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Abstract
RL-based techniques can be employed to
search for prompts that, when fed into a
target language model, maximize a set of user-
specified reward functions. However, in many
target applications, the natural reward functions
are in tension with one another – for example,
content preservation vs. style matching in style
transfer tasks. Current techniques focus on
maximizing the average of reward functions,
which does not necessarily lead to prompts that
achieve balance across rewards – an issue that
has been well-studied in the multi-objective
and robust optimization literature. In this
paper we conduct an empirical comparison of
several existing multi-objective optimization
techniques, adapted to this new setting: RL-
based discrete prompt optimization. We
compare two methods optimizing the volume
of the Pareto reward surface, and one method
that chooses an update direction that benefits
all rewards simultaneously. We evaluate
performance on two NLP tasks: style transfer
and machine translation, each using three
competing reward functions. Our experiments
demonstrate that multi-objective methods that
directly optimize the volume of the Pareto
reward surface perform better and achieve a
better balance of all rewards than those that
attempt to find monotonic update directions.

1 Introduction

Discrete prompt tuning involves refining a text
prompt for a language model (LM) to maximize
a set of user-specified objectives on the LM’s
output (Shin et al., 2020; Schick and Schütze, 2020;
Wen et al., 2023). Successful techniques for prompt
tuning allow users to control and adapt powerful
LLMs to new tasks without the trial-and-error of
manual prompt design. While RL-based techniques
have been shown to be effective at finding prompts
that optimize an average of rewards (Deng et al.,
2022), in many target applications, there is a
tension between the natural reward functions.

Figure 1: A modern to Shakespearean text style
transfer setting where each dot represents an output
sentence sampled from an LM conditioned on either a
prompt trained with average reward (left) or a prompt
trained using multi-objective optimziation techniques
(right). The output sample 1 only optimizes for style
match, while output sample 2 only addresses content
preservation. Sample 3, on the other hand, balances both
objectives at the same time. The shaded regions indicate
measures of volume of the Pareto reward surface.

For example, as depicted in Figure 1, many
style transfer tasks need to preserve content while
simultaneously maximizing transfer into the target
style – two objectives that are directly at odds with
one another. Thus, current techniques result in a
phenomenon we will refer to as objective collapse:
focusing on maximizing the average of reward
functions (also called scalarization) can lead to
prompts that disproportionately maximize a subset
of objectives at the expense of others. For instance,
in Figure 1, the prompt on the left side tends to
produce LM outputs (represented by blue dots) that
prioritize one objective over the other. Conversely,
the prompt on the right side produces samples
that achieve reasonable performance across all
objectives simultaneously. However, in both cases
the average reward is nearly equivalent.

The problem of reward balancing has been
well-studied in other domains—for example, the
multi-objective and robust optimization literature
proposes several approaches that offer advantages
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Figure 2: In all the settings, we have a parameter-efficient policy model, responsible for generating the task-specific
prompts, where all the parameters of the model except for an MLP module are frozen. Another frozen language
model is used to generate output sentences, given an input and a prompt from the policy model. All the output
sentences are then evaluated with respect to each objective, and multi-objective losses are calculated. Finally, a
gradient update on the MLP parameters is performed.

over scalarization. However, these techniques
have not been applied to the RL-based discrete
prompt optimization setting that is most relevant in
NLP. Thus, in this paper we conduct an empirical
comparison of several existing techniques for
multi-objective optimization that we adapt to
discrete prompt optimization, where we aim to
evaluate their effectiveness in achieving a more
useful balance of rewards in downstream prompt-
driven NLP tasks. The first two approaches we
compare maximize the volume of the Pareto reward
surface, while the third method chooses a gradient
update direction that is beneficial for all rewards
simultaneously.

More specifically, the first method in our
study computes the hypervolume indicator
(HVI) (Knowles et al., 2004) for a set of samples
drawn from a given prompt, and treats this
measure as the final reward in RL. Intuitively, HVI
measures the area under the Pareto frontier of the
outputs sampled from the current prompt (shown
by the shaded regions in Figure 1). Samples that
achieve a better balance of reward elevate the
Pareto frontier and increase HVI. However, this
method has a potential drawback: if an outlier
sample (e.g., represented by the red dot labeled
with a four in Figure 1) achieves high values across
all rewards, the HVI can be disproportionately
high (represented by the outer rectangular region
in Figure 1, which dominates the shaded areas).
This dominant outlier effect may diminish the
stability of HVI optimization in an RL setting, as it
becomes very sensitive to outliers.

Therefore, we also investigate using a simpler
method for maximizing the volume in the second
approach, called the expected product of rewards.
Here, we approximate the expected volume by

simply computing the average product of rewards
(tentatively depicted by the dark rectangular region
in Figure 1).

The third approach takes a different strategy
based on steepest gradient descent (Fliege and
Svaiter, 2000). We approximate the gradient
of the expectation of each individual reward
separately and then search for an update direction
to make monotonic progress in every reward
simultaneously.

To understand the effectiveness of these
approaches in the discrete prompt optimization
setting, we conduct experiments on two text
generation tasks: text style transfer and machine
translation using three competing reward functions
for each task. Our findings indicate that volume-
based methods are most effective in this setting,
achieving substantial gains in balancing the
competing rewards, compared to the baseline
methods. While RL-based steepest descent also
improves balance, it does not perform as robustly
as the volume-based methods.

2 Problem Statement

In this paper, we specifically focus on optimizing
discrete prompts, as they offer the advantages
of interpretability and reusability in contrast to
continuous or “soft” prompts. We acknowledge
that the issue of balancing multiple conflicting
objectives is a well-established area of research
within the multi-objective and robust optimization
literature. However, adapting these techniques
to the domain of discrete prompt optimization
for language models comes with challenges
due to having sources of discontinuity and
discreteness. First, the text tokens for the prompt
are discrete, and second, since marginalizing over
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Algorithm 1: Volume-based policy update for one input sentence.

1: Input: Input sentence x, policy πθ, reward models r1...m, external frozen LM
2: {z1...k} ∼ πθ(x) ▷ Sample k prompts from the policy
3: for i = 1. . . k do:
4: {y1...k̂} ∼ pLM (y|x, zi) ▷ Sample k̂ output sentences from a desired LM
5: end for
6: for i = 1 . . . k · k̂ do:
7: calculate r1...m(yi, x) ▷ Calculate r1...m for each output sentence y and input x
8: end for
9: Calculate rprod (or rhvi) ▷ Calculate expected product of rewards (or hypervolume)

10: Calculate L using rprod (or rhvi) ▷ Use SQL loss (Guo et al., 2022)
11: θ = θ − η∇θL (θ) ▷ Gradient descent on policy parameters

Figure 3: In this algorithm, k prompts are sampled from the policy model and used alongside an input sentence to
generate k̂ output samples from an external frozen LM. The desired objective values for each of the sentences are
calculated and combined into a single reward value by computing their expected product of rewards or hypervolume
indicator, based on the desired approach. Then, the loss is computed based on this reward and used for a gradient
update on the policy LM’s parameters. For details on the SQL loss and parameter updates, we refer the interested
reader to (Guo et al., 2022).

all possible output samples is intractable, we need
to approximate the expected gradient of the loss
with respect to the sampled sentences.

We train a small, parameter-efficient policy
network in order to generate task-specific prompts
that can later be used alongside an input sentence
to be fed into any other language model, as
depicted in Figure 2. We particularly put an
emphasis on optimizing prompts to achieve a
balance across multiple reward functions. Given m
multiple objectives and their corresponding reward
functions {r1, r2, . . . rm}, we perform discrete
prompt optimization for controlled text generation.
We refer to the prompt as z, the input text as x,
and the text generated by the LM as y. We aim to
generate a prompt that is added to the beginning of
the input and causes the LM to generate output text
compliant with the objectives.

2.1 Optimization problem

We formulate discrete prompt optimization as
an RL problem, where we train a multi-layer
perceptron (MLP) module over a frozen language
model as our policy network. A frozen LM head is
used after the MLP module to generate the prompts.

The RL-based approach to discrete prompt
optimization tries to optimize an intractable
objective through stochastic approximation, and a
common way of incorporating multiple objectives
is to use their sum (scalarization). In Equation 1,
we show the intractable objective for scalarization

that RL-based methods attempt to optimize.

max
θ

Ez∼πθ

[
Ey∼pLM (y|x,z)

[
m∑

i=1

ri (y, x)

]]
(1)

Note that Equation 1 involves true expectations,
which are intractable to compute; therefore, we
approximate the expectations by utilizing samples
from the policy and the frozen language model.
At each step, given a text input x, we sample k
prompts {z1, z2, . . . zk} from the policy πθ, where
θ represents the policy parameters. Subsequently,
we utilize another frozen language model pLM to
generate k̂ output sentences for each pair of input x
and prompt zi. Then, we assess the quality of these
outputs using the reward function ri corresponding
to each objective1.

We will explore RL-based approaches that go
beyond simply summing rewards, which may offer
better ways to balance multiple objectives.

3 Methodology

In this section, we describe the adapted
optimization methods for generating discrete
prompts that, when fed into an LM along with
the input text, produce outputs that maximize a set
of competing reward functions. We compare two

1For simplicity, we assume the reward value is solely
dependent on the generated text y and the input text x. It
can be easily expanded to include prompt z or the reference
text, if necessary.
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optimization methods that maximize the volume
coverage of rewards and one method that finds
the gradient update direction which optimizes all
rewards simultaneously.

We adopt the soft Q-learning (SQL)
reinforcement learning framework introduced
by (Guo et al., 2022), which has demonstrated
effectiveness in discrete prompt optimization with
single reward functions or scalarization (Deng
et al., 2022). In line with (Deng et al., 2022), we
utilize only the on-policy component of SQL. For
clarity and simplicity, we omit certain details of the
SQL updates in the pseudo-codes (Figures 3 and
4), focusing instead on the novel multi-objective
components. For a comprehensive discussion of
SQL, we refer the reader to (Guo et al., 2022).

3.1 RL-based Volume Improvement
In this section, we investigate two approaches that
aim to improve the volume coverage of rewards.

3.1.1 Hyper-volume indicator
The hypervolume indicator (Zitzler and Thiele,
1998; Knowles et al., 2004) is defined for a point
set S ⊂ Rd and a reference point pref ∈ Rd.
The hypervolume indicator H quantifies the region
dominated by S and bounded by pref . S denotes
the set of points/solutions that we are examining.
Mathematically, hyper-volume indicator is defined
as:

H( S)=Λ
({

q ∈ Rd | ∃p ∈ S : q≤p and pref ≤ q
})

where the notation q ≤ p means that each
component of the vector q is less than or equal
to each of the corresponding components of the
vector p, and Λ(·) shows the Lebesgue measure
for the sub-space. In other words, Λ(·) measures
the size of the hypervolume covered by a set of
solutions in the objective space. This hypervolume
is always measured with respect to a reference
point, which we consider to be a zero vector in
all our experiments.

In our setting, each point in S is a sampled
sentence. For example, in the style-transfer task, if
we have 2 objective values of style-match: 0.6 and
content-match: 0.3 for a sentence, this point can be
denoted as (0.6, 0.3), and the reference point would
be set to (0, 0). We consider the hypervolume
indicator of the reward functions as the ultimate
reward signal for training the policy network in the
first approach.

3.1.2 Expected product of rewards
In this method, we consider the expected product of
objective functions as the reward signal for training
the policy network. We obtain k̂ samples as output
per prompt and for each sentence, we compute
all m reward values, and calculate the product
of rewards. We utilize the expected product of
rewards across all k̂ samples as the final reward
signal for policy updates.

The main advantage of this reward compared to
the HVI reward is that the effect of the outliers will
be more controlled by using the expected value of
objectives within a sampled set of sentences.

The pseudo-code for the volume-based
approaches is provided in Figure 3, where at
each update step, we sample prompts from the
policy model and generate output sentences from
a desired language model. We then calculate
the reward values for each of the objectives
separately and use them to compute the dominated
hypervolume or the expected product of rewards
and use it to calculate the loss. Then, we update
the policy model using gradient descent.

3.2 Multiple Gradient Descent Algorithm
with RL

We describe the multiple gradient descent
algorithm (MGDA), which finds the gradient
update direction that maximizes all the rewards.
This method follows the approach of steepest
descent for multi-criteria optimization (Fliege and
Svaiter, 2000), where the goal is to find a direction
dt that improves all the objectives by the amount
of αt, at each step t. Here, Li and θ represent the
expected loss corresponding to objective i, and the
parameters of the policy model, respectively.

(dt, αt) = arg min
d∈Rn,α∈R

α+
1

2
∥d∥2,

s.t. ∇Li (θt)
T d ≤ α, i = 1, . . . ,m.

(2)

The update rule for the parameters θ at time t
with the step size η is defined as:

θt+1 = θt − ηdt (3)

This approach has been used in continuous
multi-objective settings (Sener and Koltun, 2019;
Lin et al., 2019). However, in our setting, since
we optimize for discrete prompts, we compute
stochastic gradient approximations by sampling
LLM outputs and then use reinforcement learning
to estimate the gradient based on the samples. We
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Algorithm 2: MGDA-based policy update for one input sentence.

1: Input: Input sentence x, policy πθ, reward models r1...m, external frozen LM
2: {z1...k} ∼ πθ(x) ▷ Sample k prompts from the policy
3: for i = 1. . . k do:
4: {y1...k̂} ∼ pLM (y|x, zi) ▷ Sample k̂ output sentences from a desired LM
5: end for
6: for i = 1 . . . k · k̂ do:
7: calculate r1...m(yi, x) ▷ Calculate r1...m for each output sentence y and input x
8: end for
9: for i = 1. . .m do:

10: Calculate Lm using rm ▷ Use SQL loss (Guo et al., 2022)
11: end for
12: λ1, . . . , λm = FrankWolfeSolver(∇θLi (θ)) ▷ Find the direction using [7]
13: θ = θ − η

∑m
i=1 λi∇θLi (θ) ▷ Gradient descent on policy parameters

Figure 4: In this algorithm, k prompts are sampled from the policy model and used alongside an input sentence to
generate k̂ output samples from an external frozen LM. The desired objective values for each of the sentences are
calculated and used to generate the corresponding losses. Then, a direction to improve all the losses at the same
time is found, and a gradient update on the policy model’s parameters is performed.

calculate all m rewards for each (prompt z, input
x, generated text y) triplet and optimize them.

The pseudo-code for this approach is provided
in Figure 4, where at each update step, we
start by sampling prompts from the policy model
and use them to generate output sentences from
another language model. We then calculate
the reward values for each of the objectives
separately and compute their corresponding losses.
Then, a direction for improving all the losses
simultaneously is calculated and used for the policy
update. More details are available in Appendix
§A.1.

4 Experiments

We now describe the empirical comparison of the
RL-adapted multi-objective optimization methods
that we introduced in the previous section. Our
primary aim is to evaluate these techniques for
discrete prompt optimization for downstream
generative NLP tasks. Based on the availability
of benchmarks and evaluation metrics, we focus on
style transfer and machine translation tasks.

4.1 Tasks & Datasets
In this section, we describe the tasks, datasets,
and their corresponding competing objectives. We
evaluate on two tasks: unsupervised text style
transfer and supervised machine translation.

We consider hypothetical tasks such as
conveying positive sentiment as a competing

objective in addition to accurate style transfer or
machine translation. The selection of these specific
objectives and tasks is motivated by the availability
of standard evaluation datasets and well-established
metrics within the NLP community. For style
transfer, we focus on a specific sub-task that is
well-supported by available ground-truth parallel
style transfer data. Specifically, we aim to transfer
modern English into a Shakespearean style. This
particular style transfer task has long been a
mainstay benchmark for the text style transfer NLP
community (He et al., 2020; Deng et al., 2022).

Unsupervised Text Style Transfer. We
experiment on the style transfer task (Xu et al.,
2012; Jin et al., 2022), converting standard
English into Shakespearean style. We consider
three competing objectives: maintaining the
original content of the input text, infusing it
with Shakespearean style, and ensuring the
resulting text conveys a positive sentiment. We
test on the Shakespeare dataset (Xu et al., 2012;
Jhamtani et al., 2017), and the objective function
corresponding to content preservation is BertScore
(Zhang et al., 2020), for sentiment is a sentiment
RoBERTa-base classifier2, and for style is a
DistilBERT-base-uncased model fine-tuned on
Shakespearean data3.

It is noteworthy that while Shakespearean

2cardiffnlp/twitter-roberta-base-sentiment-latest
3notaphoenix/shakespeare_classifier_model

9882



Method Obj 1 Obj 2 Obj 3 Product Average

Text Style Transfer (Obj1: Content - Obj2: Style - Obj3: Sentiment)

Average 19.56 79.25 38.28 30.91 45.69
Product 34.58 57.78 35.11 36.04 42.49

HVI 25.39 67.91 38.76 32.44 44.02
MGDA 22.37 66.51 38.11 31.16 42.33

Machine Translation (Obj1: Content - Obj2: BLEU - Obj3: Sentiment)

Average 32.07 32.00 46.36 65.48 36.81
Product 32.95 31.70 46.47 65.98 37.04

HVI 31.18 30.51 48.69 63.21 36.79
MGDA 31.46 31.85 46.03 62.87 36.45

Table 1: Reward values corresponding to each objective at a checkpoint where each method achieved the highest
average of the product of rewards across samples. Even though the method utilizing the average of rewards achieved
the highest average value for style transfer, we can observe an imbalance across various objective values. The
product method, on the other hand, got the highest expected product value, reflecting a more balanced improvement.
All the reported values are average objective values computed from 128 output samples.

style and positive sentiment may not directly
be in conflict, they are not correlated either.
Shakespeare’s work includes many tragedies, such
as “Hamlet,” (Shakespeare, 1703) “Macbeth,”
(Shakespeare, 1710) etc., often with negative
sentiments. On the other hand, Shakespeare has
Comedies like “A Midsummer Night’s Dream”
(Shakespeare, 1734) that are more positive in terms
of sentiment. Further, operationally, the way the
objectives can conflict is that there may be word
changes that easily improve sentiment reward (e.g.,
"AWESOME") that break the style reward and vice
versa.

Supervised Machine Translation. We
experiment on German to English translation
task, using the iwslt2017 data (Cettolo et al.,
2017). The objectives and the reward functions
are: (1) semantic similarity between the generated
translation and a reference text computed using
BertScore, (2) BLEU score (Papineni et al.,
2002) between generated text and reference, and
(3) conveying a positive sentiment quantified
by the same RoBERTA-base classifier used in
style-transfer task.

Evaluation Metrics We evaluate each task using
its corresponding objective functions, with the goal
of optimizing all rewards in a balanced manner. To
quantify this balance, we assess performance by
calculating both the mean and the expected product
of the individual objectives for each task.

4.2 Training Details

Following (Deng et al., 2022), we consider a multi-
layer perception module on top of a small frozen
distilGPT-2 model (Sanh et al., 2019), alongside a
frozen LM head as the policy network. We employ
an MLP with 3.1 million parameters. For the text
style transfer task, we use a learning rate of 5e-5,
while for the translation task, we set the learning
rate to 1e-4. In both cases, we utilize the Adam
optimizer. The policy network is trained for 12,000
steps. The number of training samples used for text
style transfer and machine translation are 100 and
200, respectively. At each step, we sample eight
prompts for a given input from the policy network,
each comprising five tokens. Subsequently, we feed
each prompt along with its corresponding input text
into a separate LM to generate 128 output samples.
We use GPT-2 (Radford et al., 2019) for text style
transfer and flan-T5-small (Chung et al., 2022) for
machine translation tasks.

Our choice of models was informed by an
assessment of their respective strengths and
capabilities in specific tasks. For instance, we
observed that the flan-T5-small model exhibited
superior performance in machine translation tasks
compared to the GPT-2 model (Haddow et al.,
2022); we followed past work in using the
base models that tended to have a reasonable
starting performance on the respective tasks.
For instance, T5 has been repeatedly shown to
be effective at translation tasks, while GPT-2
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Sentiment vs Content Style vs Sentiment Style vs Content

Figure 5: Text Style Transfer. From left to right, positive sentiment vs. content match, Shakespearean style vs.
positive sentiment, and Shakespearean style vs. content match for different settings of average reward, hyper volume
indicator reward, expected product reward, and multiple gradient descent algorithm are shown.

Sentiment vs Content BLEU vs Content BLEU vs Sentiment

Figure 6: Pairwise reward values for Machine Translation Task from German to English, in different settings of
average reward, hyper volume indicator reward, expected product reward, and multiple gradient descent algorithm.

fails to produce translations reliably. Further,
we wanted to demonstrate that multi-objective
optimization approaches could generalize across
both the encoder-decoder and decoder-only
language models. Moreover, there is a specific
reason why we chose a weaker model like GPT-2 as
it provides a better benchmark for multi-objective
optimization precisely because GPT-2 is a weaker
style transfer model out of the box compared to
more recent models. As a result, there is a higher
burden placed on the discrete prompt itself in order
to achieve good results.

Furthermore, we employ “Efficient (soft) Q-
learning” (Guo et al., 2022) to learn the policy
network’s parameters based on the reward using
gradient descent.

We repeat each experiment with three distinct
random seeds and report the average results. Using
NVIDIA RTX A6000, each experiment takes about
20-24 hours.

4.3 Compared Methods
We compare two volume maximization approaches
such as Hyper-volume indicator (HVI) and
Expected product of rewards (Product). We also
analyze the Multiple Gradient Descent Algorithm
(MGDA) that finds the optimal gradient update
direction to maximize all rewards simultaneously.

As a baseline, we use RLPrompt (Deng et al.,
2022) for three objectives by optimizing the
average of all rewards (Average) and comparing
with the above-mentioned approaches.

5 Results

We report individual objective values as well
as their expected product and average in
Table 1. When evaluating based on the
expected product, the product method demonstrates
superior performance compared to the other
approaches. Additionally, we observe a more
balanced improvement across all rewards with
volume-based methods such as HVI and product,
in contrast to Average and MGDA. For example,
in style transfer task, the “average” method
improves style disproportionately higher than other
objectives despite achieving the best performance
based on the Average metric.

Among the compared methods, we believe that
expected product of reward best captures the
balanced performance across the rewards, as it
mitigates the problems of objective collapse and
dominant outlier effect, described in prior sections.
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Method Prompt Input Output Obj 1 Obj 2 Obj 3

Text Style Transfer (Obj1: Content - Obj2: Style - Obj3: Sentiment)

HVI thou WhereasYe
WhereasOY

Be brave like
the lion and
proud.

Be thou like the
lion and proud.

77.4 98.14 80.06

EthiopJVphabet
wherein whereby

He has to pay
the price for his
foolish actions.

He hath the
price for his
folly,

65.2 98.48 50.26

MGDA Whereas ye
untoWhereasð

Don’t think I’m
in love with
him just
because I’m
asking about
him.

Thou shalt not
think that I’m
in love with
him just
because I’m
asking about
him.

81.5 89.81 51.96

SyriJV SHALL unto Ye Take your
penalty.

Take thy
penalty.

98.03 44.14 83.3

Product whereinWhereasWhereas
whereinYe

He has to pay
the price for his
foolish actions.

He hath to pay
the price for his
folly;

81.1 98.36 47.07

SHALL SHALL hath
hath SHALL

Yes, my lord. And shall be,
my lord.

55.9 97.46 84.5

Table 2: Given the prompt learned from the policy model alongside the input to GPT2, the Shakespearian form of
the sentence is generated as the output. The objective values corresponding to the output, as well as the method
used for training the policy model, are reported.

5.1 Pairwise Reward Analysis

We plot the pairwise objective values achieved by
each of the optimization methods on the validation
set for text-style transfer and machine translation
tasks in Figure 5 and 6 respectively. Each data
point on the scatter plot represents the average
objective value computed from 128 output samples,
where each output sample is generated from a
prompt sampled from the policy network and
an input sentence from the validation dataset.
Figure 5 illustrates how relying on the average of
reward values can result in sacrifice of individual
objectives in favor of overall improvement. We
observe instances where sentiment and style scores
are notably low, despite a high content score.
This phenomenon arises due to the emphasis
placed solely on the average of rewards, without
consideration for individual objectives. MGDA
performs slightly better than the average reward

when balancing the individual objectives. However,
the HVI and the product of rewards improve all the
objectives simultaneously, with greater success.

Similarly, in the case of the machine translation
task in Figure 6, we observe objective collapse
for the average reward setting, while the other
three approaches demonstrate a better balance
among objectives while enhancing the joint
reward. Notably, the HVI approach and the
expected product of rewards are more successful in
simultaneously optimizing all the objectives.

6 Qualitative Analysis

In this section, we perform a qualitative analysis
of the learned prompts. In Table 2, we provide
two examples of the style transfer task for each
method, the generated prompt using it, the input,
and the resulting output produced by the frozen
model. The examples in Table 2, are some of the
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successful examples chosen based on their high
objective scores. In these examples, content is
preserved reasonably well, while some of the words
are changed in order to be more aligned with the
Shakespearean style. The scores corresponding to
the positive sentiment scores should be interpreted
carefully, as achieving a more positive sentiment
might change the semantic meaning of the sentence
to some extent, specifically where the original
input has an opposite sentiment. For instance, in
another example sentence, “crimes” was replaced
with “good deeds” to make the sentiment more
positive, at the expense of getting a lower score
on the competing objective of content preservation.
Overall, the models seem to achieve a balanced
performance when handling these conflicting
situations.

Moreover, we can observe some similarities
and common words in high-performing prompts,
demonstrating the effectiveness of certain tokens
for a specific task. However, we can see that despite
these similarities, the differences in the prompts
from various methods can substantially affect the
final evaluation results, which were shown in Table
1.

It is important to note that the highest-
performing prompts do not necessarily need to
be interpretable by humans. There is value in a
discrete prompt beyond it being interpretable by
humans: a discrete prompt, unlike a continuous
prompt, can be passed into a black-box model
like ChatGPT, while a continuous prompt cannot.
Furthermore, discrete prompts are more likely to
generalize across different LLMs than continuous
prompts due to the common text space instead of
the model-specific latent space (Deng et al., 2022).
In applications where having an interpretable
prompt is useful, corresponding rewards could be
included in the multi-objective formulation.

7 Related Work

Prompt Tuning. A line of research has emerged
with a focus on improving the discrete (Jiang et al.,
2020; Prasad et al., 2023; Mishra et al., 2022)
and soft prompts (Li and Liang, 2021; Qin and
Eisner, 2021; Vu et al., 2022; Liu et al., 2023) for
improved downstream performance. Few recent
works generate discrete prompts by utilizing the
models gradients (Shin et al., 2020; Wen et al.,
2023), employing evolution algorithms (Guo et al.,
2023), and reinforcement learning (Zhang et al.,

2023; Deng et al., 2022; Jung and Kim, 2023; Wang
et al., 2023). Our work shares a similar direction,
but we focus on multiple competing objectives
instead of one.

Multi-objective Reinforcement Learning.
Multi-objective reinforcement learning is typically
studied in decision-making (Van Moffaert et al.,
2013; Van Moffaert and Nowé, 2014; Yang et al.,
2019; Xu et al., 2020; Hayes et al., 2022). Jang
et al. (2023) fine-tunes LMs for multiple objectives
by training one policy model per objective and
merging them. (Lin et al., 2019; Sener and Koltun,
2019) perform multi-objective RL in a multi-task
learning setup. Instead, we propose optimizing the
prompts for one model with multiple objectives.

8 Conclusion

We empirically investigate the use of optimization
techniques alongside reinforcement learning to
address discrete prompt optimization in a multi-
objective context. Our experiments show that
multi-objective methods, which directly optimize
the volume, outperform those seeking monotonic
update directions, achieving a better balance across
all rewards.

9 Limitations

The methods discussed in this paper take many
GPU hours to converge, making it computationally
expensive to run. Moreover, our optimization
methods perform well on smaller LMs like GPT2,
we have not experimented with larger models
because of the substantial computational cost.

10 Ethical Considerations

This paper introduces three approaches for discrete
prompt optimization. As such, prompt-tuning
should not introduce biases not already observed
in the model and generate any harmful text as
prompts, and we do not anticipate any significant
ethical concerns.
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A Appendix

A.1 Multiple Gradient Descent Algorithm
(Fliege and Svaiter, 2000) proposes a steepest

descent algorithm for multi-criteria optimization,
where the update rule for the parameters θ at time
t with the step size η is defined as:

θt+1 = θt − ηdt (4)

where the search direction dt is calculated as
follows, with Li(θj) being the expected loss
corresponding to objective oi:

(dt, αt) = arg min
d∈Rn,α∈R

α+
1

2
∥d∥2,

s.t. ∇Li (θt)
T d ≤ α, i = 1, . . . ,m.

(5)

A valid direction dt improves the values for all
the objectives, simultaneously. Moreover, (Fliege
and Svaiter, 2000) shows that the solution obtained
by the aforementioned approach leads to a Pareto
critical point.

Based on the KKT conditions, we have

dt = −
(

m∑

i=1

λi∇Li (θt)

)
,

m∑

i=1

λi = 1 (6)

and we can write equation-5 in its dual form:

max
λi

− 1

2

∥∥∥∥∥
m∑

i=1

λi∇Li (θt)

∥∥∥∥∥

2

s.t.
m∑

i=1

λi = 1, λi ≥ 0, ,∀i = 1, . . . ,m.

(7)

Therefore, in order to find a valid direction d
that improves all the objectives, we can rewrite
the equation in its dual form. This will give us
a constrained optimization problem, which can
be solved by the Frank-Wolfe algorithm, and we
can then use gradient descent to update the policy
parameters.
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