@inproceedings{piryani-etal-2024-detecting,
title = "Detecting Temporal Ambiguity in Questions",
author = "Piryani, Bhawna and
Abdallah, Abdelrahman and
Mozafari, Jamshid and
Jatowt, Adam",
editor = "Al-Onaizan, Yaser and
Bansal, Mohit and
Chen, Yun-Nung",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2024",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-emnlp.562/",
doi = "10.18653/v1/2024.findings-emnlp.562",
pages = "9620--9634",
abstract = "Detecting and answering ambiguous questions has been a challenging task in open-domain question answering. Ambiguous questions have different answers depending on their interpretation and can take diverse forms. Temporally ambiguous questions are one of the most common types of such questions. In this paper, we introduce TEMPAMBIQA, a manually annotated temporally ambiguous QA dataset consisting of 8,162 open-domain questions derived from existing datasets. Our annotations focus on capturing temporal ambiguity to study the task of detecting temporally ambiguous questions. We propose a novel approach by using diverse search strategies based on disambiguate versions of the questions. We also introduce and test non-search, competitive baselines for detecting temporal ambiguity using zero-shot and few-shot approaches."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="piryani-etal-2024-detecting">
<titleInfo>
<title>Detecting Temporal Ambiguity in Questions</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bhawna</namePart>
<namePart type="family">Piryani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Abdelrahman</namePart>
<namePart type="family">Abdallah</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jamshid</namePart>
<namePart type="family">Mozafari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Adam</namePart>
<namePart type="family">Jatowt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yaser</namePart>
<namePart type="family">Al-Onaizan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohit</namePart>
<namePart type="family">Bansal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yun-Nung</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Detecting and answering ambiguous questions has been a challenging task in open-domain question answering. Ambiguous questions have different answers depending on their interpretation and can take diverse forms. Temporally ambiguous questions are one of the most common types of such questions. In this paper, we introduce TEMPAMBIQA, a manually annotated temporally ambiguous QA dataset consisting of 8,162 open-domain questions derived from existing datasets. Our annotations focus on capturing temporal ambiguity to study the task of detecting temporally ambiguous questions. We propose a novel approach by using diverse search strategies based on disambiguate versions of the questions. We also introduce and test non-search, competitive baselines for detecting temporal ambiguity using zero-shot and few-shot approaches.</abstract>
<identifier type="citekey">piryani-etal-2024-detecting</identifier>
<identifier type="doi">10.18653/v1/2024.findings-emnlp.562</identifier>
<location>
<url>https://aclanthology.org/2024.findings-emnlp.562/</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>9620</start>
<end>9634</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Detecting Temporal Ambiguity in Questions
%A Piryani, Bhawna
%A Abdallah, Abdelrahman
%A Mozafari, Jamshid
%A Jatowt, Adam
%Y Al-Onaizan, Yaser
%Y Bansal, Mohit
%Y Chen, Yun-Nung
%S Findings of the Association for Computational Linguistics: EMNLP 2024
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F piryani-etal-2024-detecting
%X Detecting and answering ambiguous questions has been a challenging task in open-domain question answering. Ambiguous questions have different answers depending on their interpretation and can take diverse forms. Temporally ambiguous questions are one of the most common types of such questions. In this paper, we introduce TEMPAMBIQA, a manually annotated temporally ambiguous QA dataset consisting of 8,162 open-domain questions derived from existing datasets. Our annotations focus on capturing temporal ambiguity to study the task of detecting temporally ambiguous questions. We propose a novel approach by using diverse search strategies based on disambiguate versions of the questions. We also introduce and test non-search, competitive baselines for detecting temporal ambiguity using zero-shot and few-shot approaches.
%R 10.18653/v1/2024.findings-emnlp.562
%U https://aclanthology.org/2024.findings-emnlp.562/
%U https://doi.org/10.18653/v1/2024.findings-emnlp.562
%P 9620-9634
Markdown (Informal)
[Detecting Temporal Ambiguity in Questions](https://aclanthology.org/2024.findings-emnlp.562/) (Piryani et al., Findings 2024)
ACL
- Bhawna Piryani, Abdelrahman Abdallah, Jamshid Mozafari, and Adam Jatowt. 2024. Detecting Temporal Ambiguity in Questions. In Findings of the Association for Computational Linguistics: EMNLP 2024, pages 9620–9634, Miami, Florida, USA. Association for Computational Linguistics.