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Abstract

Recent advancements in Natural Language
Processing (NLP) have impacted numerous
sub-fields such as natural language generation,
natural language inference, question answering,
and more. However, in the field of question
generation, the creation of distractors for
multiple-choice questions (MCQ) remains a
challenging task. In this work, we present
a simple, generic framework for distractor
generation using readily available Pre-trained
Language Models (PLMs). Unlike previous
methods, our framework relies solely on
pre-trained language models and does not
require additional training on specific datasets.
Building upon previous research, we introduce
a two-stage framework consisting of candidate
generation and candidate selection. Our
proposed distractor generation framework
outperforms previous methods without the
need for training or fine-tuning. Human
evaluations confirm that our approach produces
more effective and engaging distractors. The
related codebase is publicly available at
https://github.com/obss/disgem.

1 Introduction

Multiple-choice cloze tests are a prevalent form
of assessment that not only evaluates a student’s
reading comprehension but also challenges their
ability to deduce the most fitting option from
a set of alternatives. Rooted in the concept of
the traditional cloze test, where specific words
are omitted from a passage and students are
required to fill in the blanks with appropriate terms,
the multiple-choice variant enhances the testing
methodology by presenting a selection of potential
options for each blank. This approach adds an
element of complexity, requiring students to not
only comprehend the context but also discern the
most contextually appropriate answer among the

*Equal contribution.

Stem If you are grateful, you naturally _____
yourself up to receive all kinds of blessings
and good things in life.

Options

A. open
B. make
C. stand
D. take

→ Answer
→ Distractor
→ Distractor
→ Distractor

Table 1: A Cloze Test Example from CLOTH Dataset:
The challenge of multiple-choice cloze test generation
pertains to the creation of both plausible and reliable
distractors.

provided choices. Central to the construction of
multiple-choice cloze tests are the distractors –
options deliberately crafted to divert students away
from the correct answer. The creation of these
distractors involves a careful balance of linguistic
nuances while also appearing plausible enough to
challenge the analytical skills of test-takers. In the
realm of education, these tests serve as valuable
tools for educators to gauge students’ reading
comprehension, critical thinking, and inference
abilities, offering a holistic assessment of their
grasp on the subject matter. We provided an
example of a multiple-choice cloze style question
in Table 1 from the CLOTH dataset (Xie et al.,
2018).

Convincing distractor generation for short-form
extractive multiple-choice questions (MCQ) in
NLP remains an active research area, offering
potential applications in educational assessments
and question-generation tasks (Agarwal and
Mannem, 2011). This paper presents a
novel approach to generating distractors by
leveraging the capabilities of Pre-trained Language
Models (PLMs), specifically, those based on
the Transformer architecture (Vaswani et al.,
2017). Our proposed technique aims to generate
distractors that closely resemble correct answers
while maintaining semantic dissimilarity, all while
utilizing publicly available pre-existing models like
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BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019).

Unlike prior approaches that rely on parts-of-
speech, recurrence, WordNet, or semantic analysis
(Madri and Meruva, 2023), our approach utilizes
Transformer-based PLMs to generate automated,
diverse, and plausible distractors for short-form
extractive MCQs without the need for additional
model training. We make use of PLMs trained
with the Masked Language Modeling (MLM)
paradigm and Natural Language Inference (NLI),
tasks for which extensive pre-trained models exist
(Devlin et al., 2019; Liu et al., 2019; Dagan et al.,
2005). MLM training allows these models to
comprehend contextual information and generate
coherent text, while NLI helps in maintaining
semantic dissimilarity, creating distractors that
closely mirror correct answers but differ in
meaning.

MLM naturally aligns with distractor generation,
as it draws inspiration from the Cloze task (Taylor,
1953). The Cloze task involves completing a
text with omitted words based on contextual
understanding, paralleling our use of MLM for
distractor generation. By aligning these two
concepts, we leverage MLM’s innate strength in
contextual completion to generate more relevant
and coherent distractors.

Furthermore, we tackle a challenge presented
by Transformer-based PLMs: their limitation in
generating content within pre-existing text. While
these models excel at MLM tasks, they require a
predetermined token count for the masked region,
lacking flexibility in dynamically determining the
length of the generated text. This limitation
poses a challenge since excessively long or short
distractors may adversely impact their plausibility.
To overcome this, we propose a system that allows
for the generation of distractors of variable lengths,
ensuring they remain within an acceptable range.

This study builds on the CDGP framework
(Chiang et al., 2022) by introducing a new n-
gram token generation procedure and refining
the distractor selection method, outlined in
Figure 1. The key contributions of our work
are threefold. Firstly, we demonstrate that our
system can produce a diverse set of distractors
that exhibit similar characteristics to the correct
answers, enhancing the sophistication of short-
form extractive MCQs. Secondly, we emphasize
that our method requires no specific training,
making it easily applicable to various domains

Figure 1: The overall architecture of DisGeM. Pre-
trained Language Model generates candidates, which
are then filtered with two NLI models to ensure
consistency among the correct answer and distractors.

and languages without the need for extensive
data collection. Thirdly, our framework offers a
structured approach that can be readily extended or
modified to accommodate different requirements,
promoting adaptability and scalability. While our
performance on automated metrics is comparable
to the previous work, from the human evaluations
we observe a clear preference toward our
framework.

2 Related Work

Early NLP research focused on automatic
question generation, with particular attention to
Multiple-Choice Questions (MCQs), addressing
the challenge of distractor generation, i.e.
generating plausible distractors alongside correct
answers (CH and Saha, 2020). Traditional methods,
including semantic analysis and ontologies, were
initially employed for distractor generation (Kumar
et al., 2023; Ha and Yaneva, 2018; Faizan and
Lohmann, 2018). Recent approaches leverage
ontologies to select distractors based on semantic
relationships (Ren and Q. Zhu, 2021; Liang et al.,
2018).

Advancements in deep learning introduced end-
to-end frameworks such as Bi-LSTM and sequence-
to-sequence models for distractor generation (Qiu
et al., 2020). Transformer models further improved
distractor generation, with approaches like round-
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trip neural machine translation (Panda et al.,
2022) and one encoder, three decoders architecture
(Maurya and Desarkar, 2020). Transformer fine-
tuning strategies have also been applied (Chiang
et al., 2022; Offerijns et al., 2020; Chung et al.,
2020).

Two noteworthy frameworks emerged, both
featuring a candidate set generator and a
distractor selector (Ren and Q. Zhu, 2021;
Chiang et al., 2022). Ren and Q. Zhu (2021)
integrates knowledge bases, ensuring semantic and
grammatical relatedness, and uses a learning-to-
rank model for distractor selection. Building on
this, Chiang et al. (2022) proposes a pre-trained
language model-based distractor generator that
outperforms the former. However, fine-tuning
limitations and computational costs are noted. In
contrast, our model harnesses pre-trained masked
language models without requiring fine-tuning,
offering a simpler and more practical solution.

3 Methodology

Our approach, building upon the CDGP framework
(Chiang et al., 2022), is a dual-stage procedure:
first, a candidate set generator (CSG) creates
potential options, followed by a distractor selector
(DS) that finalizes the distractor set. See Figure 1
for our framework’s structure. Notably, instead
of requiring a training regimen, our methodology
leverages a pre-trained language model to produce
candidates. In the second stage, these candidates
undergo a meticulous two-step elimination process
to select the final distractors. For a detailed view of
the distractor generation pipeline and the algorithm,
we refer readers to Appendix B.

3.1 Candidate Set Generator (CSG)

The first phase of our framework, the generation
phase, generates distractor candidates using the
source context S and the answer a and a =
[a1||a2||...||ar] with ai being the ith token string of
the answer string a, and [·||·] denotes concatenation
of strings. In this framework, the answer is
assumed to be a span/substring of the given context,
i.e. a ∈ S. To generate candidates we use any PLM
trained with an MLM objective (Devlin et al., 2019;
Liu et al., 2019; Lan et al., 2019; He et al., 2020).
With a chosen model, this phase involves two steps:
first, masking the tokens of the answer a, and
second, generating multiple candidates from these
inputs. This phase corresponds to the distractor

generation stage represented by the blue area in
Figure 1. Although similar to the CSG phase in
the foundational CDGP framework (Chiang et al.,
2022), DisGeM’s CSG exhibits two noteworthy
advantages: (i) it doesn’t require fine-tuning, but
allows it as an option for tailored applications (e.g.,
domain adaptation), and (ii) it can generate multi-
word candidates, in contrast to CDGP’s capacity
limited to single-word candidates.

Unlike CDGP, our CSG is capable of generating
multi-word/token candidates. However, a
challenge arises when attempting to predict
all mask tokens simultaneously. The model
might produce suboptimal results because it lacks
awareness of the best predictions for the nearby
masked tokens. To address this, we patch an
auto-regressive generation strategy and incorporate
decoding techniques such as left-to-right (L2R) and
right-to-left (R2L) decoding (Watanabe and Sumita,
2002). For example, with L2R decoding, tokens
are generated in a left-to-right sequence one-by-
one, so that every other token would be aware of
the surrounding context and conditioned on the
previous generations.

We employ a beam search (Graves, 2012) alike
algorithm in our proposed decoding methods,
we refer to it as the pseudo beam search. We
use the term “pseudo" because we restrict initial
predictions to the n most probable predictions,
instead of spanning the entire vocabulary and for
upcoming token predictions we restrict it to only
top-1 prediction. For initial mask predictions, we
constrain the search space to (k × ms) ≪ |V |
which is much smaller than the entire vocabulary.
For subsequent mask token predictions, we focus
on the most probable outcomes. The source
text S undergoes pre-processing, as detailed in
Equation (1),

S = [t1, t2, ..., a1, a2, ..., ar, ..., tn−1, tn]

S′ = [t1, t2, ...,m1,m2, ...,mr, ..., tn−1, tn]
(1)

where mi = m ∀i = 1, 2, ..., r and
m = <mask> is the mask token. The
generation/decoding strategy is an iterative process,
and pseudo-formally, the generation of a candidate
c given the source S and the answer a is given in
Equation (2),

P (ci|S, a) =




argmax

π
P (m1|S′) if i = 1

argmax
π

P (mi|S′′) otherwise
(2)
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where π denotes the probability distribution over
the vocabulary, and S′′ is S′ where mj is replaced
by cj at each step, i.e. mj := cj ∀j < i. Note that
cj<i is the case for L2R decoding.

In the generation phase, we propose two
generation hyper-parameters; dispersion and
nmask (optional). The nmask parameter dictates
the number of mask tokens that replace the
removed answer tokens, in practice we used the
number of answer tokens as nmask by default.
The dispersion parameter aims to enhance the
diversity of generations by defining an interval for
randomizing the number of mask tokens. In the
pre-processing step (masking of the answer) we
take dispersion into consideration and we define
an interval [max(nmask−dispersion, 1), nmask+
dispersion] from which random numbers are
drawn for multiple times. This results in contexts
with varying numbers of replacement mask tokens,
producing potentially multiple input variations.

By unmasking the mask tokens sequentially,
we condition each subsequent token prediction
on previously generated token(s) along with the
context, due to S′′ being updated at each step.
While auto-regressive models generate predictions
sequentially, MLMs are designed to predict each
token simultaneously — a key aspect of their
pretraining objective. In our approach, we adapt
an auto-regressive generation schema for masked
Language Models (LM). This ensures that each
generation is conditioned on previously generated
context, leading to more natural and semantically
coherent outputs. Upon multiple generations from
multiple contexts (different mask token sizes),
we rank these generations by their overall score
which is the product of the probabilities along
the generation, the score function is given in
Equation (3).

T =

r∏

i=1

P (mi|S′′) (3)

Ranking all the candidates by Equation (3) is,
however, not viable since the token size r varies
across generations (e.g. one context may use 3
mask tokens and another one may use 4). Applying
the product of probabilities unfairly compares
generations of different token lengths. To address
this, we introduce a heuristic ranking score for
candidates of any length using their probability
scores: Trank = r

√
T , which is a geometric mean

of the probabilities of each token (in a step) along

the generation. We opted for geometric mean as
we have a multiplicative relation and it is more
robust to outliers. In practice, we also performed
experiments with harmonic mean, and harmonic
mean, alternatively, can also be used in place
of a geometric mean. The generation results by
both averaging techniques are given in Table 2.
The observations reveal slight differences between
the averaging techniques. The final ranking of
generated candidates is determined by Trank with
higher values indicating better candidates.

3.2 Generation Strategies

In the candidate generation step, we introduced
the L2R and R2L decoding/generation strategies
(Watanabe and Sumita, 2002). Utilizing different
decoding strategies enables the diversification of
the candidate set outputs.

While these strategies are intuitive choices for
generations, we recognize the potential for further
generation strategies. Masked LMs consider
the entire context during the generation phase,
encompassing both the left and right surrounding
contexts of the mask tokens. Building on this,
we introduce the cocktail shaker decoding (CTL)
strategy, inspired by the cocktail shaker sort (Knuth
et al., 1973)). Notably, the CTL decoding strategy
differs from the bidirectional decoding strategy
proposed in (Watanabe and Sumita, 2002). In
particular, CTL alternates decoding the mask
tokens with L2R and R2L step-by-step, rather than
decoding L2R until the midway ⌈m2 ⌉ and R2L until
the midway ⌊m2 ⌋ in reverse. For the detailed view,
we refer readers to Appendix B.

We also provided qualitative examples of
generations from a SQuAD (Rajpurkar et al.,
2016) sample, showcasing different decoding
strategies in Table 2. It can be easily seen that
the differences between the decoding strategies
are more significant compared to the averaging
techniques.

3.3 Distractor Selector (DS)

After receiving the outputs from CSG, the pipeline
proceeds with the equally crucial Distractor
Selector (DS) phase. This phase aims to refine the
candidate set by eliminating undesired candidates.
While the CSG phase is adept at generating a
diverse set of candidates, it doesn’t guarantee the
suitability of these candidates as true distractors.
There are primarily two main reasons behind that:
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Passage Tesla was born on 10 July [O.S. 28 June] 1856 into a Serb family in the village of Smiljan, Austrian
Empire (modern-day Croatia). His father, Milutin Tesla, was a Serbian Orthodox priest. Tesla’s mother,
Ðuka Tesla (née Mandić), whose father was also an Orthodox priest,:10 had a talent for making home
craft tools, mechanical appliances, and the ability to memorize Serbian epic poems. Ðuka had never
received a formal education. Nikola his eidetic memory and creative abilities to his mother’s genetics
and influence. Tesla’s progenitors were from western Serbia, near Montenegro.:12

Question Who did Tesla credit for his abilities?
Geometric Mean L2R R2L CTL

1
2
3
4

the family’s wealth
his mother’s education
his own personal experience
his family tradition knowledge

enhance his sense of power
have all his knowledge, power
preserve the Serbian tradition
be a combination of energy

his own ageing, knowledge
his Serb religious upbringing
his own Serbian language skills
the influence of Serbian culture

Harmonic Mean L2R R2L CTL
1
2
3
4

the family’s wealth
his own personal experience
his family tradition knowledge
his mother’s education

enhance his sense of power
have all his knowledge, power
increase both his knowledge
be his sources of knowledge

his Serb religious upbringing
his own ageing, knowledge
his own Serbian language skills
the influence of Serbian culture

Table 2: Outputs from different decoding strategies and different averaging techniques. The answer is marked in
bold font.

• The candidates might mirror the ground truth
answer, either verbatim or in essence. This
overlap will render a question invalid, as
introduces multiple correct answers.

• The candidates themselves might mirror
each other, such as presenting analogous
distractors. While this doesn’t outright
invalidate a question, it undermines the quality
of the distractors as a whole. By assuming
only a single choice is the correct answer,
a respondent can easily deduce duplicate
choices as incorrect.

To address these challenges, our DS employs a
language model fine-tuned on a downstream task
of Natural Language Inference (NLI), sometimes
also referred to as Recognizing Textual Entailment
(RTE) (Dagan et al., 2005)). This approach is
markedly different from the DS in CDGP (Chiang
et al., 2022), which relies on FastText (Bojanowski
et al., 2017) word embedding model. For our
experiments, we used a publicly available BART
model1 (Lewis et al., 2020) fine-tuned on the NLI
task. While this model is a three-way classifier for
entailment, neutral and contradiction, a two-way
NLI model that distinguishes between entailment
and contradiction could also be used.

The elimination process consists of two
steps, directly addressing the two aforementioned
challenges regarding the generated candidates.
This phase is illustrated in Figure 1, highlighted
with a red background.

1https://huggingface.co/geckos/bart-fined-tuned-on-
entailment-classification

For the first step, the aim is to eliminate the
candidates that share identical or similar meanings
with the ground truth answer. To achieve this,
we compare the source context S (containing the
ground truth answer) against the modified context
where the ground truth answer is replaced with
a candidate. Using the chosen NLI model, we
then eliminate any candidate if the model’s output
is entailment. This ensures that only candidates
that either contradict or remain neutral in meaning
compared to the ground truth answer are retained.

The second stage of the elimination process
takes the filtered outputs of the first step as its
starting point. In this phase, our goal is to ensure
diversity among the candidates, eliminating any
that share similar meanings, as this similarity
would be undesirable within the final set of
distractors. To tackle this challenge, we once again
employ the NLI model. However, the difference
this time is that we compare contexts populated
with different candidates against each other. If
the NLI model’s result for any pair of contexts is
entailment, we discard the candidate with the lower
score.

Following the second step of elimination, we are
left with our finalized distractors. It is crucial to
note that the NLI model we employed is trained on
sentences rather than passages. Therefore, the input
is formatted as “ < sentenceA >< sentenceB >
”. To ensure thoroughness, we utilize a two-way
entailment classification in our approach. That is,
we provide the model with permutations of input:
“ < sentenceA >< sentenceB > ” and “ <
sentenceB >< sentenceA > ”. In this setup, an
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entailment is only when both results are entailment.

4 Experiments

We conducted two primary evaluations to assess
our distractor generation method: Instruction-
following Large Language Models (LLMs)
evaluations and human evaluations. For LLM
evaluations, we used SQuAD context/answer pairs
to test different generation hyperparameters and
compared the best to the previous work. For human
evaluations, we used questions from the CLOTH
dataset, comparing gold distractors, our generated
distractors, and those from previous work, and
measured human accuracy and quality ratings.
Additional quantitative results from experiments
on the CLOTH dataset are provided in Appendix
C.

4.1 LLM Evaluations

To evaluate the effectiveness of our distractor
generation method, we used 100 random
context/answer pairs from the SQuAD dataset.
This dataset provides a diverse set of context
passages and corresponding answers, which we
utilized to create question/answer pairs. These
pairs were then used to generate distractors with
our method under different hyperparameter settings
and compared against distractors generated by
previous methods.

The evaluation involved the following steps:

1. Question Selection: We randomly selected
100 pairs from the SQuAD dataset to ensure
a representative sample. Using these pairs,
we created fill-in-the-blank questions. This
question set has been kept constant across
different experiments.

2. Distractor Generation: We generated
distractors using our method with various
hyperparameter settings (nmask, dispersion,
decoding strategy) and compared them
between each other and against distractors
generated by previous methods.

3. Best Set Selection by LLM: We employed
ChatGPT-4o (OpenAI, 2024) to select the best
distractor set from the given sets (including
ours and previous methods). Ties were
allowed if the best options were close in
quality.

Parameter Score
Number of Mask Tokens

nmask = 0 57
nmask = 1 53

Dispersion Parameter
dispersion = 0 47
dispersion = 1 56
dispersion = 2 50

Decoding Strategy
L2R (Left-to-Right) 44
R2L (Right-to-Left) 29
CTL (Cocktail Shaker) 52

Table 3: Scores for various hyperparameters used
in distractor generation: the number of mask
tokens (nmask), dispersion parameters, and decoding
strategies. Each score reflects the preference of the
referee LLM, ChatGPT-4o, for that hyperparameter in
direct comparisons.

4.1.1 Hyperparameter Experiments
To identify the optimal settings for generating
distractors, we experimented with different
hyperparameters by systematically varying one
parameter at a time while keeping the others
constant. For distractor generation, we utilized
RoBERTaLARGE (Liu et al., 2019), a widely
recognized pre-trained transformer model.

• First, we experimented with the number of
mask tokens. We tested with nmask = 1 and
nmask = 0 (where the number of mask tokens
matched the number of answer tokens). For
these experiments, the dispersion parameter
was set to 0, and the decoding strategy was
left-to-right (L2R).

• Next, we explored the impact of the
dispersion parameter. We experimented
with dispersion values of 0, 1, and 2. In
these experiments, we kept nmask = 0 and
continued using the L2R decoding strategy.

• Finally, we evaluated different decoding
strategies to determine their effect on
distractor quality. We compared left-to-right
(L2R), right-to-left (R2L), and cocktail shaker
(CTL) strategies. For these experiments, we
set nmask = 0 and dispersion = 1.

4.1.2 Results
The results indicated several key findings, as
summarized in Table 3.
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Method Score
CDGP 12
DisGeM 88

Table 4: Final scores for distractor generation methods:
CDGP vs. DisGeM. Each score reflects the preference
of the referee LLM, ChatGPT-4o, in direct comparisons.

Distractors CDGP DisGeM GOLD

Average 81.00 63.62 76.28
Median 83.33 66.67 76.47
Min. 55.56 38.89 47.06
Max. 94.44 83.33 100.00
Std. Dev. 12.81 10.91 11.11

Table 5: Statistics for the correctness of the evaluators.
“GOLD" represents questions with ground truth
distractors.

Experimenting with the number of mask tokens
showed that using zero mask tokens, where the
number of mask tokens matched the number of
answer tokens, generally led to better distractor
quality compared to using a single mask token.

When varying the dispersion parameter, we
found that a moderate level of randomness in the
number of mask tokens improved distractor quality.
A dispersion parameter of 1 was more effective
than having no dispersion or a higher level of
dispersion.

Among the different decoding strategies, the
Cocktail Shaker (CTL) strategy performed the best,
followed by the Left-to-Right (L2R) and then the
Right-to-Left (R2L) strategy. This indicates that
the CTL strategy is more effective in generating
high-quality distractors.

Overall, the experiments demonstrated that the
optimal configuration for generating high-quality
distractors involves using a matching token count, a
dispersion parameter of 1, and the Cocktail Shaker
(CTL) decoding strategy. This configuration was
compared to the previous work CDGP (Chiang
et al., 2022), using their experiment setup from
the CDGP codebase2. We conducted a final
LLM comparison with their distractors versus our
distractors on the question set. The results, shown
in Table 4, indicate that our method, DisGeM,
significantly outperformed CDGP.

4.2 Human Evaluation
As previous works (Ren and Q. Zhu, 2021; Chiang
et al., 2022) have done, we also conducted human

2https://github.com/AndyChiangSH/CDGP

Figure 2: Average human correctness of the cloze test
grouped by the frameworks, “GOLD" represents the
questions with ground truth distractors.

evaluation. For the evaluation process, we recruited
30 human evaluators, and we asked evaluators to
take a cloze exam and rate the questions. Our
evaluation process follows the evaluation setup of
Chiang et al. (2022) with the following differences,

• We prepared a cloze test with three passages
randomly chosen from the CLOTH dataset,
each passage is evenly split into three parts for
ground truth, CDGP and DisGeM distractors.

• Unlike CDGP’s ordering where the first 5
questions were ground truth and the last
5 questions were CDGP generations, we
randomly shuffled the order of the questions
to eliminate any possible bias from human
evaluators.

• We included 17 questions in total for
each distractor source (ground truth, CDGP,
DisGeM) in three passages.

• We incorporated a simultaneous cloze test
where we also gathered feedback regarding
the quality and difficulty after each question.
In this context, "difficulty" pertains to the
extent of uncertainty or wavering among
multiple answer choices (i.e. how well
the distractors distract the evaluator). Here,
we compounded the quality and difficulty
assessment as a single feedback and asked
the evaluators to rate on a Likert scale ranging
from 1-5.

4.2.1 Results
We illustrate the histograms3 of the results of the
cloze test and the results of the ratings by evaluators

3We used the Plotly package (Inc., 2015) for illustrations.
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Figure 3: Average rating of the quality and difficulty of
the questions by the evaluators, “GOLD" represents the
questions with ground truth distractors.

grouped by the three groups in Figure 2 and in
Figure 3 respectively. Detailed statistics are given
in Table 5. The histograms reveal a noticeable
trend in the rate of correctness of evaluators is
comparatively lower on DisGeM’s questions than
on those from GOLD and CDGP. Also, more
evaluators voted higher for DisGeM in quality and
difficulty rating of questions/distractors compared
to GOLD and CDGP.

For the assessment of the statistical significance
we also conduct a Student’s t-test to show
that the question group of DisGeM is slightly
harder than that of GOLD (i.e. the ground
truth distractors). Chiang et al. (2022) has
already stated in their human evaluation that their
questions/distractors are slightly easier from the
GOLD. Our human evaluation results are also
parallel to this conclusion. Hence, we moved
forward to compare DisGeM and GOLD groups.
We conducted Student’s t-test (Student, 1908)
under the null hypothesis µdisgem − µgold < 0,
and get the p-value 0.999, and thus we have no
significant evidence to reject the null hypothesis.
Also, the extremity of the p-value suggests that the
null hypothesis is likely to be the case.

5 Discussion

The evaluation results from both LLM and human
evaluations provide significant insights into the
effectiveness of our distractor generation method,
DisGeM, compared to previous methods. In
the LLM evaluations, we observed that the
optimal configuration of a matching token count, a
dispersion parameter of 1, and the Cocktail Shaker
(CTL) decoding strategy showed a significant
improvement over CDGP, as indicated by the final

comparison scores.
In human evaluations, the results were similarly

encouraging. The cloze test scores revealed
that evaluators had a slightly lower correctness
rate on DisGeM’s questions compared to GOLD
and CDGP. This lower correctness rate indicates
that DisGeM’s distractors were more effective
at introducing uncertainty and challenging the
evaluators. The quality and difficulty ratings
from evaluators were also higher for DisGeM,
suggesting that our method produces distractors
that are perceived as more engaging and effective
at creating uncertainty.

6 Conclusion

We propose a training-free dual-stage distractor
generation framework, DisGeM. Our framework
possesses two main features extending previous
works. DisGeM in particular,

• is a training-free framework and does not
necessitate fine-tuning on a particular dataset
though one can opt for various reasons (e.g.
domain adaptation).

• has a novel multi-word distractor generation
algorithm.

• has far less amount of generation hyper-
parameters that need to be tuned by
users/researchers.

• incorporate strategies (e.g. decoding, multi-
token generation) to achieve natural variation
in the generations.

Also, due to the training-free nature of our
framework can directly be used on any passage
without the effort of additional training/fine-tuning,
and hence saves a lot of time. Additionally, it
alleviates the heavy hyper-parameter tuning stage.

Our evaluations with LLM and human
participants demonstrate DisGeM’s effectiveness.
LLM evaluations showed DisGeM outperforms
previous methods. Human evaluations confirmed
this with lower correctness rates and higher quality
and difficulty ratings, indicating more effective
and engaging distractors.

Limitations

We have so far laid out results along with a
discussion on them. Although the results were
promising there are several limitations to the
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proposal. Like its predecessors (Ren and Q. Zhu,
2021; Chiang et al., 2022), DisGeM is also
proposed as a distractor generation framework
for extractive MCQs and for English only, and
experiments are conducted according to the
extractive MCQ setup. The framework on its
own is not capable of working on an abstractive
MCQ setting, where the answer is not necessarily
a span/substring in the context, as it depends on
the masking of the answer span in the context.
Nonetheless, this might be achieved in future
research that enhances the CSG phase.

Another limitation of DisGeM similar to the
prior studies (Ren and Q. Zhu, 2021; Chiang et al.,
2022) is that there is no control of the difficulty
level for generated distractors. Yet, this might be
a good research direction for related future studies
as it may have a positive impact on real-life quiz
applications.

Finally, we would like to point out that we did
not conduct any comparison with the instruction
following LLMs or PLMs having parameters many
times more than our PLMs in experiments (e.g.
(Brown et al., 2020; Ouyang et al., 2022; Touvron
et al., 2023; OpenAI, 2024)). The primary reason
for not comparing with those kinds of models was
the absence of a standardized methodology for
employing such models as baseline performance.
The performance of these models can depend
on prompt engineering, model versions, and
whether the approach is zero-shot or fine-tuned.
Also, general models like those may generate
‘hallucinated’ content, which requires additional
layers of validation. Furthermore, a kind of
comprehensive evaluation is needed to compare
against those models which requires significant
time investment.

Apart from the limitations discussed, there are
also potential risks that could primarily affect
education. While the proposed framework may
be promising in experiments, these experiments
can not provide a full-picture overview. Using this
framework in real-life quizzes and tests may not
give a correct assessment of the test takers. Thus,
the framework should be used under the guidance
of a human expert (e.g. teacher) in those scenarios.
This is further amplified by our lack of control over
how difficult the distractors are.
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A Experimental Setup

The hardware specification that is used for
conducting experiments are given as follows:

• CPU: AMD Ryzen 9 7900X 12-Core Processor

• GPU: NVIDIA RTX 3090 Ti

B Pipeline

We present the detailed view and the algorithm on
our distractor generation pipeline. We describe
pseudo-code algorithms for both CSG and DS
phases.

B.1 Candidate Set Generator (CSG)

Our CSG phase of the framework is detailed in
Algorithm 1. This phase highlights how our
CSG differs from the previous work, CDGP. The
candidate set generation phase utilizes methods
such as randomly sampling the number of tokens
with provided hyper-parameters (e.g. dispersion,
nmask). Our pseudo-beam search operates with
a fixed window size of 1, after the first step of
k ×ms generations. In the algorithm, we designed
the search multiplier ms to allow users to adjust it
based on their preferred trade-off between speed
and fidelity. In practice, we set ms to 10 for the
single-mask cases (like CLOTH outputs) when
there is only one token and set it to 7 other
scenarios.

B.2 Distractor Selector (DS)
The pipeline details for the distractor selection
phase can be found in Algorithm 2. As previously
mentioned, our approach utilizes a two-way
entailment check. In our context, checking for
entailment from both the answer to the distractor
and the distractor to the answer is undesirable for
distractor generation.

B.3 Decoding Strategies
We have conducted experiments and discussed
the outputs in Section 3. The schema in
Figure 4 illustrates various generation strategies,
including our newly proposed cocktail shaker
(CTL) decoding strategy.

C Quantitative Results

Following the previous works (Ren and Q. Zhu,
2021; Chiang et al., 2022) we evaluated our
framework with automated metrics. We used the
experiment setup from CDGP (Chiang et al., 2022)
codebase4.

C.1 Dataset
Following (Chiang et al., 2022) we evaluated our
framework on CLOTH dataset (Xie et al., 2018).
We used the instances from the test split (high)
of the CLOTH dataset to evaluate our framework.
Since we did not conduct any fine-tuning, we only
focused on the test split.

CLOTH is a dataset curated by teachers
and consists of passages/paragraphs containing
cloze-style questions where the answers are one
word and with 4 options in MCQ style. The
distractors/options in MCQ The statistics regarding
the test split (high) of CLOTH are given in Table 6.

C.2 Evaluation Metric
We adhere to the evaluation metric setup
established in (Ren and Q. Zhu, 2021; Chiang
et al., 2022), assessing Precision (P@1), F1
score (F1@3), Mean Reciprocal Rank (MRR@10),
and Normalized Discounted Cumulative Gain
(NDCG@10).

C.3 Experimental Setup
We used BERTLARGE (Devlin et al., 2019) and
RoBERTaLARGE (Liu et al., 2019) as PLMs for the
CSG phase to conduct our experiments following
(Chiang et al., 2022). Since CLOTH dataset

4https://github.com/AndyChiangSH/CDGP
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Algorithm 1: Overall CSG pipeline. Indexing is assumed to be starting from 0.
Data: P passage, A answer, MPLM Language Model (pretrained with MLM task), TPLM tokenizer of MPLM , k

number of distractors, s decoding strategy, d dispersion, ms search multiplier, nmask number of mask tokens,
avg averaging technique (geometric or harmonic)

Result: CS candidate set
PT ← TPLM (P ) ; // tokenize passage
if nmask == 0 then

nmask ← |AT |
end
N ← draw_three(a = max(nmask − dispersion, 1), b = nmask + dispersion, replace = False);
CS ← [ ];
RS ← [ ];
for i← 0 to |N | − 1 do

MT ← [< mask >0, . . . , < mask >Ni−1];
PT ← replace(AT ,MT , PT ) ; // replace answer tokens by <mask> tokens
m← k ∗ms;
C ← empty_array(m, |MT |);
R← empty_array(m, |MT |);
P ′
T ← tile_array(PT ,m) ; // P ′

T is a 2 dim array of size (m, |PT |)
for j ← 0 to |MT | − 1 do

if j == 1 then
t = m;

else
t = 1;

C·j , R·j ←MPLM (P ′
T , token = MTj , topk = t) ; // get t predictions for jth token of MT

P ′
T ← replace(MTj , C·j , P ′

T );
end
C ← concat_strings(C, axis = 1);
Rprod ← product(R, axis = 0);
C ← sort(C, by = Rprod, descending = True);
add(C,CS);
add(R,RS) ; // RS and CS are 2 dim arrays with shapes (3m, |MT |)

end
Ravg ← average(RS, type = avg, axis = 0);
CS ← sort(C, by = Ravg, descending = True);
return CS;
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Figure 4: Different strategies proposed for generating candidates. The prediction orders for mask tokens are (left)
L2R 1-2-3-4-5, (middle) R2L 5-4-3-2-1, (right) CTL 1-5-2-4-3. “T" in blue refers to mask tokens. “C" in purple
refers to the candidate tokens.
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Algorithm 2: Overall DS pipeline. Indexing is assumed to start from 0. |·| refers to the norm/length
of a component.

Data: S sentence, A answer, C candidates by CSG, MNLI NLI model, k number of distractors
Result: D distractors
for n← |C| − 1 to 0 do

// remove candidates entailing with the answer
Pd ← replace(Cn, A, P );
check ← (MNLI(Pd, P ),MNLI(Pd, P )) ; // two-way entailment check
if check == (entailment, entailment) then

remove_item(C, index = n)
end

end
increment← True;
ikept ← 1;
while ikept < k < |C| do

// remove candidates entailing within (among selected distractors)
for j ← 1 to ikept do

Pd1 ← replace(Cj , A, P );
Pd2 ← replace(Cikept , A, P );
check ← (MNLI(Pd1, Pd2),MNLI(Pd2, Pd1)) ; // two-way entailment check
if check == (entailment, entailment) then

increment← False;
remove_item(C, index = ikept);
break

end
increment← True;

end
if increment then

ikept ++;
end

end
return get_top_k(C, k);

Dataset CLOTH
(High/Test)

# passages 478
Avg. # question per passage 17.41
Avg. # sentence 18.92
Avg. # words 365.1

Table 6: Statistics of the CLOTH dataset test split (high).

answers and distractors consist of a single word,
we set dispersion = 0, nmask = 1, k = 10 and
ms = 7. Note that forcing nmask = 1 does not
truly demonstrate the capabilities of our framework
as our framework is capable of generating multi-
word distractors. We set L2R decoding and used
the geometric mean for averaging. Hardware
specifications are detailed in Appendix A.

C.4 Results
In this section, we lay out the results either
quantitative or qualitative that are obtained from
the experiments with aforementioned datasets.

The performance of the framework and
comparison with CDGP on the CLOTH dataset
is reported in Table 7. We followed the same
experiment setup as CDGP. It can be seen that

despite not using a fine-tuned PLM on CSG,
DisGeM’s results are compatible with CDGP’s.
Moreover, the trade-off for performance vs. fine-
tuning may be worth using DisGeM (e.g. for the
RoBERTa case).

We also conduct a study with different input
settings whose results are reported in Table 8.
We tried supplying the whole passage to the
model and also supplying only the sentence with
the question at hand. Probably due to the pre-
training nature of BERT (Devlin et al., 2019),
the generations with passages are closer to the
ground truth distractors. Furthermore, we also
tried pre-filling the blanks other than the question
at hand with a PLM compared to pre-filling with
the ground truth distractors. Interestingly enough,
when the blanks are pre-filled with PLMs (we used
RoBERTa-large (Liu et al., 2019)) the generations
are closer to the ground truth. We did not conduct
a pre-filling comparison for sentence inputs as the
majority of the sentences have a single blank, and
used ground truth answers only for those that have
more than 1 blank.
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Models P@1 F1@3 MRR@10 NDCG@10

CDGP (BERT) 18.50 13.80 29.96 37.82
CDGP (RoBERTa) 10.50 9.83 20.42 28.17

DisGeM (BERT) 14.00 7.67 19.03 22.94
DisGeM (RoBERTa) 8.00 6.00 14.80 19.92

Table 7: Automated metrics from the evaluation on CLOTH dataset test split (high) and comparison with CDGP
(Chiang et al., 2022).

Models P@1 F1@3 MRR@10 NDCG@10

BERT (P/FM) 14.00 7.67 19.03 22.94
BERT (P/G) 12.00 6.67 16.90 20.89
BERT (S/G) 11.00 5.33 15.01 18.60

Table 8: Automated metrics from the evaluation on CLOTH dataset test split (high) utilizing different techniques on
DisGeM. Model input is (P) the whole passage (S) the sentence containing the blank/question. If the input context
has more blanks other than the question at hand (FM) they are pre-filled using a PLM, (G) they are pre-filled with
gold answers.

C.5 Discussion

In the metric evaluations, the reported automated
metrics either cannot reach SOTA or are
comparable to some end for some variants (e.g.
CDGP RoBERTa results in Table 7). These
results are not surprising for several reasons. First
of all, our framework is training-free and we
do not fine-tune PLMs for specific datasets (e.g.
CLOTH) whereas in CDGP’s framework, the
results are obtained by PLMs that are fine-tuned
on the datasets. Hence, it’s expected that CDGP’s
framework is better at matching the distractors of
that particular domain. We do not want to state
that CDGP’s or DisGeM’s better in comparison
by only interpreting the automatic metrics on
CLOTH datasets since this kind of evaluation
measures that the system is capable of matching
the gold distractors written by people for that
dataset. As Chiang et al. (2022) also states,
the current evaluation on the test dataset may
not truly represent the quality of the distractor
generation system as a mismatch with the ground
truth distractors does not necessarily indicate the
infeasibility of the generated distractor.

It’s also worth mentioning that the CLOTH
dataset consists of single-word answers and
distractors, which somewhat restricts our system
from demonstrating its capabilities to the fullest
extent.

D Qualitative Analysis

In this section, we present qualitative samples
from our framework’s outputs, accompanied by

commentary.

For the qualitative analysis, we have selected
examples from the SQuAD dataset. It is important
to note that the SQuAD dataset is primarily
designed as an extractive question-answering
dataset, where the answers are directly extracted
as spans from the context. While primarily for
question answering, it can be used for tasks other,
such as question generation. Additionally, we’d
like to emphasize that our framework, DisGeM,
focuses solely on the provided context and not any
specific question.

Our distractor generation results, obtained using
parameters dispersion = 1, L2R decoding, and
nmask = 0 (i.e. equals the length of the answer
tokens), are showcased in Table 9, Table 10 and
Table 11 with comparison to CDGP results. To give
a realistic representation of MCQs, we randomly
positioned the correct answer among the choices
without any particular order. Note that CDGP is
primarily designed for the use case where the PLMs
are first fine-tuned, and these fine-tuned models are
then utilized to generate candidates. However, it is
important to note that such fine-tuning is specific
to multiple-choice question-answering datasets
because the training objective relies on ground
truth distractors. Contrastingly, the SQuAD dataset
consists solely of contexts, questions and answers.
To ensure a balanced comparison, we included
results from two CDGP outputs: the BERT model
fine-tuned on CLOTH (referred to as CDGP (F))
and the pre-trained BERT base (referred to as
CDGP (P)), which we also use for DisGeM.

9728



Our qualitative analyses affirm that the
candidates generated using the entire passage (as
with DisGeM) are significantly more effective than
those produced when only the sentence is provided
(as in the case of CDGP). In our analyses, we refer
to this as “context awareness". Specifically, we
use “shallower context awareness" (SCA) when the
model input is limited to a sentence and “wider
context awareness" (WCA) when it encompasses
an entire passage.

D.1 Passage 1 - Super Bowl 50
On Table 9 we selected the passage from the
“Super_Bowl_50" article5. The passage is about
Super Bowl 50 in particular, mentioning related
information such as the competing teams, and when
and where the game is played.

The generated distractors on Question-1.1,
DisGeM successfully generated distractors that
are close to the gold answer, “2015". Given
that the context mentions Super Bowl 50 was
played in 2016, “2016" emerges as a plausible
distractor. Options 2014 and 2017 are also closer
years to 2015. While the outputs from CDGP
(F) closely resemble those of DisGeM, option (A)
deviates slightly from other choices. Conversely,
the quality of outputs from CDGP (P) is noticeably
lower compared to both DisGeM and CDGP (F).
This case stands as an effective illustration of the
beneficial impact of WCA over SCA.

Upon examining the distractors for Question 1.2,
it becomes evident that the distractors generated
by CDGP (F) are less effective than the rest.
It generated “denver" as a distractor, which is
functionally identical to the correct answer, thus
invalidating the question. Both DisGeM and CDGP
(P) are comparable, though DisGeM’s distractors
appear slightly more plausible, given its multi-word
generation capability. Other than that both DisGeM
and CDGP (P) successfully generated distractors
of AFC teams.

For Question-1.3, DisGeM’s outputs outshine
those from both CDGP (F) and CDGP (P). This
time, unlike Question-1.2, one of the DisGeM’s
distractors, “Miami Dolphins", is an AFC team, but
not NFC. Both CDGP (F) and CDGP (P) generated
undesirable distractors. For CDGP (F), there is
only a single acceptable string as a candidate, but
once again it is extremely similar to the correct
answer. On the other hand, CDGP (P) generated

5https://rajpurkar.github.io/SQuAD-
explorer/explore/1.1/dev/Super_Bowl_50.html

“Denver" and “Broncos" as distractors which refer
to the same team “Denver Broncos" making the
distractors suboptimal.

D.2 Passage 2 - Nikola Tesla
On Table 10 we selected the passage from the
“Nikola_Tesla" article6. The passage, Passage 2,
is a paragraph about the work life of Nikola Tesla
and the events that took place posthumously.

Analyzing the outcomes for Question-2.1,
DisGeM’s distractors for the answer “mad
scientist" aptly capture Tesla’s reputation in
popular culture. Conversely, CDGP (F) and
CDGP (P) offered less fitting alternatives, with
“mad scientist" being the most appropriate choice
among their options though DisGeM and CDGP
(P) have a common plausible distractor, “inventor".
Nonetheless, DisGeM’s “genius" and “electric
genius" distractors are close to each other in
meaning which may be undesirable. This
underlines DisGeM’s ability to generate context-
aware distractors.

Moving to Question 2.2, the comparison
highlights both CDGP (F) and CDGP (P) as
producing less plausible distractors. Remarkably,
CDGP (F) generated “hotels" as a distractor, which
directly agrees with the answer “New York hotels".
Besides, CDGP (P) distractors are all very similar
in meaning, significantly reducing the quality of
the overall question and choices. In contrast,
DisGeM yielded options that are more contextually
feasible, especially option (A), “small retirement
homes", which is quite relatable with the context
of retirement.

In the case of Question 2.3, the results show
that DisGeM’s distractors capture the nuances
of the given answer, contrasting with the more
generalized options from CDGP (F) and CDGP
(P). This allows the distractors to compete
more effectively with the answer “SI unit of
magnetic flux density". Both CDGP (F) and
CDGP (P) distractors substantially differ from
the correct answer. Placing a lengthy, detailed
answer next to short and general distractors
significantly compromises the integrity of the
question. Conversely, DisGeM showcases its
proficiency by creating distractors that resonate
with the answer well, although Option (D), “first
“universal" electric car", introduces an element of
whimsy that feels slightly out of place.

6https://rajpurkar.github.io/SQuAD-
explorer/explore/1.1/dev/Nikola_Tesla.html
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Passage-1 Super Bowl 50 was an American football game to determine the champion of the National Football League
(NFL) for the __1__ season. The American Football Conference (AFC) champion __2__ defeated the
National Football Conference (NFC) champion __3__ 24–10 to earn their third Super Bowl title. The
game was played on February 7, 2016, at Levi’s Stadium in the San Francisco Bay Area at Santa Clara,
California. As this was the 50th Super Bowl, the league emphasized the "golden anniversary" with various
gold-themed initiatives, as well as temporarily suspending the tradition of naming each Super Bowl game
with Roman numerals (under which the game would have been known as "Super Bowl L"), so that the logo
could prominently feature the Arabic numerals 50.

Question-1.1 Super Bowl 50 decided the NFL champion for what season?
Choices DisGeM CDGP (F) CDGP (P)

A. 2016
B. 2014
C. 2017
D. 2015

A. 2010
B. 2014
C. 2017
D. 2015

A. 1950
B. 1949
C. 1951
D. 2015

Question-1.2 Which NFL team represented the AFC at Super Bowl 50?
Choices DisGeM CDGP (F) CDGP (P)

A. Patriots
B. Denver Broncos
C. Miami Dolphins
D. Houston Texans

A. denver
B. Denver Broncos

C. eventually
D. .

A. Patriots
B. Denver Broncos

C. Steelers
D. Colts

Question-1.3 Which NFL team represented the NFC at Super Bowl 50?
Choices DisGeM CDGP (F) CDGP (P)

A. Carolina Panthers
B. 49ers

C. Philedelphia Eagles
D. Miami Dolphins

A. Carolina Panthers
B. carolina

C. ,
D. .

A. Carolina Panthers
B. Denver
C. Broncos

D. Colts

Table 9: Several SQuAD examples with context, question, answer and generated distractors. For CDGP outputs are
with (F) BERT model fine-tuned on the CLOTH dataset (P) pre-trained BERT model.

Passage-2 Tesla was renowned for his achievements and showmanship, eventually earning him a reputation in popular
culture as an archetypal __1__ . His patents earned him a considerable amount of money, much of which
was used to finance his own projects with varying degrees of success. He lived most of his life in a series of
__2__ , through his retirement. Tesla died on 7 January 1943. His work fell into relative obscurity after his
death, but in 1960 the General Conference on Weights and Measures named the __3__ the tesla in his honor.
There has been a resurgence in popular interest in Tesla since the 1990s.

Question-2.1 What was Tesla’s reputation in popular culture?
Choices DisGeM CDGP (F) CDGP (P)

A. inventor
B. genius

C. mad scientist
D. electric genius

A. actor
B. artist

C. mad scientist
D. writer

A. figure
B. hero

C. mad scientist
D. inventor

Question-2.2 Where did Tesla live for much of his life?
Choices DisGeM CDGP (F) CDGP (P)

A. small retirement homes
B. homes worldwide
C. New York hotels

D. hospitals

A. hospitals
B. parks

C. New York hotels
D. hotels

A. houses
B. homes

C. New York hotels
D. apartments

Question-2.3 What was named “The Tesla” in his honor?
Choices DisGeM CDGP (F) CDGP (P)

A. new precision
measurement device

B. new “universal motor"
C. SI unit of

magnetic flux density
D. first “universal" electric car

A. model
B. unit

C. SI unit of
magnetic flux density

D. field

A. device
B. instrument
C. SI unit of

magnetic flux density
D. asteroid

Table 10: Several SQuAD examples with context, question, answer and generated distractors.For CDGP outputs are
with (F) BERT model fine-tuned on the CLOTH dataset (P) pre-trained BERT model.
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D.3 Passage 3 - Nikola Tesla
On Table 11 we selected the passage from the
“Nikola_Tesla" article7 like Passage 2. This passage
touches on the early life and background of
Nikola Tesla. It mentions his birthdate, family
background, and some of the influences and factors
that contributed to his development and abilities.

When analyzing the results for Question-3.1,
DisGeM stands out for its ability to craft distractors
closely linked to the answer “Croatia", capturing
the essence of the modern-day country of Tesla’s
birth. However, CDGP (F) seems to focus narrowly
on the geographical proximity, offering choices
like “france" and “hungary". While they are
geographically related, they don’t resonate with
contextual clues like “Austrian Empire", “Smiljan",
“Serbian", and “Serb family". Meanwhile, CDGP
(P) offers distractors that closely align with the
context, but critically includes “Croatia", which is
the actual answer, rendering the question invalid.

Turning to Question-3.2, DisGeM’s distractors
align well not only with the context and the flow
but also with the answer “his mother’s genetics". In
contrast, the distractors generated by both CDGP
(F) and CDGP (P) are not as contextually fitting.

D.4 Conclusion
In summary, our qualitative analyses, supported
by numerous examples, underline DisGeM’s
proficiency in generating contextually relevant
and well-aligned distractors. DisGeM notably
outperforms both CDGP (P) and CDGP (F),
enhancing the quality of distractor generation,
especially in scenarios where single-word
distractor generation is inadequate. We highlighted
several limitations of the CDGP framework, the
previous SOTA, such as its strong reliance on
fine-tuning, its tendency to produce distractors
semantically close to the answer, and its inability
to generate multi-word distractors. These insights
reinforce the benefits of adopting the DisGeM
framework, especially when high precision and
relevance in distractor generation are paramount.
Overall, DisGeM’s predominant advantage stems
from its capacity for multi-word generation.

7https://rajpurkar.github.io/SQuAD-
explorer/explore/1.1/dev/Nikola_Tesla.html
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Part SQuAD Samples

Passage-3 Tesla was born on 10 July [O.S. 28 June] 1856 into a Serb family in the village of Smiljan, Austrian
Empire (modern-day __1__ ). His father, Milutin Tesla, was a Serbian Orthodox priest. Tesla’s mother,
Ðuka Tesla (née Mandić), whose father was also an Orthodox priest,:10 had a talent for making home craft
tools, mechanical appliances, and the ability to memorize Serbian epic poems. Ðuka had never received a
formal education. Nikola credited his eidetic memory and creative abilities to __2__ and influence. Tesla’s
progenitors were from western Serbia, near Montenegro.:12

Question-3.1 What modern-day country was Tesla born in?
Choices DisGeM CDGP (F) CDGP (P)

A. Serbia
B. Montenegro

C. Croatia
D. Bosnia

Herzegovina

A. france
B. china

C. Croatia
D. hungary

A. Croatia
B. Serbia

C. Croatia
D. Slovenia

Question-3.2 Who did Tesla credit for his abilities?
Choices DisGeM CDGP (F) CDGP (P)

A. the family’s wealth
B. is own personal experience

C. his mother’s genetics
D. his mother’s education

A. study
B. change

C. his mother’s genetics
D. adapt

A. him
B. inspiration

C. his mother’s genetics
D. success

Table 11: Several SQuAD examples with context, question, answer and generated distractors. For CDGP outputs
are with (F) BERT model fine-tuned on the CLOTH dataset (P) pre-trained BERT model.
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