for a dedicated tool retrieval component. Tool
retrieval is nontrivial due to the following chal-
lenges: 1) complex user instructions and tool
descriptions; 2) misalignment between tool re-
trieval and tool usage models. To address the
above issues, we propose to enhance tool re-
trieval with iterative feedback from the large
language model. Specifically, we prompt the
tool usage model, i.e., the LLM, to provide
feedback for the tool retriever model in multi-
round, which could progressively improve the
tool retriever’s understanding of instructions
and tools and reduce the gap between the two
standalone components. We build a unified
and comprehensive benchmark to evaluate tool
retrieval models. The extensive experiments
indicate that our proposed approach achieves
advanced performance in both in-domain eval-
uation and out-of-domain evaluation1.

1 Introduction

Large language models (LLMs) have demonstrated
remarkable success in language-related tasks and
are considered a potential pathway to achieving arti-
ficial general intelligence (Zhao et al., 2023). How-
ever, despite their powerful capabilities, LLMs are
still limited in many aspects, such as knowledge
update and mathematical reasoning. A promis-
ing way to overcome these limitations is to em-
power LLMs with external tools, known as tool

†Corresponding author.
1Code available at https://github.com/travis-xu/TR-

Feedback.

Large-scale Tool Set

context length exceeded update tool not supported

LLM

Tool1 Tool2 InstructionTooln... +

(a) in-context learning (b) fine-tuning

LLM

Outputs

Instruction

Tool Calling+

Figure 1: Illustration of two tool-learning approaches
in LLMs: (a) in-context learning and (b) fine-tuning.
The challenges posed by the extensive and frequently
updated tools require the external tool retrieval compo-
nent.

learning (Qin et al., 2023; Qu et al., 2024a). Tool
learning not only enhances LLMs’ performance on
existing tasks but also allows them to tackle tasks
that were previously beyond their reach. Besides,
the ability to use tools is a crucial hallmark on the
path to advanced intelligence.

Existing tool learning methods have preliminar-
ily demonstrated that LLMs could effectively uti-
lize specific tools to complete corresponding tasks.
They either leverage LLMs’ in-context learning
ability to facilitate tool usage with tool descrip-
tions (Shen et al., 2023) or fine-tune LLMs to in-
tegrate tool learning capabilities into parameters,
e.g., Toolformer (Schick et al., 2023). However, as
illustrated in Figure 1, existing methods still face
significant challenges in real-world scenarios due
to the following reasons. 1) The number of tools
is usually vast, making it impossible for LLMs to
handle them all with the limited input length of
in-context learning. 2) Tools would frequently and
irregularly update, rendering finetuning-based ap-
proaches costly and impractical. Therefore, a tool
retrieval component, which aims to select appropri-
ate tools from a large-scale tool set, is essential for
LLMs.

Despite the practicality and necessity, tool re-
trieval has been inadequately studied. Some ap-
proaches have adopted traditional document re-

9609

https://github.com/travis-xu/TR-Feedback
https://github.com/travis-xu/TR-Feedback

MS MARCO ToolBench
0

10

20

30

40

50

60
qu

er
y/

in
s l

en
gt

h

MS MARCO ToolBench
0

10

20

30

40

50

60

qu
er

y-
do

c/
in

s-
to

ol
 ra

te
 (%

)

Figure 2: Comparison between the document retrieval
and tool retrieval datasets. Tool retrieval presents more
challenges due to the complex instructions (in the left
figure) and the lower reputation rate (in the right figure).

trieval methods to retrieve tools for LLMs (Li et al.,
2023a; Qin et al., 2024). However, we argue that
they overlook the unique challenges of tool re-
trieval for LLMs: 1) Complex usser instructions
and tool descriptions. As illustrated in Figure 2,
compared with document retrieval, user instruc-
tions are usually ambiguous and complex, and
the reputation rate between instructions and cor-
responding tool descriptions is much lower. Un-
fortunately, the retriever model is typically limited
in its capacities because of the efficiency require-
ments, which makes tool retrieval more difficult
and challenging. 2) Misalignment between tool re-
trieval and tool usage models. Previous approaches
deploy the tool retriever separately from the down-
stream tool-usage model, which hinders the LLM
from knowing which tools are really useful from
the tool-usage perspective. Thus, it will result in
a tool recognition gap between the tool retriever
and tool usage model, degrading the tool-use per-
formance further.

To address the above issues, we propose to en-
hance tool retrieval with iterative feedback. Our
motivation is to utilize the LLM to enhance the
comprehension ability of the tool retriever and
bridge the gap between the two independent mod-
els. At each iteration, we conduct a feedback gen-
eration process by asking the LLM to provide feed-
back step-by-step, conditioned on the user instruc-
tion and retrieved tools from the retriever. The
LLM will first comprehend the instruction and tool
functionalities thoroughly, and then assess the ef-
fectiveness of those retrieved tools. According to
the assessment, the LLM will refine the user in-
struction to improve the tool retrieval process. The
refined instruction will substitute previous user in-
struction and be used to retrieve a new list of tools
from the tool set. In the next iteration, the new
candidate tool list will be fed into the LLM for
a new round of LLMs’ feedback. During this it-

erative process, the tool retriever is expected to
provide more appropriate tools for the tool-usage
model. In this manner, the comprehension capa-
bility and tool preference of LLMs could be pro-
gressively incorporated into the retriever, and thus
the tool retriever’s performance could be continu-
ously enhanced. We build a comprehensive tool
retrieval benchmark, named TR-bench. The bench-
mark takes into account real-world practices with
updated tools, and therefore encompasses both in-
domain and out-of-domain settings. The experi-
mental results show our approach achieves the best
performance among the current methods with both
in-domain and out-of-domain settings.

The key contributions are summarized:

• We identify the importance of tool retrieval
in tool learning and present the distinct chal-
lenges of tool retrieval.

• We propose to enhance tool retrieval with iter-
ative feedback from the LLM. By leveraging
iterative feedback, the tool retriever model
gets continual improvements, ultimately re-
ducing the misalignment between them.

• We build a comprehensive tool retrieval bench-
mark with in-domain and out-of-domain set-
tings, which will also aid future tool retrieval
research. The extensive experiments demon-
strate superior performance of our approach.

2 Related Work

2.1 Tool Learning in LLMs

Tool learning aims to equip LLMs with exter-
nal tools to enhance and expand their capabili-
ties (Ruan et al., 2023; Wang et al., 2024b; Huang
et al., 2024c). Generally, existing tool learning
methods could be categorized into in-context learn-
ing and fine-tuning approaches. The former ap-
proach encourages LLMs to use tools with descrip-
tions, documentation, or demonstrations (Yuan
et al., 2024; Du et al., 2024), while the latter
one trains the parameters of LLMs using specially
created tool-use datasets (Hao et al., 2023; Tang
et al., 2023; Gao et al., 2024). However, no matter
whether the in-context learning or fine-tuning ap-
proach encounters severe challenges in real-world
scenarios, where the candidate tools are extensive
and frequently updated. Therefore, it is crucial
to equip LLMs with a tool retrieval component
to select appropriate tools from a large-scale tool

9610

set. Recent works have proposed a stopgap mea-
sure through traditional document retrieval (Patil
et al., 2023; Qin et al., 2024; Zheng et al., 2024),
task decomposition (Anantha et al., 2023; Huang
et al., 2024b) and graph-based methods (Qu et al.,
2024b). In this work, we aim to develop a method
specialized for enhancing the tool retriever.

2.2 Document Retrieval

Early popular document retrieval methods rely on
sparse retrieval that calculates the relevance of
documents to a query based on the frequency of
query terms in each document, e.g., BM25 (Robert-
son and Zaragoza, 2009). With the development
of language models (Devlin et al., 2019), the
dense retrieval paradigm has gained considerable
attention in the research community (Mitra and
Craswell, 2017; Li et al., 2023b; Zhao et al., 2024;
Li et al., 2024). By encoding queries and docu-
ments into high-dimensional vector representations
and computing their relevance scores through in-
ner product calculations, the paradigm can cap-
ture semantic relationships between queries and
documents, thereby enhancing retrieval perfor-
mance (Karpukhin et al., 2020). However, tool
retrieval presents unique challenges, rendering tra-
ditional document retrieval methods suboptimal.
We address these challenges by harnessing LLMs’
feedback to iteratively refine the tool retrieval pro-
cess.

3 Preliminaries

3.1 Task Definition

Given a user’s instruction, tool retrieval aims to
select a small number of tools, which could aid the
LLM in answering the instruction, from a large-
scale tool set. Formally, we define the user instruc-
tion as q and the tool set as D = {d1, d2, ..., dN},
where di represents the description of each tool and
N is the total number of tools. The retriever model
R needs to measure the relevance R(q, di) between
the instruction q and each tool description di, and
return K tools, denoted as D = {d1, d2, ..., dK}.

3.2 Dense Retriever

Dense retriever usually leverages the encoder-
based LLM to encode the user instruction q and a
tool description d into dense embeddings E(q) and
E(d), respectively. Then, it could measure the rele-
vance between q and d by calculating the similarity

score between these two embeddings, denoted as
R(q, d) = sim(E(q), E(d)).

Dense retriever is trained via the contrast learn-
ing objective, which is designed to minimize the
distance between the instruction embedding and
embeddings of positive tools (the instruction’s
ground-truth tools) while maximizing the distance
between the instruction embedding and embed-
dings of negative tools. The objective can be for-
mulated as follows,

L = − 1

B

B∑

i=1

log
eR(qi,d

+
i)

eR(qi,d
+
i) +

∑
j e

R(qi,d
−
ij))

, (1)

where B denotes the batch size, d+i denotes the
positive tool, and d−ij represents the j-th negative
tool to the instruction qi.

However, due to the efficiency requirements,
dense retrieval utilizes a dual-encoder architecture,
which has limited ability to understand instructions.
In this study, our goal is to improve the tool re-
trieval process with the feedback from the tool-
usage model, i.e., the LLM.

4 Methodology

4.1 Overview
Recent studies have found that LLMs show a great
capability in acting as a critic (Zheng et al., 2023)
and could provide comprehensive feedback to im-
prove performance across a range of tasks (Madaan
et al., 2023; Asai et al., 2024). Inspired by those
observations, we propose an innovative framework
that leverages the LLM’s feedback to improve the
tool retrieval process iteratively. Different from ap-
proaches which focus on feedback from execution
results after tool execution step (Yao et al., 2023;
Wang et al., 2024a), we obtain LLMs’ feedback be-
fore the actual tool execution step, i.e., right after
the tool retrieval step.

As illustrated in Figure 3, at each iteration, the
LLM will provide feedback on the current-turn re-
trieval results. Specifically, the LLM will first com-
prehend the user instruction and tool functionalities
thoroughly. Then, it will assess the effectiveness
of those retrieved tools for handling the instruction.
Based on the assessment, the LLM could provide
a refinement to the retrieval model, refining the
user instruction if necessary. To ensure that the
retriever model is aware of the iteration round, we
conduct an iteration-aware feedback training pro-
cess to adapt the retriever model with continuously
refined user instructions.

9611

Retriever R

Initial Instruction: I need to retrieve the details of my recent order with ID 98765. Could you please provide me
with the information? Also, I would like to check the inventory status to see if the item is still available.

Language Language Model's Feedback

AssessmentComprehension Refinement
Iteration t Tool i-1: Invalid

API

Tool i: Missing
Details

Tool i+1: Invoke
Success

Query Intent
Understanding

Retrieved Tool:
(1) API names
(2) Description
(3) Arguments

Act j-1: Add
detailed info

Act j: Enrich
personality

Act j+1: Rerank
related tools

Refined Instruction: ... ID 98765, including the item name, quantity, and
price. Also, I would like to check the inventory status...

APIAPI:: 'getInventory''getInventory',,

paramsparams:: {{

 format format:: 'json''json',,

}},,

Retrieved Tools

Figure 3: Illustration of our proposed iterative tool retrieval method. At each iteration, the LLM follows a three-step
feedback generation process, which includes comprehension, assessment, and refinement, to improve the instruction.

4.2 Feedback Generation
Assuming at the iteration step t, given the refined
instruction qt, we could utilize retriever model R to
retrieve a list of top-K tools {dt1, ..., dtK}. We then
conduct a three-step feedback generation process
by feeding those retrieved tools and associated tool
descriptions into the LLM as follows.

Comprehension. Firstly, the LLM is prompted
to give comprehension on both the given instruction
and retrieved tools. The prompt provided to LLM
includes two parts: (1) summarize the abstract user
goals by ignoring detailed entity information in the
given instruction; (2) understand the functionalities
of retrieved tools, focusing on the category, name,
description, input and output parameters of given
tools. This step can be formulated as,

FC = LLM(PC , q
t, {dt1, ..., dtK}), (2)

where FC denotes LLM’s comprehension output
and PC denotes the prompt provided to LLM.

Assessment. The LLM will assess the effective-
ness of retrieved tools for handling the instruction
based on its comprehension of the user’s itent and
tool functionalities. The assessment is conducted
from two perspectives: 1) identify which of the
user’s goals could and could not be solved by the
retrieved tools with corresponding reasons; and 2)
analyze whether the ranked order of retrieved tools
corresponds with their significance in addressing
the user’s intent with specific reasons. The step can
be formulated as,

FA = LLM(PA, q
t, {dt1, ..., dtK}, FC), (3)

where FA denotes the LLM’s assessment output.

Refinement. Lastly, the LLM will refine user in-
struction based on its assessment. Specifically, we
ask the LLM to determine whether the refinement
is necessary based on the two following questions:
1) Whether all the user’s goals have been solved by
currently retrieved tools, 2) and whether all existing
appropriate tools are given the highest ranking pri-
orities by the retriever. If one of the answers is not
“yes”, we prompt the LLM to provide a potential
refinement for retrieval improvement. Otherwise,
the LLM will directly return a special token “N/A”
without conducting any refinement.

The feedback from the LLM is finalized made
on the current user instruction qt. Specifically, we
prompt the LLM to generate refined instruction
with enriched information in two dimensions: 1)
more detailed and personalized content about those
user’s intent which have not been solved by current
tools, helping the retriever explore other relevant
tools; (2) more scenario-specific tool-usage infor-
mation about existing appropriate tools, helping
the retriever give higher ranking priority to those
tools. This step can be formulated as,

FR = LLM(PR, q
t−1, {dt−1

1 , ..., dt−1
K }, FA),

(4)
where PR is the corresponding prompt and FR de-
notes LLM’s refinement output, i.e., the new re-
fined instruction qt+1.

4.3 Iteration-Aware Feedback Training
We concatenate a special iteration-aware token “It-
eration t” in front of the instruction, where t is the
instruction’s iteration step (e.g., “Iteration t − 1”
for qt−1 and “Iteration t” for qt).

9612

We also employ the hard negative sampling in
training. Concretely, for each given instruction,
we randomly sample an incorrect tool from the re-
trieved top-K tool list. The high similarity scores
of those tools indicate that they are prone to be mis-
taken as correct tools by the retriever. In feedback
training, we utilize those tool-instruction pairs as
hard negative samples. Then the loss function for
each iteration could be calculated as,

L(q) =

− 1

B

B∑

i=1

log
eR(qi,d

+
i)

eR(qi,d
+
i)+

∑
j ̸=i e

R(qi,d
−
ij))+

∑
eM(qi,d

H
ij)

,

(5)

where B denotes the batch size and dHij denotes
the hard negative sample. By distinguishing the
subtle differences in the tool descriptions, the re-
triever could achieve a deeper understanding of
the tool functionalities and their relation with user
instructions.

Then we conduct joint training on the retriever
model to solve the refined user instructions across
all T iterations. The final training objective could
be formulated as the sum of losses in each iteration
as follows,

Lfeedback =

T∑

t=1

αtL(qt), (6)

where αt is a balancing factor and L(qt) is the loss
function calculated by Equation 5 based on the re-
fined user instructions qt in the tth iteration. In
this way, the LLM’s comprehensive knowledge of
the user requirements could be injected into the
retriever through those refined instructions. Be-
sides, with the aid of iteration-aware tokens and
joint-training manner, the tool retriever could ad-
dress refined instructions in new iterations while
also remembering addressing instructions in previ-
ous iterations, ensuring a continuous capability to
solve user instructions across all iterations.

4.4 Inference

At the time of inference, the feedback generation
process keeps working while the feedback training
process ceased. The retriever will update the candi-
date tool list based on the refined user instruction
from LLM’s feedback iteratively, until output the
final retrieved tools.

Concretely, assume that we have obtained a re-
triever R after the feedback training. For each

scenarios # instructions # tool set

Training
Set

ToolBench-I1 86,643 -
ToolBench-I2 84,270 -
ToolBench-I3 25,044 -
ToolBench-All 195,937 -

In-domain
Evaluation

ToolBench-I1 796 10,439
ToolBench-I2 573 13,142
ToolBench-I3 218 1,605
ToolBench-All 1,587 13,954

Out-of-domain
Evaluation

T-Eval 553 50
UltraTools 1,000 498

Table 1: Statistics of the TR-bench, which is conducted
from ToolBench (Qin et al., 2024), T-Eval (Chen et al.,
2024), and UltraTools (Huang et al., 2024a).

initial test instruction q0test, we add a special to-
ken “Iteration 0” in front of the instruction. Then
we use the trained retriever R to retrieve an ini-
tial tool list D0

test, containing K candidate tools
{d1, d2, ..., dK}. The retrieved D0

test and q0test will
be fed to the LLM for feedback generation, includ-
ing instruction refinement, as discussed in Section
4.2. After obtaining the refined instruction q1test,
we add a token “Iteration 1” to it and then input
it to R for the next-round tool retrieval. Then, we
can get an updated tool list D1

test for a new round
of feedback generation. As such, we could obtain
a final tool list DT

test after T iterations.

5 Experiments

5.1 Setup
Datasets and evaluation. To assess the tool re-
trieval performance of models, we conduct an ex-
periment on tool retrieval benchmark, referred to as
TR-bench, based on three datasets, including Tool-
Bench (Qin et al., 2024), T-Eval (Chen et al., 2024),
and UltraTools (Huang et al., 2024a). To address
real-world requirements, we conduct evaluations in
both in-domain and out-of-domain settings. Specif-
ically, the training set is from ToolBench, while the
test set of ToolBench is employed for in-domain
evaluation, and the test sets from T-Eval and Ultra-
Tools are used for out-of-domain evaluation. The
statistics of TR-bench are summarized in Table 1.

Following ToolBench, we adopt the Normalized
Discounted Cumulative Gain (NDCG) (Järvelin
and Kekäläinen, 2002), an ideal metric for tool re-
trieval to evaluate the quality of retrieved tools.
In our evaluation, we report NDCG@m (m =
1, 3, 5, 10), calculated according to the position of
each golden tool among top-m candidates tools
retrieved by the tool retriever. Thus, the more ac-

9613

Methods SINGLE-TOOL (I1) CATEGORY (I2) COLLECTION (I3) ALL

N@1 N@3 N@5 N@1 N@3 N@5 N@1 N@3 N@5 N@1 N@3 N@5

BM25 18.37 17.97 19.65 11.97 9.85 10.95 25.23 18.95 20.37 15.84 13.98 15.63
Ada Embedding 57.52 54.90 58.83 36.82 28.83 30.68 54.59 42.55 46.83 46.59 41.06 43.95
ToolRetriever 84.20 89.59 89.65 68.24 77.43 77.90 81.65 87.24 87.13 75.73 83.19 83.06
Ours 90.70 90.95 92.47 89.01 85.46 87.10 91.74 87.94 90.20 88.53 87.00 88.83
% improve 7.72% 1.52% 3.15% 30.44% 10.37% 11.81% 12.36% 0.80% 3.52% 16.90% 4.58% 6.95%

Table 2: In-domain evaluation on TR-bench in terms of NDCG@m under scenarios including single-tool (I1),
intra-category multi-tool (I2), intra-collection multi-tool (I3), and the whole data (All). % improve represents the
relative improvement achieved by our method over the previously best tool retrieval method.

Methods T-EVAL ULTRATOOLS

N@1 N@3 N@5 N@10 N@1 N@3 N@5 N@10

BM25 52.12 43.19 45.23 52.91 15.10 14.13 16.03 18.34
Ada Embedding 80.11 69.11 71.95 79.62 31.46 33.75 39.91 46.40
ToolRetriever 82.10 72.03 74.15 80.76 48.20 47.73 53.01 58.93
Ours 84.45 73.31 74.45 80.25 49.30 47.50 54.30 59.92
% improve 2.86% 1.78% 0.40% -0.06% 2.28% -0.48% 2.43% 1.68%

Table 3: Out-of-domain evaluation on TR-bench in terms of NDCG@m under two scenarios, T-Eval (Chen et al.,
2024) and UltraTools (Huang et al., 2024a). % improve represents the relative improvement achieved by our method
over the previously best tool retrieval method.

curately the tool retriever can retrieve correct tools,
the higher the NDCG@m score will be.

Baselines. We compare our method against rep-
resentative retrieval methods. 1) BM25 (Robertson
and Zaragoza, 2009): the classical sparse retrieval
method; 2) Ada Embedding: the closed-sourced
OpenAI’s text-embedding-ada-002 model2; 3)
ToolRetriever (Qin et al., 2024): a dense retrieval
approach specifically finetuned on tool retrieval
datasets.

Implementation details. We employ Sentence-
BERT (Reimers and Gurevych, 2019) to train our
retriever model based on BERT-base (Devlin et al.,
2019). We set the learning rate to 2e−5 with 500
warm-up steps. The batch size in training is set
to 64. We utilize ChatGPT (gpt-3.5-turbo-0125)3

as the LLM for giving feedback. The number of
tool candidates K, the balancing factor α, and the
iteration round T are set to 10, 1, and 3, respec-
tively. We have trained the model several times
to confirm that the improvement is not a result of
random chance and present the mid one. Our ex-
periments were conducted on four NVIDIA A6000
GPUs with 48 GB of memory.

2https://platform.openai.com/docs/guides/
embeddings/embedding-models.

3https://openai.com/index/
introducing-chatgpt-and-whisper-apis/.

5.2 Main Results

In-domain evaluation. The results of the in-
domain evaluation are reported in Table 2. It is
observed that non-finetuned retrieval methods, i.e.,
BM25 and Ada Embedding, perform much worse
than other finetuned methods. This is reasonable
since non-finetuned methods have not been specif-
ically adopted for tool retrieval. While Tool Re-
triever outperforms non-finetuned methods, the
performance is still not satisfying. In compari-
son, our proposed method consistently outperforms
all finetuned and non-finetuned baselines. Signifi-
cantly, our method maintains strong performance in
the intra-category multi-tool (I2) scenario, even as
other methods’ performance declines, demonstrat-
ing the robustness of our proposed method across
different scenarios. The above results prove the
effectiveness of our method in enhancing tool re-
trieval accuracy, particularly in challenging scenar-
ios with multi-tools.

Out-of-domain evaluation. Since the tools are
usually frequently updated in real-world, we fur-
ther test all methods in the out-of-domain setting,
where the training data from ToolBench and the
test data from T-Eval and UltraTools are used. The
experimental results are shown in Table 3. We
could observe that our method significantly outper-
forms other baselines across both scenarios. This
demonstrates that our method not only excels in
in-domain benchmarks but also maintains robust

9614

https://platform.openai.com/docs/guides/embeddings/embedding-models
https://platform.openai.com/docs/guides/embeddings/embedding-models
https://openai.com/index/introducing-chatgpt-and-whisper-apis/
https://openai.com/index/introducing-chatgpt-and-whisper-apis/

Methods N@1 N@3 N@5 N@10

Ours 89.01 85.46 87.10 88.41

w/o warm-up 85.51 81.36 84.47 86.92
w/o hard-negative 86.04 80.41 84.00 85.98
w/o joint 85.38 81.55 83.79 86.20
w/o joint & hard-neg 83.77 77.67 81.21 83.69

Table 4: Ablation study of our method under the intra-
category multi-tool (I2) scenario.

Iteration N@1 N@3 N@5 N@10 Efficiency

1 85.69 80.48 83.94 86.27 6.12s
2 87.78 83.48 86.31 88.26 8.59s
3 89.01 85.46 87.10 88.41 10.30s

Table 5: Analysis on iteration round under the intra-
category multi-tool (I2) scenario. The efficiency is mea-
sured by the time consumption to complete one user
instruction.

performance across varied scenarios, revealing its
generalization ability of tool retrieval.

We further compare the tool usage performance
of our method with ToolRetriever in the I2 scenario.
We adopt ToolLLaMA (Qin et al., 2024) which is
trained on LLM-annotated solution path as the tool
usage model, and use “pass rate” and “win rate” as
evaluation metrics. Our method achieves 75.6% for
pass rate compared to ToolRetriever’s 68.5%, and
65.9% for win rate compared to ToolRetriever’s
60.8%. The results demonstrate the performance
improvement in tool usage, benefiting the entire
tool learning process.

5.3 Ablation Study

We conduct ablation studies to investigate the ef-
ficacy of different components in our methods.
First, we remove the warm-up training by directly
conducting our method on an retriever based on
Sentence-BERT. Then, we analyze the contribu-
tion of hard negative sampling in our method by
removing the hard-to-distinguish samples from the
training. In addition, we assess the efficacy of
joint training in our method, by substituting it
with a loss Lfeedback = L(qt), with respect to
only the refined instructions qt at current iteration
t. Table 4 reports the ablation test performance
(i.e., NDCG@m (m = 1, 3, 5, 10)) under the intra-
category multi-tool instructions (I2) scenario on
ToolBench.

From the results, we can observe that our method
achieves comparably high NDCG scores even with-
out warm-up training, indicating that it does not

Methods N@1 N@3 N@5

ToolRetriever (BERT-based) 68.24 77.43 77.90
Ours (BERT-based) 89.01 85.46 87.10

ToolRetriever (RoBERTa-based) 76.61 69.81 74.99
Ours (RoBERTa-based) 88.13 85.41 86.75

Table 6: Analysis on different base models under the
intra-category multi-tool (I2) scenario.

Embedding Size N@1 N@3 N@5 N@10

300 87.61 83.49 85.20 86.50
512 87.61 82.85 84.67 85.81
768 89.01 85.46 87.10 88.41
1024 88.66 83.91 85.94 87.04
2048 88.74 83.95 85.98 87.43

Table 7: Analysis on embedding sizes under the intra-
category multi-tool (I2) scenario.

heavily rely on prior tool-use knowledge. When
hard negative sampling is removed, the perfor-
mance degradation illustrates that hard negative
sampling could enable the model to discriminate
between similar tool functionalities. Besides, the
model’s performance further declines when joint
training is removed, demonstrating that the model
could balance new and previous knowledge in this
joint-training manner.

5.4 In-depth Analysis

Analysis on iteration round. The iteration round
is an important factor in our method. We conduct
experiments to investigate changes in effectiveness
and efficiency with different iteration round T . The
results are presented in Table 5, and the efficiency
is measured by the cost of time to complete one
user instruction on average.

By analyzing the results in Table 5, we gain
two findings. 1) We could observe a continuous
improvement as the iteration round increases. This
shows that the tool retriever progressively enhances
its performance with the aid of LLMs’ feedback. 2)
In terms of time efficiency, we find that adding one
additional round of refinement takes an average
of 6.12s/instruction, primarily resulting from the
time waiting for LLM’s feedback when calling the
OpenAI API. As the number of iterations increases,
we can see that the extra inference time required
for each instruction decreases. This is due to the
fact that there will be fewer instructions requiring
refinement as retrieval performance improves.

Analysis on base models. We further analyze
the impact of different base models on the perfor-

9615

Retrieved Top-k Tools

Tool 1: Tools, Ephemeral Proxies, Obtain a new datacenter proxy

Tool 2: Tools, Ephemeral Proxies, Extend expiration time of a
datacenter proxy

Tool 3: Data, Proxy-Spider Proxies, /proxies.example.json

Original Instruction

Please assist me in finding the latest versions of Bash.
Additionally, I require a new datacenter proxy with whitelisted
IPs. Can you provide the details of the proxy, including the
host, port, and expiration time? Also, I would like to check
the current service status of the residential proxies.

Refined Instruction

Retrieved Top-k Tools

Please assist me in finding the latest versions of Bash.
Additionally, I require a new datacenter proxy with whitelisted
IPs. Can you provide the details of the proxy, including the
host, port, and expiration time? Also, I would like to check
the current service status of the residential proxies and
obtain information about the total number of available
residential proxies grouped by country.

Tool 1: Tools, Ephemeral Proxies, Obtain a new datacenter proxy

Tool 2: Tools, Ephemeral Proxies, Check status...including the
total number of available residential proxies grouped by country

Tool 3: Tools, Proxy Checker, Retrieve Proxy Information

Refined Instruction

Retrieved Top-k Tools

N/A

Tool 1: Tools, Ephemeral Proxies, Obtain a new datacenter proxy

Tool 2: Tools, Ephemeral Proxies, Check status...including the
total number of available residential proxies grouped by country

Tool 3: Tools, Proxy Checker, Retrieve Proxy Information

Refined Instruction

Retrieved Top-k Tools

Please assist me in finding the latest versions of Bash.
Additionally, I require a new datacenter proxy with whitelisted
IPs. Can you provide the details of the proxy, including the
host, port, and expiration time? Also, I would like to check
the current service status of the residential proxies
and obtain information about the total number of available
residential proxies grouped by country.

Tool 1: Tools, Ephemeral Proxies, Obtain a new datacenter proxy

Tool 2: Tools, Ephemeral Proxies, Check status...including the
total number of available residential proxies grouped by country

Tool 3: Tools, Bash Code Compiler, Bash Versions

Iteration 2

Iteration 1

Iteration 3

Figure 4: Case study on the effect of user instruction refinement through 3 iterations. The original instruction is
revised step-by-step, leading to improved retrieval results.

mance. Specifically, we replace the base model
BERT in our method with another classic language
model, RoBERTa (Liu et al., 2019). The results are
shown in Table 6. As we can see, our method still
achieves significant improvement over the baseline
with the same RoBERTa model. Another observa-
tion is that RoBERTa is more effective in serving
as a base model for the retrieval application, which
benefits from its effective training strategies. The
improvements demonstrate the robustness of our
method with different base models.

Analysis on embedding sizes. Since the re-
triever model R encodes the textual instruction and
tool description into dense vectors, we explore the
impact of the embedding size on retrieval perfor-
mance. as shown in Table 7. From the table, we can
find that larger embedding sizes result in greater
performance improvements compared to smaller
embedding sizes. This is probably due to the fact
that embeddings with larger sizes could accommo-
date more knowledge. However, when the embed-
ding size increases from 768 to 2048, there is a
slight decrease in performance. This suggests that
a specific embedding size is sufficient, and larger
embedding sizes may pose challenges to training.
It is worth noting that larger embedding sizes neces-

sitate higher training costs and increased inference
memory. Therefore, we recommend an optimal
embedding size of 768.

5.5 Case Study
As shown in Figure 4, we conduct case study by
using an example of instruction refinement to take
a closer look at the effect of our method.

In the 1st iteration, we can observe that the re-
fined instruction has included more detailed infor-
mation (i.e., “total number”) about the user’s re-
quirements than the original instruction, enabling
the retriever to identify more appropriate tools (e.g.,
Check residential proxies service status). This re-
veals that the comprehension capabilities of LLMs
could be instilled into the retrieval process through
feedback. In the 2nd iteration, our method further
refines the instruction by omitting irrelevant con-
tent (i.e., “information”) which may mislead the
retriever into retrieving incorrect tools (e.g., Re-
trieve Proxy Information). Another benefit of the
refinement is that some correct tools (e.g., Bash
Code Compiler) will move up in positions of the
top-K rankings, improving the overall retrieval per-
formance. In the 3rd iteration, our method show-
cases great decision-aware capabilities, where the
iterative process could be terminated if no further

9616

refinement is deemed necessary.

6 Conclusion and Future Work

In this study, we concentrate on the crucial tool
retrieval in the tool learning of LLMs. We have
identified the bottleneck in the tool retrieval-usage
pipeline as the limited tool retrieval model. We
propose the unique challenges of the tool retrieval
compared with document retrieval. To improve
the current tool retrieval process, we propose lever-
aging the LLM’s feedback to assess the retrieval
results and provide detailed suggestions for refin-
ing user instructions. In order to integrate the re-
triever model into this iterative process, we imple-
ment iteration-aware feedback training. This will
improve the tool retriever’s capabilities and close
the gap between tool retrieval and usage models.
We conduct the TR-benchmark to comprehensively
evaluate the models’ ability in real-world tool re-
trieval scenarios. Our method demonstrates the best
performance in both in-domain and out-of-domain
settings.

In the future, we aim to improve this work from
the following aspects. 1) Limited by the training
speed, we have applied the offline feedback gen-
eration, where feedback is generated before train-
ing the tool retriever. We will also assess whether
online feedback generation yields further improve-
ments in the future. 2) Furthermore, as the tool
retriever serves the subsequent tool usage model
in tool learning, we intend to conduct further eval-
uations of the tool retriever models based on the
subsequent tool usage results.

Limitations

1) Undoubtedly, our iterative refinement will re-
duce the inference speed of the tool retrieval. The
efficiency issue is inherent in approaches involving
LLMs’ interaction. We have evaluated the effi-
ciency as the number of iterative rounds increases.
Fortunately, we observed that the retrieval model
can achieve a significant performance improvement
after just a single round of LLMs’ feedback com-
pared to without feedback. Furthermore, the perfor-
mance enhancement of the tool retrieval is crucial
for the subsequent tool usage model, ensuring that
the correct tools are retrieved and lays the founda-
tion for all subsequent steps of tool usage. There-
fore, we believe that performance improvement is
worthwhile despite some efficiency loss. We will
also pay more attention to this issue in the future.

2) Similar to document retrieval, the used datasets
in our work also contain “false negative” samples.
For instance, some tools may be capable of han-
dling the user’s instruction but are not labeled as
positive. This can disrupt the training and evalua-
tion of tool retrieval and is a common limitation in
many retrieval scenarios.

Ethics Statement

The datasets used in our experiment are publicly
released and labeled through interaction with hu-
mans in English. In this process, user privacy is
protected, and no personal information is contained
in the dataset. The scientific artifacts that we used
are available for research with permissive licenses.
And the use of these artifacts in this paper is consis-
tent with their intended use. Therefore, we believe
that our research work meets the ethics of the con-
ference.

Acknowledgments

The work described in this paper was sup-
ported by National Natural Science Foundation of
China (62076212), Research Grants Council of
Hong Kong (PolyU/15207821, PolyU/15207122,
PolyU/15213323, and PolyU/15209724), and
PolyU internal grants (ZVQ0).

References
Raviteja Anantha, Bortik Bandyopadhyay, Anirudh

Kashi, Sayantan Mahinder, Andrew W Hill, and
Srinivas Chappidi. 2023. Protip: Progressive
tool retrieval improves planning. arXiv preprint
arXiv:2312.10332.

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil,
and Hannaneh Hajishirzi. 2024. Self-RAG: Learn-
ing to retrieve, generate, and critique through self-
reflection. In The Twelfth International Conference
on Learning Representations.

Zehui Chen, Weihua Du, Wenwei Zhang, Kuikun
Liu, Jiangning Liu, Miao Zheng, Jingming Zhuo,
Songyang Zhang, Dahua Lin, Kai Chen, and Feng
Zhao. 2024. T-eval: Evaluating the tool utilization
capability of large language models step by step.
In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 9510–9529. Association for
Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association

9617

https://openreview.net/forum?id=hSyW5go0v8
https://openreview.net/forum?id=hSyW5go0v8
https://openreview.net/forum?id=hSyW5go0v8

for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186. Association for Computational
Linguistics.

Yu Du, Fangyun Wei, and Hongyang Zhang. 2024.
Anytool: Self-reflective, hierarchical agents for
large-scale API calls. In Forty-first International
Conference on Machine Learning.

Shen Gao, Zhengliang Shi, Minghang Zhu, Bowen Fang,
Xin Xin, Pengjie Ren, Zhumin Chen, Jun Ma, and
Zhaochun Ren. 2024. Confucius: Iterative tool learn-
ing from introspection feedback by easy-to-difficult
curriculum. In Proceedings of the AAAI Conference
on Artificial Intelligence, pages 18030–18038.

Shibo Hao, Tianyang Liu, Zhen Wang, and Zhit-
ing Hu. 2023. Toolkengpt: Augmenting frozen
language models with massive tools via tool em-
beddings. In Advances in Neural Information
Processing Systems, volume 36, pages 45870–45894.
Curran Associates, Inc.

Shijue Huang, Wanjun Zhong, Jianqiao Lu, Qi Zhu, Ji-
ahui Gao, Weiwen Liu, Yutai Hou, Xingshan Zeng,
Yasheng Wang, Lifeng Shang, Xin Jiang, Ruifeng
Xu, and Qun Liu. 2024a. Planning, creation, usage:
Benchmarking LLMs for comprehensive tool utiliza-
tion in real-world complex scenarios. In Findings of
the Association for Computational Linguistics ACL
2024, pages 4363–4400. Association for Computa-
tional Linguistics.

Tenghao Huang, Dongwon Jung, Vaibhav Kumar, Mo-
hammad Kachuee, Xiang Li, Puyang Xu, and Muhao
Chen. 2024b. Planning and editing what you re-
trieve for enhanced tool learning. In Findings of the
Association for Computational Linguistics: NAACL
2024, pages 975–988. Association for Computational
Linguistics.

Yue Huang, Jiawen Shi, Yuan Li, Chenrui Fan, Siyuan
Wu, Qihui Zhang, Yixin Liu, Pan Zhou, Yao Wan,
Neil Zhenqiang Gong, and Lichao Sun. 2024c. Meta-
tool benchmark for large language models: Decid-
ing whether to use tools and which to use. In
The Twelfth International Conference on Learning
Representations.

Kalervo Järvelin and Jaana Kekäläinen. 2002. Cu-
mulated gain-based evaluation of ir techniques.
ACM Transactions on Information Systems,
20(4):422–446.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6769–6781.
Association for Computational Linguistics.

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song,
Hangyu Li, Haiyang Yu, Zhoujun Li, Fei Huang,

and Yongbin Li. 2023a. API-bank: A compre-
hensive benchmark for tool-augmented LLMs. In
Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, pages
3102–3116. Association for Computational Linguis-
tics.

Yongqi Li, Wenjie Wang, Leigang Qu, Liqiang Nie,
Wenjie Li, and Tat-Seng Chua. 2024. Generative
cross-modal retrieval: Memorizing images in mul-
timodal language models for retrieval and beyond.
In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 11851–11861. Association
for Computational Linguistics.

Yongqi Li, Nan Yang, Liang Wang, Furu Wei, and
Wenjie Li. 2023b. Generative retrieval for conversa-
tional question answering. Information Processing
and Management, 60(5):103475.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
Shashank Gupta, Bodhisattwa Prasad Majumder,
Katherine Hermann, Sean Welleck, Amir Yazdan-
bakhsh, and Peter Clark. 2023. Self-refine: Itera-
tive refinement with self-feedback. In Advances in
Neural Information Processing Systems, volume 36,
pages 46534–46594. Curran Associates, Inc.

Bhaskar Mitra and Nick Craswell. 2017. Neural
models for information retrieval. arXiv preprint
arXiv:1705.01509.

Shishir G Patil, Tianjun Zhang, Xin Wang, and
Joseph E Gonzalez. 2023. Gorilla: Large language
model connected with massive apis. arXiv preprint
arXiv:2305.15334.

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen,
Ning Ding, Ganqu Cui, Zheni Zeng, Yufei Huang,
Chaojun Xiao, Chi Han, et al. 2023. Tool
learning with foundation models. arXiv preprint
arXiv:2304.08354.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian,
Ruobing Xie, Jie Zhou, Mark Gerstein, dahai li,
Zhiyuan Liu, and Maosong Sun. 2024. ToolLLM:
Facilitating large language models to master 16000+
real-world APIs. In The Twelfth International
Conference on Learning Representations.

Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai,
Shuaiqiang Wang, Dawei Yin, Jun Xu, and Ji-Rong
Wen. 2024a. Tool learning with large language mod-
els: A survey. arXiv preprint arXiv:2405.17935.

9618

Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai,
Shuaiqiang Wang, Dawei Yin, Jun Xu, and Ji-Rong
Wen. 2024b. Towards completeness-oriented tool re-
trieval for large language models. In Proceedings
of the 33rd ACM International Conference on
Information and Knowledge Management.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP),
pages 3982–3992. Association for Computational
Linguistics.

Stephen Robertson and Hugo Zaragoza. 2009. The prob-
abilistic relevance framework: Bm25 and beyond.
Foundations and Trends in Information Retrieval,
3(4):333–389.

Jingqing Ruan, Yihong Chen, Bin Zhang, Zhiwei Xu,
Tianpeng Bao, Hangyu Mao, Ziyue Li, Xingyu Zeng,
Rui Zhao, et al. 2023. Tptu: Task planning and
tool usage of large language model-based ai agents.
In NeurIPS 2023 Foundation Models for Decision
Making Workshop.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta
Raileanu, Maria Lomeli, Eric Hambro, Luke Zettle-
moyer, Nicola Cancedda, and Thomas Scialom. 2023.
Toolformer: Language models can teach themselves
to use tools. In Advances in Neural Information
Processing Systems, volume 36, pages 68539–68551.
Curran Associates, Inc.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li,
Weiming Lu, and Yueting Zhuang. 2023. Hugging-
gpt: Solving ai tasks with chatgpt and its friends
in hugging face. In Advances in Neural Information
Processing Systems, volume 36, pages 38154–38180.
Curran Associates, Inc.

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei Han,
Qiao Liang, and Le Sun. 2023. Toolalpaca: Gener-
alized tool learning for language models with 3000
simulated cases. arXiv preprint arXiv:2306.05301.

Boshi Wang, Hao Fang, Jason Eisner, Benjamin
Van Durme, and Yu Su. 2024a. LLMs in the imag-
inarium: Tool learning through simulated trial and
error. In Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 10583–10604. As-
sociation for Computational Linguistics.

Xingyao Wang, Zihan Wang, Jiateng Liu, Yangyi Chen,
Lifan Yuan, Hao Peng, and Heng Ji. 2024b. MINT:
Evaluating LLMs in multi-turn interaction with tools
and language feedback. In The Twelfth International
Conference on Learning Representations.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2023.
ReAct: Synergizing reasoning and acting in language
models. In International Conference on Learning
Representations (ICLR).

Siyu Yuan, Kaitao Song, Jiangjie Chen, Xu Tan,
Yongliang Shen, Kan Ren, Dongsheng Li, and De-
qing Yang. 2024. EASYTOOL: Enhancing LLM-
based agents with concise tool instruction. In ICLR
2024 Workshop on Large Language Model (LLM)
Agents.

Wayne Xin Zhao, Jing Liu, Ruiyang Ren, and Ji-Rong
Wen. 2024. Dense text retrieval based on pretrained
language models: A survey. ACM Transactions on
Information Systems, 42(4):1–60.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, et al. 2023. A
survey of large language models. arXiv preprint
arXiv:2303.18223.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang,
Joseph E Gonzalez, and Ion Stoica. 2023. Judg-
ing llm-as-a-judge with mt-bench and chatbot arena.
In Advances in Neural Information Processing
Systems, volume 36, pages 46595–46623. Curran
Associates, Inc.

Yuanhang Zheng, Peng Li, Wei Liu, Yang Liu,
Jian Luan, and Bin Wang. 2024. ToolR-
erank: Adaptive and hierarchy-aware reranking
for tool retrieval. In Proceedings of the 2024
Joint International Conference on Computational
Linguistics, Language Resources and Evaluation
(LREC-COLING 2024), pages 16263–16273. ELRA
and ICCL.

9619

