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Abstract

Multilingual large language models (MLLMs),
trained on multilingual balanced data, demon-
strate better zero-shot learning performance
in non-English languages compared to large
language models trained on English-dominant
data. However, the disparity in performance
between English and non-English languages
remains a challenge yet to be fully addressed.
A distinctive characteristic of MLLMs is their
high-quality translation capabilities, indicating
an acquired proficiency in aligning between
languages. This study explores how to en-
hance the zero-shot performance of MLLMs
in non-English languages by leveraging their
alignment capability between English and non-
English languages. To achieve this, we first ana-
lyze the behavior of MLLMs when performing
translation and reveal that there are large mag-
nitude features that play a critical role in the
translation process. Inspired by these findings,
we retain the weights associated with opera-
tions involving the large magnitude features
and prune other weights to force MLLMs to
rely on these features for tasks beyond trans-
lation. We empirically demonstrate that this
pruning strategy can enhance the MLLMs’ per-
formance in non-English language.1

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable language reasoning capabilities,
particularly in English contexts. However, these
LLMs limited their proficiency in non-English
language (Ahuja et al., 2023, 2024). Recogniz-
ing this limitation, recent research endeavors have
given rise to Multilingual Large Language Mod-
els (MLLMs), such as XGLM (Lin et al., 2022),
mGPT (Shliazhko et al., 2024), and BLOOM (Scao
et al., 2022), designed to address the challenges

1The code used in our experiments is available at
https://github.com/hwichan0720/pruning_for_
multilinguality.

Figure 1: The overlap ratios among the top- and bottom-
30% features in the 27-th layer of XGLM, ranked by
their magnitude. The row and column labels correspond
to languages and language pairs used in few-shot mono-
lingual (En, Fr, etc.) and translation (Fr-En, Es-En, etc.)
demonstrations, respectively. Each element represents
the ratios of overlapping features between the top- and
bottom-30% in magnitude within each demonstration.
This figure shows that specific features are active only
when inputting translation demonstrations.

posed by linguistic diversity. In the context of zero-
shot learning, MLLMs have demonstrated superior
proficiency across multiple languages compared
to English LLMs (Etxaniz et al., 2024). Never-
theless, a discernible disparity persists in accuracy
levels when comparing results between English and
non-English languages. For example, in the Cross-
lingual NLI (XNLI) task (Conneau et al., 2018),
XGLM-2.9B achieves accuracies of 51.1 and 39.2
in English and Russian, respectively (see Tab. 2).

Achieving performance parity in non-English
languages with English, which represents the upper
bound of MLLMs, necessitates the alignment of
English and non-English texts. Ahuja et al. (2023)
has demonstrated the effectiveness of the translate-
test, a methodology translating non-English texts
into English using an external machine transla-
tion (MT) system and running inference over the
translated texts, which serves as an approach to
superficially align English and non-English. How-
ever, the translate-test approach increases inference
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costs due to its reliance on the MT system. Con-
versely, recent research indicated that MLLMs can
perform translation by incorporating few-shot trans-
lation demonstrations into the contextual informa-
tion (Lin et al., 2022; Etxaniz et al., 2024; Vilar
et al., 2023). These findings suggest that MLLMs
already have alignment capability between English
and non-English, and it is manifested through the
incorporation of few-shot translation demonstra-
tions. We believe that if the alignment capabil-
ity can be brought out in tasks other than transla-
tion, non-English performance elevates to the level
equivalent to English.

Previous researches (Dettmers et al., 2022; Sun
et al., 2024) have identified two distinctive charac-
teristics within hidden state features of LLMs: first,
the presence of large magnitude features, a small
set of hidden state features that emerge with signif-
icantly larger magnitudes than the remaining ones;
and second, the essential nature of these features for
the predictive capabilities of LLMs. Referring to
the researches, we analyzed magnitudes of features
of MLLMs when inputting few-shot monolingual
and translation demonstrations. Fig. 1 shows the
overlap ratios within features between the monolin-
gual and translation demonstrations, and indicates
that specific features are predominantly active only
when inputting translation demonstrations. In addi-
tion, we will see later that the large magnitude fea-
tures are relevant for the translation performance.

Motivated by the results, we hypothesized that
MLLMs carry out zero-shot inferences while ac-
centuating their alignment capability by forcing
them to use large magnitude features that are active
when inputting few-shot translation demonstrations.
To achieve this, we retained and pruned weights of
MLLMs following Sun et al. (2024) that involve op-
erations for the large magnitude features and others,
respectively. We observed that the pruned MLLMs
improved zero-shot performance in non-English
languages compared to pre-pruned MLLMs. Our
contributions in this study are threefold:

1. We demonstrated that specific features exhibit
large magnitudes and are predominantly ac-
tive only when inputting few-shot translation
demonstrations. In addition, we showed that
the large magnitude features are relevant for
performing the translation task.

2. We conducted multilingual zero-shot learn-
ing in the Cross-lingual Natural Language

Inference (XNLI) and Multilingual Amazon
Review Corpus (MARC) tasks while forc-
ing MLLMs to rely on the large magnitude
features through pruning. The results indi-
cated that the pruning enhances performance
in XGLM and mGPT, but it did not improve
the performance of BLOOM.

3. Since BLOOM was trained on programming
language texts as well as multilingual natural
language texts, it has the capability to gener-
ate programming language, unlike XGLM and
mGPT. We hypothesized that the capability to
generate programming language introduces
noise. Based on the hypothesis, we attempted
to prune weights associated operations for the
large magnitude features activated when gen-
erating programming language texts. We ob-
served that it enhances multilingual zero-shot
learning performance in BLOOM.

2 Task Setting

In this study, we conduct zero-shot learning with
MLLMs under Lin et al. (2022)’s scenario. We
consider a language l ∈ L and its test example
as xl. To perform in-context learning, we convert
xl to a cloze-style format that contains a [Mask]
symbol using a template T and map each candidate
label y ∈ Y into a string using a verbalizer v ∶
Y → V∗. An input prompt P(xl, y) is obtained
by substituting the [Mask] symbol in T (xl) with
v(y). In zero-shot in-context learning, a prediction
ŷ is the label with the maximum likelihood:

ŷ = argmax
y∈Y

p(P(xl, y)∣θ) (1)

where θ is parameters of the MLLM. The objective
of our study is to enhance the non-English language
performance of MLLMs in a zero-shot in-context
learning setting.

3 Related Works

English LLM and their characteristics Large
language models (LLMs) have shown strong per-
formance in a wide range of downstream tasks.
While fine-tuning has been a popular approach to
adapt models to new tasks, it is often impractical
to fine-tune very large models. Brown et al. (2020)
proposed zero- and few-shot in-context learning as
an alternative, which do not require any gradient
updates. One of the problems with using LLMs is
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that it requires a lot of computational resources for
inference.

One of the problems with using LLMs is that
it requires a lot of computational resources for
inference. To overcome this problem, several
studies have attempted quantization of the LLMs.
Dettmers et al. (2022) proposed a novel quanti-
zation method called LLM.int8() that performs
matrix multiplications for large magnitude features
and others in 16-bit and 8-bit, respectively. They
empirically demonstrated that LLM.int8() reduces
performance degradation compared to performing
all operations in 8-bit. This result suggests that the
large magnitude features of LLMs are crucial for
their prediction.

Motivated from the success of LLM.int8(), Sun
et al. (2024) proposed a weights pruning approach
named pruning by weights and activations (Wanda).
Wanda drops weights that do not involve opera-
tion for the large magnitude features. Consider
a linear layer’s weight of k-th layer of a model
θ
k ∈ Rdout×din and hidden states output from

previous layer X
k−1 ∈ RT×din , where T de-

notes the number of tokens included in calibra-
tion data X . Wanda calculates importance scores
S

k ∈ Rdout×din for each element of the weight
based on θ

k and X
k−1. Specifically, a score of

i, j-th element Si,j is calculated as:

Si,j =
»»»»»θk

i,j
»»»»» ⋅ ∥Xk−1

j ∥2 (2)

where ∣⋅∣ represents the absolute value operator,∥Xk−1
j ∥2 evaluates the L2-norm of the j-th fea-

ture vector aggregated across T different tokens.
Wanda prunes weights of the bottom α% scores.
Their experiments demonstrated that Wanda can
prune weights of LLMs even mitigating degrada-
tion of their performance compared to other prun-
ing methods.

Enhancing multilingual performance of multi-
lingual pre-trained models As outlined in §1,
several studies have attempted to train Multilingual
Large Language Models (MLLMs) using datasets
that exhibit a more balanced linguistic distribution
compared to English-dominant data used in LLMs.
Although MLLMs have impressive multilingual
capability, their performances in non-English lan-
guages do not achieve those in the English level,
which is an upper bound level of MLLMs.

This phenomenon has been observed in multi-
lingual pre-trained masked language models, such

as mBERT (Devlin et al., 2019) and XLM-R (Con-
neau et al., 2020). Several studies have enhanced
the alignment of hidden states between target lan-
guages and English using bilingual resources dur-
ing either the pre-training or fine-tuning phases,
demonstrating improved performance in the tar-
get languages (Lample and Conneau, 2019; Cao
et al., 2020; Yang et al., 2021; Chi et al., 2021;
Dou and Neubig, 2021). Few-shot cross-lingual
transfer, which involves fine-tuning the multilin-
gual pre-trained models with a small amount of
supervised data in the target language for a down-
stream task, is a promising approach, and several
studies have validated its effectiveness (Lauscher
et al., 2020; Kim and Komachi, 2023). However,
the efficacy of these methodologies when applied
to MLLMs remains unverified, and such training
approaches require substantial computational re-
sources for adaptation to MLLMs.

Xu et al. (2023) undertook research closely
aligned with our objective, specifically aiming to
enhance non-English performance of MLLMs in a
zero-shot learning scenario without the necessity
for fine-tuning. They introduced a novel method-
ology termed Language Representation Projection
(LRP2). LRP2 adjusts the hidden states at the a-th
layer by subtracting and adding vectors that corre-
spond to the target language and English, respec-
tively. Subsequently, the inverse operations are
applied at the b-th layer. These vectors are derived
from the mean-pooled vectors across all tokens
in each respective language’s dataset at the corre-
sponding layers.

In this research, we provide a promising di-
rection for enhancing non-English performance
through comprehensive experiments on various
MLLMs. Specifically, we identify large-magnitude
features that are relevant for bringing out the inher-
ent alignment capabilities of MLLMs (Lin et al.,
2022; Etxaniz et al., 2024; Vilar et al., 2023; Chitale
et al., 2024). Motivated by the results, we encour-
age MLLMs to leverage these prominent features
by implementing Wanda (Sun et al., 2024). Sub-
sequent sections will show that our approach im-
proves the performance of non-English languages
across multiple MLLMs, surpassing that of LRP2.

4 Detecting Translation Features

Our challenge is accentuating the alignment ca-
pability of MLLMs to enhance their non-English
performance even when tasks other than transla-
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Figure 2: The top 20 dimensions with the largest magni-
tudes of 27-th layer’s features of XGLM activated when
inputting XZh−En.

tion. To explore how to emphasize the alignment
capability, we first analyze the behavior of MLLMs
during translation. While previous studies have
suggested that large magnitude features are impor-
tant for inference, they did not reveal whether large
magnitude features are the same or different across
tasks. If the large magnitude features that acti-
vate exclusively during translation are instrumental
for MLLMs’ translation performance, the features
may be key to bringing out the alignment capabil-
ity. Therefore, in this section, we conduct analyses
based on the following research questions to show
step-by-step that there are large magnitude features
that affect for translation performance.

RQ1: Do few-shot translation demonstrations
activate specific features? Previous studies have
suggested that MLLMs can achieve translation per-
formance equivalent to supervised machine transla-
tion models by incorporating few-shot translation
demonstrations into contextual information. We
consider that salient features when inputting few-
shot translation demonstrations play an important
role in translation.

Therefore, in this study, we analyze magni-
tudes of the hidden state features X

k
src-tgt ∈

RTsrc-tgt×din , those of few-shot translation demon-
strations Xsrc-tgt = {x1src-tgt, ..., x

N
src-tgt} output

from k-th layer of an MLLM. Here, Tsrc-tgt is a
total amount of tokens included in Xsrc-tgt. To
construct a translation demonstration x

1
src-tgt, we

use n-shot bilingual sentence pairs between src
and tgt language randomly sampled from bilin-
gual data. In addition, we find the hidden state
features X

k
src ∈ RTsrc×din and X

k
tgt ∈ RTtgt×din

, those of few-shot monolingual demonstrations
Xsrc = {x1src, ..., xNsrc} and Xtgt = {x1tgt, ..., xNtgt},

Figure 3: The overlap ratios among the top- and bottom-
30% features in the 47th layer of XGLM, ranked by
magnitude.

respectively. Please refer to Appendix A for de-
tailed descriptions on how to construct each demon-
stration (xsrc-tgt, xsrc, and xtgt).

To investigate the magnitude of each fea-
ture of X

k
src-tgt, X

k
src, and X

k
tgt, we find∥Xk

src-tgt∥2,∥Xk
src∥2,∥Xk

tgt∥2 ∈ Rdin follow-
ing Sun et al. (2024), which are vectors that
each element is L2-norm of the feature aggre-
gated across the tokens of the corresponding hidden
states. Specifically, j-th feature of ∥Xk

src-tgt∥2 is∥(Xk
src-tgt)j∥2. We examine whether there are

features that have extremely large magnitude com-
pared to others.

Furthermore, we measure overlap ratio between
the top and bottom β% of features, ranked ac-
cording to their magnitudes. Specifically, the
overlap ratio between the features in the top β%
of ∥Xk

src-tgt∥2 and those in the bottom β% of∥Xk
src∥2 is calculated as follows:

∣{d1src-tgt, . . . , d
dβ
src-tgt} ∩ {ddin−dβsrc , . . . , d

din
src}∣

dβ

where dβ (= din ⋅ β/100) is the number of
dimensions accounting for β% of the total di-
mensions. The sets {d1src-tgt, . . . , d

dβ
src-tgt} and{ddin−dβsrc , . . . , d

din
src} denote dimensions correspond-

ing to the top- and bottom-dβ features. If the ratio
between the top of ∥Xk

src-tgt∥2 and the bottom of∥Xk
src∥2 (or ∥Xk

tgt∥2) is high value, it suggests
that the features prominently active during transla-
tion demonstrations diminish in importance during
monolingual demonstrations. This implies the ex-
istence of large magnitude features that are active
only when processing translation demonstrations.
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Figure 4: Averaged overlap ratios for each quadrant. This plot quantifies the overlap between monolingual and
translation demonstrations in the upper-left, upper-right, lower-left, and lower-right quadrants across different layers.

RQ2: Are the large magnitude features rele-
vant for translation performance? We investi-
gate whether the large magnitude features when
inputting few-shot translation demonstrations are
relevant for translation performance. To reveal this,
we retain weights of the MLLM that involve oper-
ation for the large magnitude features and prune
other weights. It is accomplished through pruning
based on Wanda using Xsrc-tgt as calibration data.
We denote the pruned weights as θsrc-tgt. We also
perform pruning using Xsrc and Xtgt as calibra-
tion data, and denote each pruned weights as θsrc

and θtgt, respectively. We conduct translation with
original weights before pruning θ and each pruned
weight. If θsrc-tgt maintains the performance rela-
tive to θ, and also θsrc and θtgt decrease the per-
formance relative to θ, it suggests that it is relevant
for translation to use the large magnitude features
activated by inputting translation demonstrations.

4.1 Experimental Settings
We experimented with XGLM-2.9B, mGPT-1.7B,
and BLOOM-3B and employed Etxaniz et al.
(2024)’s setting and implementation for the con-
struction of demonstrations and translation. To
construct Xsrc-tgt, Xsrc, Xtgt, we set N and n,
the numbers of demonstrations and shots of each
demonstration, as 100 and 4, respectively. As a re-
sult, we randomly sampled 400 (= N×n) bilingual
sentence pairs from development data of FLORES-
200 (NLLB Team et al., 2022).

To evaluate translation performance for RQ2,
we conducted 4-shot in-context learning. We con-
structed a 4-shot translation demonstration xsrc-tgt
with the procedure described in RQ1. We incor-
porated a test example from the source language
denoted as stest at the end of xsrc-tgt. Consequently,
a translation was produced by inputting a concate-
nated string xsrc-tgt ⊕ src ∶ stest ⊕ tgt ∶ into each

model. We used the XNLI test set (Conneau et al.,
2018) as evaluation data. The test sets of each
language are bilingual to each other.

For pruning, we used the implementation of Sun
et al. (2024) and set a pruning ratio α to 30%. 2

4.2 Experimental Results

Answer to RQ1: Few-shot translation demon-
strations activate specific features up to middle
layer.3 Fig. 2 shows that the top-20 dimensions
with the largest magnitudes of ∥X27

Zh−En∥2. The
figure shows that there are features that have ex-
tremely large magnitudes compared to others. We
found that there are common features that have
large magnitude independent of the demonstrations,
such as 1849, 218, and 1244. On the other hand,
we observed that there are features included in the
top-20 magnitudes of ∥X27

Zh−En∥2 but not in those
of ∥X27

Zh∥2 and ∥X27
En∥2, such as 354, 231, and

1262. We quantified the ratio of unique dimensions
within the top-20, top-50, and top-100 magnitudes
and showed the results in Appendix C.

To further investigate the commonalities and dif-
ferences among features with large magnitudes, we
quantified the ratio of overlaps among the top and
bottom 30% of features, ranked by their magnitude,
across each demonstration, as depicted in Figures 1
and 3. Up to the middle (27-th) layer, as shown in
Fig. 1, the ratios among the monolingual demon-
strations (the upper left quadrant) reveal minimal
overlap within linguistically similar languages (En,
Fr, and Es), yet exhibit many overlaps within lin-
guistically distant languages, suggesting that the

2See the Appendix B for implementation details, including
sources of the code and hyperparameters.

3We observed the similar trends as described in this sec-
tion across other models (i.e. BLOOM and mGPT), layers,
and languages. Please refer Appendix C and supplemental
materials for the remaining results.
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Source Language

Weight Ar Bg De El Hi Ru Sw Th Tr Ur Vi Fr Es Zh Avg.

θ 19.4 31.3 34.3 35.4 16.7 22.5 21.4 17.3 14.8 13.2 25.0 35.2 37.3 16.1 24.3

θEn 17.9 30.7 33.5 34.8 16.2 21.9 20.6 17.1 14.1 13.0 24.6 34.3 36.7 15.5 23.5
θFr 18.0 30.2 33.3 34.4 16.1 21.8 20.4 17.1 14.2 13.1 24.7 34.1 36.2 15.0 23.5
θEs 18.0 30.3 33.4 33.5 16.0 21.9 20.5 16.8 14.1 12.6 24.4 34.2 36.4 15.1 23.4
θZh 18.0 30.2 33.5 34.3 16.0 21.9 20.2 16.9 13.9 12.8 24.4 33.8 36.2 15.2 23.4
θHi 18.2 30.1 33.0 33.8 15.9 22.1 20.1 17.0 14.0 12.5 23.6 33.1 35.7 15.3 23.2
θSw 18.1 30.5 33.3 34.4 15.8 21.7 20.2 17.1 14.4 12.8 24.7 34.0 36.0 15.5 23.5

θFr−En 18.3†‡ 31.1†‡ 33.9†‡ 35.2†‡ 16.5†‡ 22.4†‡ 20.9†‡ 17.7†‡ 14.5†‡ 13.3† 25.0† 34.6†‡ 37.0†‡ 15.7†‡ 24.1
θEs−En 18.6†‡ 30.9†‡ 33.9†‡ 35.0†‡ 16.5†‡ 22.3† 20.9†‡ 17.3†‡ 14.5† 13.1‡ 24.9†‡ 34.6†‡ 37.0†‡ 15.6†‡ 23.9
θZh−En 18.9†‡ 30.9†‡ 33.9† 34.9‡ 16.5† 22.2† 20.8‡ 17.6†‡ 14.3 13.4†‡ 25.2†‡ 34.8†‡ 36.7‡ 15.8‡ 24.0
θHi−En 18.7†‡ 31.1†‡ 33.8†‡ 34.9 16.3†‡ 22.2†‡ 20.7†‡ 17.5†‡ 14.4†‡ 12.9†‡ 25.1†‡ 34.4†‡ 36.9†‡ 15.7†‡ 23.9
θSw−En 18.6†‡ 30.8 33.8†‡ 34.9 16.2†‡ 22.2†‡ 20.9†‡ 17.5†‡ 14.4†‡ 13.2†‡ 24.9†‡ 34.4 36.9†‡ 15.6†‡ 23.9

Table 1: BLEU scores of XGLM on original weights θ and each pruned weights θsrc-tgt, θsrc, and θtgt. † and ‡
denote statistical significance against θsrc and θtgt, respectively. The details for the statistical significance test were
shown in Appendix B.

activated features are influenced by linguistic char-
acteristics. Additionally, two notable observations
can be discerned from the figures. Firstly, the ratios
between the monolingual and translation demon-
strations (the lower left and upper right quadrants)
are relatively high compared to the others, indicat-
ing that the features prominently activated by the
translation or monolingual demonstrations become
less significant in the alternate demonstrations. Sec-
ondly, the ratios within the translation demonstra-
tions (the lower left quadrant) display little overlap,
suggesting that similar features are activated by
each translation demonstration. These findings sug-
gest that specific features are uniquely activated
during the input of translation demonstrations.

In the proximity of final (47-th) layer, as depicted
in Fig. 3, the ratios were higher across the board.
Interestingly, the ratios between the translation and
the source languages’ monolingual demonstrations
were minimal in these layers. This result indicates
that the features that are active when inputting trans-
lation demonstrations are more dependent on non-
English languages than on English.

To provide an overarching perspective of the
varying patterns across layers, we computed the
average overlap ratios for each quadrant of the
heatmap, as illustrated in Fig. 4. The figure shows
that a decline in each overlap ratio from the ini-
tial to the middle layers, followed by an increase
from the middle to the last layers. Moreover, the
figure illustrates that the average overlap ratios in
the lower quadrant, those among the translation
demonstrations, are lower compared to the others
across each layer.

Answer to RQ2: The large magnitude features
are relevant for maintaining translation per-
formance. We conducted to-English translations
with the original and pruned models. Tab. 1 shows
the BLEU scores of each model. The BLEU scores
for models pruned by monolingual (θEn, θFr, θEs,
etc.) and translation (θFr−En, θEs−En, etc.) demon-
strations were degraded approximately one and 0.3
points compared to the scores of the unpruned orig-
inal model (θ), respectively. This result suggests
that the features retained in the model pruned based
on translation demonstrations, but omitted in the
model pruned based on monolingual demonstra-
tions, are important for maintaining the translation
performance of the original model.

5 Multilinguality of Pruned MLLMs

Our main goal is to enhance the zero-shot perfor-
mance of MLLMs in non-English contexts by lever-
aging the alignment capability between English and
non-English languages. In the previous section, we
demonstrated that the large magnitude features that
are active only when processing few-shot trans-
lation demonstrations play an important role to
maintain the translation performance of MLLMs.
This implies that these prominent features are es-
sential for bringing out the alignment capability.
We hypothesize that zero-shot in-context learning
is performed while accentuating the alignment ca-
pability by prioritizing the use of the large magni-
tude features from few-shot translation demonstra-
tions. We can accomplish this by employing the
pruned weights, denoted as θsrc-tgt, based on few-
shot translation demonstrations. The pruned model
focuses on the large magnitude features relevant for
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Model Weight Ar Bg De El Hi Ru Sw Th Tr Ur Vi Fr Es Zh Avg.

XGLM

θ 44.0 41.8 41.6 44.0 44.7 39.5 42.5 44.2 41.0 42.7 45.2 45.0 35.2 43.9 42.5

LRP2 - - - - 44.6 - 42.4 - - - - 46.4 36.0 45.1 -

θRand 32.4 33.5 34.6 33.9 33.2 33.5 34.3 34 33.2 34.8 33.5 36.2 34.4 33.9 33.9

θFr−En 44.9† 45.8† 42.9† 46.2† 44.9 43.0† 43.5† 45.4† 42.5† 42.8 47.7† 47.2† 39.7† 47.2† 44.5
θEs−En 44.3 45.9† 42.5† 45.6† 44.7 43.2† 43.3† 45.9† 42.8† 42.5 47.5† 47.0† 36.3† 46.8† 44.1
θZh−En 44.1 45.9† 43.0† 45.9† 45.0 43.6† 42.5 45.5† 42.2† 43.0 47.5† 47.7† 39.8† 46.7† 44.4
θHi−En 43.7 42.8† 40.3 45.2† 44.7 42.5† 42.7 45.5† 41.0 42.2 45.5 46.2 37.2† 46.0† 43.3
θSw−En 43.8 44.5† 40.3 46.1† 43.7 41.7† 42.0 45.6† 41.7 42.0 45.4 46.4† 38.9† 46.1† 43.4

mGPT

θ 39.2 39.7 35.0 41.0 38.9 39.2 34.0 41.6 39.9 39.9 42.2 42.3 39.4 41.8 39.6

LRP2 - - - - 35.2 - 34.4 - - - - 34.2 33.1 34.1 -

θRand 33.3 33.2 32.9 33.2 33.3 33.3 33.4 33.0 33.0 33.2 33.5 33.6 34.0 33.1 33.2

θFr−En 39.3 39.5 36.3† 41.9† 40.2† 39.5† 34.7† 42.6† 40.2† 40.0 42.8† 42.1 39.7† 41.7 40.0
θEs−En 40.6† 40.3† 36.6† 42.6† 39.5† 39.8† 35.2† 42.9† 40.1 39.9 43.5† 42.5† 40.4† 41.2 40.3
θZh−En 39.1 39.9† 36.1† 41.5† 39.8† 39.0 34.4† 43.4† 40.1 40.2† 43.2† 42.2 39.9† 41.4 40.0
θHi−En 39.1 39.5 34.9 41.1 40.3† 38.9 34.5† 42.1† 40.0 40.5† 42.6 42.1 38.9 41.6 39.7
θSw−En 38.7 39.4 34.9 40.1 40.1† 38.8 34.5† 42.3† 39.8 40.7† 43.6† 42.5† 39.1 41.9 39.7

BLOOM

θ 46.7 40.4 41.9 38.6 44.9 40.9 36.8 36.2 35.9 41.4 42.9 45.0 41.1 45.4 41.2

LRP2 - - - - 44.6 - 37.3 - - - - 46.0 44.3 46.8 -

θRand 32.8 33.1 33.3 32.9 33.5 32.8 33.2 33.5 33.1 33.3 33.7 33.9 34.1 33.3 33.3

θFr−En 47.0 40.3 42.2 39.5† 45.9† 41.3† 36.9 36.5 35.6 41.1 41.9 44.9 41.2 44.6 41.3
θEs−En 47.0 40.6 42.2 38.9 45.5† 41.1 37.1 36.6† 35.7 40.9 41.9 44.5 41.3 44.4 41.2
θZh−En 46.7 40.3 41.9 39.2† 45.3† 41.1 37.0 36.7† 35.7 40.4 41.6 44.2 40.5 45.2 41.1
θHi−En 47.2† 40.7 40.6 40.1† 45.2 41.6† 36.0 37.0† 36.2 41.4 42.1 45.4† 42.0† 43.7 41.4
θSw−En 46.9 40.3 40.6 40.3† 43.8 41.3† 35.7 36.2 36.1 41.5 43.0 44.4 40.8 44.1 41.0

θ
Prog
Fr−En 46.9 40.6 42.0 40.0† 45.8† 42.3† 37.4† 36.6† 35.6 41.9† 41.3 45.1 41.6† 45.2 41.6

θ
Prog
Es−En 47.1† 40.8† 42.2† 39.9† 46.5† 41.3† 37.2† 36.3 35.5 41.2 41.1 45.1 42.2 45.6 41.6

θ
Prog
Zh−En 47.2† 40.5 42.2 40.0 † 45.8† 41.2 37.1 36.0 35.8 41.2 42.1 45.8† 42.4† 46.3† 41.7

θ
Prog
Hi−En 47.3† 40.3 41.2 40.3† 45.4† 41.6† 36.2 36.8† 36.1 41.3 42.2 45.2 42.1† 45.3 41.5

θ
Prog
Sw−En 46.8 41.1† 42.5† 39.5† 45.5† 41.2 36.9 36.6† 35.5 42.5† 43.3† 45.2 41.3 45.0 41.6

Table 2: Accuracy scores on the XNLI task. The highest scores in each model are indicated in bold. † denotes
statistical significance against the original model θ.

performing translation, disregarding other features
during the prediction process, thereby accentuating
alignment capability regardless of the target task.
We conduct zero-shot in-context learning based on
the pruned weights θsrc-tgt as follows:

ŷ = argmax
y∈Y

p(P(xl, y)∣θsrc-tgt) (3)

5.1 Experimental Settings

We conducted zero-shot in-context learning with
the framework as shown in §2 and followed the
Lin et al. (2022)’s setting. We employed the XNLI
(Conneau et al., 2018) and Multilingual Amazon
Review Corpus (MARC) (Keung et al., 2020) tasks
to evaluate non-English performance. For the
MARC task, we used the two-label (positive and
negative) classification setting. Please refer to Ap-
pendix B for the details of a template and verbal-
izer.

In this experiment, the performances of MLLMs
pruned by demonstrations from En, Fr, Es, Zh, Hi,

and Sw data were evaluated. For the construction
of demonstrations, MLLMs, and pruning ratio, we
used the same setting as described in §4.1.

For the comparative analysis, we evaluated the
performance of randomly pruned models θRand. In
addition to them, we used LRP2 (Xu et al., 2023).
We aligned the data used for applying LRP2 with
those used for the pruning process. Given that
LRP2 necessitates data from both source and target
languages, we restricted the evaluation to Fr, Es,
Zh, Hi, and Sw in the LRP2 experiment. The hyper-
parameter (a and b) search for LRP2 was conducted
using the XNLI development sets corresponding to
the respective languages.

5.2 Experimental Results

Tables 2 and 3 show the accuracy scores of each
model. In XGLM and mGPT, the models pruned by
the translation demonstrations with high-resource
languages (θFr−En, θEs−En, and θZh−En) out-
performed the original model θ, the randomly
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Model Weight De Ja Fr Es Zh AVg.

XGLM

θ 64.0 64.6 60.2 60.8 67.6 63.4

LRP2 - - 60.4 60.1 66.3 -

θRand 49.3 52.3 55.4 53.4 51.1 52.3

θFr-En 64.4† 66.9† 60.8† 60.8 69.2† 64.4
θEs-En 64.1 66.3† 60.8† 61.0† 68.7† 64.2
θZh-En 64.5† 64.4 60.5† 60.0 68.0† 63.5
θHi-En 63.8 66.1† 60.0 60.4 69.5† 63.9
θSw-En 63.9 64.8 59.8 60.3 68.5† 63.5

mGPT

θ 65.9 56.3 64.1 65.6 53.9 61.2

LRP2 - - 51.7 52.4 50.7 -

θRand 52.8 54.4 50.3 50.8 51.9 52.0

θFr-En 66.4† 57.1† 63.6 65.7 55.2† 61.6
θEs-En 66.4† 57.2† 64.6† 65.9† 55.3† 61.9
θZh-En 66.1 56.9† 64.7† 65.9† 55.5† 61.8
θHi-En 66.2† 57.7† 63.7 65.6 55.4† 61.7
θSw-En 66.3† 57.4 64.2 65.8 55.2† 61.7

BLOOM

θ 52.7 59.3 62.4 63.6 63.1 60.2

LRP2 - - 60.4 63.8 66.3 -

θRand 51.4 53.4 52.2 52.3 52.9 52.4

θFr-En 52.8 59.7† 61.9 62.5 64.2† 60.3
θEs-En 53.9† 59.8† 61.3 62.0 63.6† 60.1
θZh-En 53.4† 59.4 62.1 62.7 64.6† 60.4
θHi-En 52.5 59.6† 60.9 61.6 64.6† 59.8
θSw-En 53.0† 59.6† 61.1 62.0 63.2 59.8

θ
Prog
Fr-En 53.9† 59.9† 62.7† 63.1 63.9† 60.7

θ
Prog
Es-En 53.6† 60.3† 62.5 63.2 64.9† 60.9

θ
Prog
Zh-En 53.9† 59.9† 62.5 63.1 65.6† 61.0

θ
Prog
Hi-En 53.2† 60.2† 61.9 62.8 64.5† 60.5

θ
Prog
Sw-En 53.3† 59.6† 61.8 62.9 63.4† 60.2

Table 3: Accuracy scores on the MARC task.

pruned models θRand, and LRP2.4 Additionally,
those pruned models showed statistical significance
against the original model in more than half of the
languages. While the models pruned by the transla-
tion demonstrations with low-resource languages
(θHi−En, θSw−En) also enhanced the performance,
the improvements were marginal. This result in-
dicates that non-English performances of XGLM
and mGPT are effectively enhanced by pruning us-
ing translation demonstrations with high-resource
languages.

On the contrary, no discernible enhancement was
observed through the application of pruning in the
context of BLOOM regardless of the languages.

5.3 Analysis

Eliminating programming language generation
ability. While XGLM and mGPT were trained by

4We observed that the models pruned by the translation
demonstrations outperformed those pruned by the monolin-
gual demonstrations. Additionally, we confirmed that this
pruning enhances the performance of a larger-scale model.
Please refer Appendix D for the detail.

Weight XGLM mGPT BLOOM

θ 0.741 0.537 0.561

θFr-En 0.744 0.593 0.569 (0.567)
θEs-En 0.749 0.593 0.576 (0.569)
θZh-En 0.751 0.603 0.569 (0.568)

Table 4: Averaged RankC scores with English across
each language. The BLOOM scores reported both inside
and outside of parentheses reflect the results obtained
with and without the application of pruning using texts
from programming language, respectively.

multilingual natural language texts, BLOOM was
trained by both multilingual natural language and
programming language texts. Scao et al. (2022)
showed that BLOOM has the ability to generate
programming language text comparable to mod-
els such as PolyCoder (Xu et al., 2022), which
is trained using only programming language data.
If the ability for programming language genera-
tion persists within the pruned model, it may intro-
duce undesired noise into the model’s predictions,
such as inference on natural language understand-
ing tasks.

In this study, we refine the scoring metric (Eq.
2) of Wanda to reduce the weights that involve
operation for such noisy features. Specifically, we
reformulate Eq. 2 as follows:

Si,j =
»»»»»θk

i,j
»»»»» ⋅ ∥Xk−1

j ∥2 ⋅
∥Xk−1

j ∥2∥Zk−1
j ∥2

(4)

where Z
k−1
j ∈ RTZ×din represents (k − 1)-th

layer’s hidden state features of another calibration
data Z. This reformulated equation assigns a small
score for i, j-th elements if the j-th features of
Z

k−1
j have large magnitudes. By selecting calibra-

tion data Z that accentuates a model’s capacity to
perform a specific task, we can eliminate weights
associated with operations on features that are ac-
tivated when executing the task. In our scenario,
we use programming language texts as Z to elimi-
nate BLOOM’s programming language generation
capability.

We employed Xsrc-tgt, Xsrc, and Xtgt as X and
Python codes from huggingface as Z, and denoted
each pruned model as θ

Prog
src-tgt, θ

Prog
src , and θ

Prog
tgt ,

respectively. The models pruned by our reformu-
lated metric demonstrated superior performance
compared to those pruned using the original met-
ric proposed by Wanda as shown in Tables 2 and
3. Furthermore, the table reveals that the pruned
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models, θProg
Fr-En, θProg

Es-En, and θ
Prog
Zh-En, surpassed the

performance of θ. These results indicate that to
effectively enhance performance in non-English
languages, it is important to selectively retain and
prune weights for translation and programming
language generation, respectively. Although the
pruned models did not exceed the performance of
LRP2, it is noteworthy that the pruning strategy
consistently improved non-English performance,
unlike LRP2, which significantly degraded the per-
formance in mGPT. Therefore, our experimental
results suggest that pruning is a promising strategy
to enhance the non-English performance.

Evaluation of cross-lingual consistency. The
purpose of pruning MLLMs through translation
demonstrations is to elicit alignment ability be-
tween English and non-English languages to utilize
English inference capability for non-English in-
ference. Therefore, finally, we measured Ranking
based Consistency (RankC) (Qi et al., 2023), which
is a metric to measure the consistency of a model’s
predictions across each language.5 If the RankC
scores between English and non-English languages
are high, predictions are consistent across the lan-
guages, i.e., the model utilizes inference capability
in English for non-English inference.

Tab. 4 shows the averaged RankC scores with
English across each language and employed the
XNLI dataset for this experiment. It illustrates
that models pruned using translation demonstra-
tions (θFr−En, θEs−En, and θZh−En) achieve supe-
rior scores relative to the original model θ. This
result indicates that the improvement in zero-shot
performance for non-English languages stems from
more effective utilization of the English inference
capabilities than the original model.

6 Conclusion

In this study, we showed that there are large mag-
nitude features activated when inputting few-shot
translation demonstrations and the pruned MLLMs
(i.e. XGLM and mGPT) based on the features
enhances zero-shot performance on non-English
languages by utilizing the English inference capa-
bilities. Additionally, we reformulated the scor-
ing metric to eliminate weights associated with
operations for large magnitude features in program-
ming language generation and demonstrated that

5See Appendix E for the detailed descriptions of RankC.

the pruned BLOOM based on the reformulated met-
ric enhances the non-English performance.

The observation from the result of pruning based
on the reformulated metric paves the way for fur-
ther inquiry into the selective pruning of model
weights to optimize performance across diverse lin-
guistic tasks. For future work, we would like to
delve deeper into this aspect to identify weights
that should be retained or pruned to enhance the
performance of MLLMs.

Limitations

Lack of experiments on various hyperparam-
eters and demonstrations. In the experiments,
the pruning ratio α was fixed to 0.3, and no ex-
periments were conducted with varying ratios. By
exploring how the performance evolves with dif-
ferent pruning ratios, it’s possible to identify the
optimal pruning ratio that improves multilingual
capabilities. Furthermore, if increasing the prun-
ing ratio enhances performance, it allow for further
model size reduction, enabling inference opera-
tions with lower memory requirements. Therefore,
this experiment is crucial for investigating the po-
tential for enhancing the performance of MLLMs
and reducing computational costs. Additionally,
we set the parameters N and n to 100 and 4, re-
spectively. As the consequence, we used a total
of 400 bilingual sentence pairs to construct few-
shot translation demonstrations. The experiments
were conducted under the assumption that the bilin-
gual data were well-prepared, although, in reality,
languages with well-prepared bilingual data are
scarce. If capable of enhancing performance with
an even more limited number of bilingual sentence
pairs are proved, we can apply the pruning strategy
across several language pairs. Moreover, since this
study did not explor the effect of pruning by vary-
ing the values of N and n while keeping the size of
the bilingual sentences, the optimal value of each
hyperparameter remains unknown.

Previous studies (Vilar et al., 2023; Chitale et al.,
2024) have demonstrated that the quality of few-
shot demonstrations significantly impacts the trans-
lation performance of multilingual large language
models (MLLMs). However, our research did not
analyze how changes in the translation demonstra-
tions for the pruning affect the performance. By
conducting this analysis, we will provide deeper
insights into the sensitivity of MLLMs to variations
in translation demonstrations during the pruning
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process.

Lack of analysis concerning the architectural
differences between each model. In §5.3, our
focus was on the differences in pre-training data.
However, an analysis based on architectural differ-
ences was not conducted. Notably, BLOOM’s ar-
chitecture is distinctive, especially due to its use of
ALiBi, which operates directly on attention scores
influenced by token positions. This method of inte-
grating positional information sets BLOOM apart
from other models such as XGLM and mGPT. By
analyzing these architectural differences, we may
reveal the reasons for the distinct trends observed
in each model. A detailed analysis focusing on
these architectural variances will be undertaken.

Lack of experiments using larger-scale or addi-
tionally fine-tuned MLLMs. In this study, we
focused on evaluating MLLMs with sizes up to
3B parameters. While we observed the effective-
ness of the translation demonstration based prun-
ing on XGLM-7.5B, we have not yet evaluated its
effectiveness on other larger-scale MLLMs. As
a result, it remains uncertain whether the perfor-
mance improvements observed through the pruning
with few-shot translation demonstrations extend to
larger models.

In addition, the MLLMs we focused on our study
were pre-trained solely on causal language mod-
eling task. Recent developments have shown that
models fine-tuned through instruction tuning (Wei
et al., 2022) and Reinforcement Learning from Hu-
man Feedback (RLHF) (Ouyang et al., 2022) can
produce outputs more aligned with human pref-
erences, and it is such models that end users are
likely to use. Demonstrating the utility of pruning
on these types of models is considered important.

In future studies, we aim to investigate the effec-
tiveness of pruning on larger models and those that
have been fine-tuned, to assess its utility further.

Ethical Considerations

Potential risks for bias. In recent years, several
studies have issued warnings about the potential
risks associated with pre-trained language mod-
els, notably their propensity for generating biased
statements. Previous researches (Zhao et al., 2020;
Reusens et al., 2023; Goldfarb-Tarrant et al., 2023)
have shown that biases in multilingual pre-trained
models can be transferred across languages. In-
tuitively, enhancing the models’ alignment capa-

bility between languages, i.e., strengthening the
connections between languages, make the transfer
of bias more straightforward. In this research, we
improved the alignment capability between English
and non-English languages in MLLMs through
pruning, aiming to boost their zero-shot perfor-
mance in non-English languages. Consequently,
there is a potential risk that the pruned models
might produce statements that include English bi-
ases, even when generating content in non-English
languages. This issue was not considered in our
study. Therefore, when using the pruned models,
sufficient attention should be paid to the problem
of bias.
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Hyperparameters Value

Max new tokens 64
Beam size 1
Temperature 0.8
Top k 100
Top p 0.75

Table 5: Hyperparameters used in translation experi-
ments.

A How to Construct Few-shot
Demonstrations

In this study, we investigated the hidden states from
few-shot translation demonstrations Xsrc-tgt ={x1src-tgt, ..., x

N
src-tgt}. Each few-shot demonstra-

tion demonstration were constructed using Etxaniz
et al. (2024)’s template function fmt(⋅). Therefore,
a demonstration x

1
src-tgt is as follow:

x
1
src-tgt = fmt(s11, t11)⊕ ...⊕ fmt(s1n, t1n)

fmt(s, t) = src ∶ s⊕ tgt ∶ t⊕ [EOS]

where “:” and “[EOS]” denote the tokens corre-
sponding to a colon and a end-of-sentence, respec-
tively, and ⊕ denotes the concatenation operator.
src and tgt represent source and target language
names. For example, when English to Chinese
translation, src and tgt are “English” and “Chi-
nese”.

In addition, we examined the the hidden states
from few-shot monolingual demonstrations Xsrc ={x1src, ..., xNsrc} and Xtgt = {x1tgt, ..., xNtgt}. Here,
a demonstration x

1
src is as follow:

x
1
src = flm(s11)⊕ ...⊕ flm(s1n)

flm(s) = src ∶ s⊕ [EOS]

where flm(⋅) is a template function for the mono-
lingual demonstration.

B Implementation Details

We conducted the experiments with XGLM-2.9B6,
mGPT-1.7B7, and BLOOM-3B8 from huggingface
and used a single Quadro RTX 8000 in the all ex-
periments.

6
https://huggingface.co/facebook/xglm-2.9B

7
https://huggingface.co/ai-forever/mGPT

8
https://huggingface.co/bigscience/bloom-3b

a b

XGLM

Fr 1 2
Es 8 48
Zh 1 7
Hi 1 4
Sw 7 29

mGPT

Fr 0 2
Es 21 28
Zh 5 16
Hi 3 9
Sw 7 13

BLOOM

Fr 1 22
Es 21 28
Zh 22 29
Hi 8 12
Sw 19 26

Table 6: Optimal layer configurations in LRP2 eval-
uation. The configurations were searched using the
development sets of the corresponding languages.

∥X27
En∥2 ∥X27

Zh∥2

Top-20 30 25
Top-50 34 28
Top-100 36 25

Table 7: The ratio (%) of unique dimensions within the
top-20, top-50, and top-100 magnitudes of ∥X27

Zh−En∥2

that are absent in the corresponding dimensions of∥X27
Zh∥2 and ∥X27

En∥2.

To construct each few-shot translation demon-
strations and conduct translation experiments, we
employed the Etxaniz et al. (2024)’s implementa-
tion9 and the license was not stated. Tab. 5 shows
the hyperparameters used in our translation exper-
iments and they are the default ones of the imple-
mentation.

For pruning using Wanda, we used the official
implementation of Sun et al. (2024)10 published by
MIT license. For pruning using refined equation
(Eq. 4), we used our original implementation and
attached the code in supplemental materials.

In our experiments, we used datasets of
FLORES-20011, XNLI12, MARC13, and Python

9
https://github.com/juletx/self-translate

10
https://github.com/locuslab/wanda

11
https://huggingface.co/datasets/facebook/

flores
12
https://huggingface.co/datasets/xnli

13
https://huggingface.co/datasets/SetFit/

9934

https://huggingface.co/facebook/xglm-2.9B
https://huggingface.co/ai-forever/mGPT
https://huggingface.co/bigscience/bloom-3b
https://github.com/juletx/self-translate
https://github.com/locuslab/wanda
https://huggingface.co/datasets/facebook/flores
https://huggingface.co/datasets/facebook/flores
https://huggingface.co/datasets/xnli
https://huggingface.co/datasets/SetFit/amazon_reviews_multi_ja


codes14 from huggingface for constructing of
demonstrations, evaluating MLLMs’ performance,
and measuring the refined importance score, re-
spectively.

To perform the XNLI task in cloze-style format,
we used a template that converts a preliminary x

pre

and a hypothesis xhyp to “xpre
, right?, [Mask], xhyp”

and a verbalizer that maps each candidate label
(Entailment, Contradiction, and Neutral) to ‘Yes’,
‘No’, and ‘Also’, respectively. For the MARC task,
we used a template that converts a review x

rev to
“xrevIt is [Mask]” and a verbalizer that maps each
candidate label (negative and positive) to ‘nega-
tive’, and ‘positive’, respectively. When selecting a
language of template and verbalizer, the language
of the test example is expected to be the most intu-
itive and effective, but previous studies (Lin et al.,
2022; Ahuja et al., 2023; Enomoto et al., 2024)
demonstrated that English template and verbalizer
achieves the best performance for most test lan-
guages. Therefore, we adopted English template
and verbalizer regardless of test languages.

For the evaluation in the translation task, we em-
ployed BLEU (Papineni et al., 2002) score and used
the huggingface’s implementation15. For the evalu-
ation in the XNLI and MARC tasks, We employed
accuracy score and used the scikit-learn implemen-
tation16. We also performed statistical significance
tests through bootstrapping sampling. We used the
Koehn (2004)17 and Fornaciari et al. (2022)18’s im-
plementations for the statistical significance tests
for the translation and other tasks, respectively. In
this study, we let that there are statistical signifi-
cance between the performances when the p-value
is less than 0.1.

C Detecting Translation Features

Figures 5, 7, and 10 show the top-20 dimensions
with the largest magnitudes of k-th layer’s features
of ∥Xk

Zh∥2, ∥Xk
En∥2 , and ∥Xk

Zh-En∥2. Each fig-
ure corresponds to XGLM, mGPT, and BLOOM,
respectively. The figures demonstrate that there

amazon_reviews_multi_ja
14
thomwolf/github-python

15
https://huggingface.co/spaces/

evaluate-metric/bleu
16
https://scikit-learn.org/stable/modules/

generated/sklearn.metrics.accuracy_score.html
17
https://github.com/moses-smt/

mosesdecoder/blob/master/scripts/analysis/
bootstrap-hypothesis-difference-significance.pl

18
https://github.com/fornaciari/boostsa

are features that have extremely large magnitudes
compared to others regardless of each MLLM.

Figures 6, 8 and 11 are heatmaps illustrated
the overlap ratios within top- and bottom 30%
of features ∥Xk

src∥2, ∥Xk
tgt∥2 , and ∥Xk

src-tgt∥2

ranked by magnitude. Each figure corresponds
to XGLM, mGPT and BLOOM, respectively. In
XGLM and BLOOM, the ratios indicate that the
overlaps within the monolingual demonstrations
(the upper left quadrant) and translation demonstra-
tions (the lower right quadrant) are smaller com-
pared to those observed between the monolingual
and translation demonstrations (the lower left and
upper right quadrants). In mGPT, while the ratios
associated with English, French, Spanish, and Chi-
nese languages exhibit similar trends to those in
XGLM and BLOOM, the ratios linked with Hindi
and Swahili demonstrate high values irrespective of
the demonstration type. One potential explanation
for this discrepancy may be the inadequate training
of mGPT, as these languages were insufficiently
represented in its training dataset. Furthermore,
these figures demonstrates that the ratio between
the translation demonstrations involving identical
language pairs is minimal, suggesting that the fea-
tures activated are consistent regardless of the di-
rection of translation. Consequently, this evidence
suggests that the activation of certain features exclu-
sively in response to the translation demonstrations
is a model-independent phenomenon.19

Tab. 8 presents the BLEU scores of mGPT and
BLOOM. In mGPT, the BLEU scores were very
low compared to XGLM and BLOOM in overall,
and the pruned models outperformed the original
model. In BLOOM, the performances of models
pruned by few-shot translation demonstrations have
been preserved relative to the performances of the
original model before pruning. However, the sta-
tistical significance between the models pruned
by translation demonstrations and those pruned by
monolingual demonstrations was not consistently
observed, as in the case of XGLM.

D Multilinguality of Pruned MLLMs

Table 9 presents the accuracy scores for each model.
The table reveals that the models pruned through
translation demonstrations surpass those pruned by
monolingual demonstrations and the original mod-

19We observed consistent trends across other layers. To
avoid redundancy of the main text, we have included the
remaining results in the supplemental materials.
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els in performance. While LRP2 also improved
the accuracy scores in XGLM and BLOOM, it
did not enhance performance in mGPT. Although
the scores for the models pruned using translation
demonstrations are lower than those for LRP2 in
BLOOM, the table suggests that this pruning strat-
egy robustly enhances performance in non-English
languages across different models, unlike LRP2.

Table 10 presents the accuracy scores of XGLM-
7.5B, the largest model in the XGLM series, on
the MARC task, and indicates that the pruning
based on translation demonstrations also enhances
the performance of XGLM-7.5B on non-English
languages. This finding suggests the potential ef-
fectiveness of the translation demonstration-based
pruning in larger-scale models.

E Evaluation of Cross-lingual
Consistency

We measured consistency between the predictions
across languages using Ranking based Consistency
(RankC) (Qi et al., 2023). In this section, we ex-
plain calculation of RankC in detail.

Let us consider test examples denoted by xi ∈
Xl for language l and x

′
i ∈ X

′
l for another lan-

guage l
′, along with their corresponding sets of

candidate labels {y1i , ..., y∣Y∣
i } and {y′1i , ..., y′∣Y∣

i },
respectively. Here, y1i has the highest prediction
probability and y

∣Y∣
i has the lowest. RankC is de-

fined as:

RankC(l, l′) =
∑∣Xl∣

i=1 consist(xi, x′i)∣Xl∣
consist(xi, x′i) =

∣Y∣
∑
j=1

wj ⋅ P@j

P@j = 1

j
»»»»»{y1i , ..., yji } ∩ {y′1i , ..., y′ji }»»»»»

wj = e
∣Y∣−j

∑∣Y∣
k=1 e

∣Y∣−k
The RankC metric assign high scores when the
predicted labels consistent across across languages.

Tab. 11 presents the RankC scores of each model.
This table demonstrates that the models pruned
by few-shot translation demonstrations achieve the
highest scores. Therefore, the pruning using few-
shot translation demonstrations improve the cross-
lingual consistency of their prediction compared to
the original model.
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(a) ∥X3
Zh∥2 (b) ∥X3

En∥2 (c) ∥X3
Zh-En∥2

(d) ∥X27
Zh∥2 (e) ∥X27

En∥2 (f) ∥X27
Zh-En∥2

(g) ∥X47
Zh∥2 (h) ∥X47

En∥2 (i) ∥X47
Zh-En∥2

Figure 5: The top 20 dimensions of k-th layer’s features of ∥Xk
Zh∥2, ∥Xk

En∥2 , and ∥Xk
Zh-En∥2 of XGLM.

(a) Third layer (b) 20-th layer (c) 47-th layer

Figure 6: The overlap ratios among the top- and bottom-30% features of XGLM ranked by magnitude.
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(a) ∥X3
Zh∥2 (b) ∥X3

En∥2 (c) ∥X3
Zh-En∥2

(d) ∥X12
Zh∥2 (e) ∥X12

En∥2 (f) ∥X12
Zh-En∥2

(g) ∥X23
Zh∥2 (h) ∥X23

En∥2 (i) ∥X23
Zh-En∥2

Figure 7: The top 20 dimensions of k-th layer’s features of ∥Xk
Zh∥2, ∥Xk

En∥2 , and ∥Xk
Zh-En∥2 of mGPT.

(a) Third layer (b) 12-th layer (c) 23-th layer

Figure 8: The overlap ratios within the top- and bottom-30% features of mGPT ranked by magnitude.
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Figure 9: Averaged overlap ratios for each quadrant in mGPT.

(a) ∥X3
Zh∥2 (b) ∥X3

En∥2 (c) ∥X3
Zh-En∥2

(d) ∥X15
Zh∥2 (e) ∥X15

En∥2 (f) ∥X15
Zh-En∥2

(g) ∥X28
Zh∥2 (h) ∥X28

En∥2 (i) ∥X28
Zh-En∥2

Figure 10: The top 20 dimensions of k-th layer’s features of ∥Xk
Zh∥2, ∥Xk

En∥2 , and ∥Xk
Zh-En∥2 of BLOOM.
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(a) Third layer (b) 20-th layer (c) 28-th layer

Figure 11: The overlap ratios within the top- and bottom-30% features of BLOOM ranked by magnitude.

Figure 12: Averaged overlap ratios for each quadrant in BLOOM.

Source Language

Model Weight Ar Bg De El Hi Ru Sw Th Tr Ur Vi Fr Es Zh Avg.

mGPT

θ 3.53 6.14 8.75 8.76 1.37 5.16 3.13 1.55 2.17 2.62 5.14 9.16 9.46 2.02 4.92

θEn 4.42 6.54 6.10 9.86 3.00 4.75 5.28 4.50 3.63 2.97 6.17 6.93 8.36 5.71 5.58
θFr 4.35 7.02 6.98 10.35 3.24 4.61 5.35 4.56 3.19 2.94 6.15 6.42 8.39 5.37 5.63
θEs 3.71 6.84 6.40 9.74 3.19 4.55 5.42 4.46 3.73 3.02 5.75 6.19 9.09 5.37 5.53
θZh 4.07 7.11 6.77 9.92 3.21 4.06 5.16 4.23 3.68 2.75 5.65 6.61 8.50 5.74 5.53
θHi 4.07 7.66 6.98 9.60 3.53 4.26 5.07 4.38 3.69 2.94 5.02 6.18 8.28 5.53 5.51
θSw 4.00 6.94 6.69 9.75 3.22 4.49 4.91 4.48 3.40 3.01 6.37 6.55 8.49 5.51 5.55

θFr−En 4.31 7.31†‡ 6.67† 10.11† 3.34 4.72 5.19 4.52 3.66‡ 3.19 5.99 6.30 8.33 5.77‡ 5.67
θEs−En 4.23‡ 7.14†‡ 6.45‡ 9.72 3.21 4.94†‡ 5.05 4.36 3.55 2.96 6.17‡ 6.45‡ 8.19 5.86‡ 5.59
θZh−En 4.33‡ 7.22†‡ 6.38† 9.79 3.32† 4.86‡ 5.34‡ 4.39 3.30 2.94 6.04‡ 6.27 8.62† 5.60 5.60
θHi−En 4.13 7.17† 6.34† 9.93 3.55† 4.15 5.02 4.25 3.58 2.89 5.55‡ 6.39‡ 8.50‡ 5.55 5.50
θSw−En 3.96 6.99† 6.57† 9.46 3.45†‡ 4.49 5.02 4.68 3.56 3.01 5.63 6.33 8.79†‡ 5.57 5.54

BLOOM

θ 20.73 4.80 18.67 4.36 13.93 9.21 13.9 1.65 0.95 11.06 24.54 32.81 34.16 17.54 14.87

θ
Prog
En 16.67 2.74 15.35 2.86 10.97 6.66 10.21 1.33 1.00 8.06 20.65 29.39 29.9 14.36 12.15

θ
Prog
Fr 20.93 4.14 18.56 4.32 13.11 8.9 14.24 1.48 1.06 10.76 24.63 33.01 33.74 17.04 14.70

θ
Prog
Es 20.45 4.42 18.25 4.18 13.35 9.35 14.15 1.32 1.09 10.64 24.67 33.06 33.82 17.1 14.70

θ
Prog
Zh 20.89 4.53 18.41 4.23 13.52 9.07 14.03 1.48 0.96 10.65 24.64 32.99 33.82 13.52 14.48

θ
Prog
Hi 20.64 4.29 18.52 4.67 14.55 9.72 14.00 1.43 1.25 10.96 24.82 33.14 34.4 17.16 14.96

θ
Prog
Sw 15.54 2.52 13.77 2.77 10.65 6.10 8.37 0.99 0.73 7.01 18.56 28.34 29.22 12.86 11.24

θ
Prog
Fr−En 21.01† 4.45†‡ 18.53† 4.00 13.22†‡ 9.12†‡ 13.99† 1.59 1.11 10.69† 24.66† 33.98†‡ 33.76† 17.10 14.80

θ
Prog
Es−En 20.78†‡ 4.43† 18.23† 4.12† 13.33† 9.54†‡ 14.27†‡ 1.54 1.09 10.64† 24.70†‡ 33.24†‡ 33.85† 16.88† 14.76

θ
Prog
Zh−En 20.77† 4.64† 18.74†‡ 4.02† 13.30† 9.09† 14.31†‡ 1.56 0.97 10.61† 24.85†‡ 32.67† 33.85† 17.09†‡ 14.74

θ
Prog
Hi−En 20.97†‡ 4.33† 18.57† 4.57† 14.40† 9.65† 14.95†‡ 1.38 1.16 10.95† 24.76† 32.87†‡ 34.59†‡ 17.83†‡ 15.07

θ
Prog
Sw−En 15.92‡ 2.69 14.50‡ 3.00 11.06‡ 6.49‡ 8.63‡ 1.24 0.91 7.21 19.58‡ 29.20‡ 30.24†‡ 13.50‡ 11.72

Table 8: BLEU scores on original weights and each pruned weights.
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Model Weight Ar Bg De El Hi Ru Sw Th Tr Ur Vi Fr Es Zh Avg.

XGLM

θ 44.0 41.8 41.6 44.0 44.7 39.5 42.5 44.2 41.0 42.7 45.2 45.0 35.2 43.9 42.5

LRP2 - - - - - - - - - - - 46.4 36.0 45.1 -

θEn 44.6 43.3 42.8 44.3 45.0 41.4 42.2 44.1 42.5 42.7 45.9 47.1 39.4 46.5 43.7
θFr 44.5 43.5 41.9 45.4 44.6 42.2 42.6 44.5 41.7 43.0 46.9 47.3 38.0 46.6 43.7
θEs 44.1 44.0 42.4 44.3 44.3 42.5 42.2 44.6 41.5 42.7 45.4 46.8 35.4 46.1 43.3
θZh 44.7 44.4 41.5 46.2 45.0 42.1 42.9 44.9 42.9 42.2 46.5 46.8 38.5 46.6 43.9
θHi 43.6 41.1 39.9 35.9 43.7 42.1 41.9 45.3 40.8 42.3 45.8 44.4 38.9 44.8 42.1
θSw 43.6 41.8 39.7 44.6 44.8 42.0 41.4 45.0 41.1 42.1 45.1 45.9 37.4 45.7 42.8

θFr−En 44.9 45.8 42.9 46.2 44.9 43.0 43.5 45.4 42.5 42.8 47.7 47.2 39.7 47.2 44.5
θEs−En 44.3 45.9 42.5 45.6 44.7 43.2 43.3 45.9 42.8 42.5 47.5 47.0 36.3 46.8 44.1
θZh−En 44.1 45.9 43.0 45.9 45.0 43.6 42.5 45.5 42.2 43.0 47.5 47.7 39.8 46.7 44.4
θHi−En 43.7 42.8 40.3 45.2 44.7 42.5 42.7 45.5 41.0 42.2 45.5 46.2 37.2 46.0 43.3
θSw−En 43.8 44.5 40.3 46.1 43.7 41.7 42.0 45.6 41.7 42.0 45.4 46.4 38.9 46.1 43.4

θEn−Fr 44.9 46.8 43.2 45.9 44.6 42.7 43.4 45.7 42.5 42.9 47.3 47.6 40.0 46.8 44.6
θEn−Es 44.8 45.7 43.1 46.0 44.6 43.0 43.4 45.6 43.1 42.6 47.6 47.6 36.9 47.1 44.4
θEn−Zh 44.2 45.5 42.5 46.1 44.7 43.4 42.4 45.2 41.8 42.9 46.5 47.8 38.8 45.7 44.1

mGPT

θ 39.2 39.7 36.0 41.0 38.9 39.2 34.0 43.0 39.9 39.9 42.2 42.3 39.4 41.8 39.7

LRP2 - - - - - - - - - - - 34.2 33.1 34.1 -

θEn 38.5 38.0 35.7 40.4 39.6 37.7 35.8 41.4 39.9 39.3 40.3 40.7 37.7 39.4 38.8
θFr 38.4 39.3 36.0 42.0 39.5 38.7 34.3 42.5 39.8 40.2 42.5 42.0 39.0 40.3 39.6
θEs 38.5 39.0 35.8 41.1 39.3 39.3 35.4 42.4 39.8 39.7 42.6 42.1 39.5 40.6 39.6
θZh 38.7 38.7 36.4 40.6 39.8 37.9 34.2 42.5 39.5 40.0 41.5 41.8 38.9 39.9 39.3
θHi 39.0 39.0 34.7 40.8 40.2 38.3 34.3 41.6 38.7 40.6 42.8 42.1 38.8 40.3 39.3
θSw 38.6 38.1 34.4 40.4 39.5 38.2 34.0 42.1 39.4 40.2 43.2 41.7 39.2 40.7 39.2

θFr−En 39.3 39.5 36.3 41.9 40.2 39.5 34.7 42.6 40.2 40.0 42.8 42.1 39.7 41.7 40.0
θEs−En 40.6 40.3 36.6 42.6 39.5 39.8 35.2 42.9 40.1 39.9 43.5 42.5 40.4 41.2 40.3
θZh−En 39.1 39.9 36.1 41.5 39.8 39.0 34.4 43.4 40.1 40.2 43.2 42.2 39.9 41.4 40.0
θHi−En 39.1 39.5 34.9 41.1 40.3 38.9 34.5 42.1 40.0 40.5 42.6 42.1 38.9 41.6 39.7
θSw−En 38.7 39.4 34.9 40.1 40.1 38.8 34.5 42.3 39.8 40.7 43.6 42.5 39.1 41.9 39.7

θEn−Fr 39.6 39.3 36.1 42.0 39.1 39.4 34.5 42.8 39.5 39.6 42.6 42.4 40.2 40.2 39.8
θEn−Es 39.5 39.7 36.4 42.0 39.2 39.1 35.4 42.4 40.4 40.2 42.6 42.2 39.7 40.6 40.0
θEn−Zh 39.4 39.4 36.2 42.1 39.7 39.4 34.5 42.6 39.3 40.2 42.3 42.4 38.8 40.5 39.8

BLOOM

θ 46.7 40.4 41.9 38.6 44.9 40.9 36.8 36.2 35.9 41.4 42.9 45.0 41.1 45.4 41.2

LRP2 - - - - - - - - - - - 46.0 44.3 46.8 -

θEn 46.4 40.3 42.5 39.1 45.2 41.2 36.8 35.9 35.6 41.4 40.9 44.5 41.2 43.8 41.0
θFr 46.4 40.5 42.2 39.0 44.9 40.9 37.1 35.5 35.1 41.2 40.9 44.5 41.5 44.1 40.9
θEs 46.5 40.7 42.0 39.5 45.3 41.1 36.9 36 35.3 40.8 40.8 44.3 41.2 43.6 41.0
θZh 46.5 40.5 42.3 39.2 45.2 40.8 36.9 35.8 35.6 41.1 40.8 44.4 40.8 44.7 41.0
θHi 46.3 40.3 40.2 40.4 44.5 41.5 35.5 35.2 35.5 41.3 41.4 43.6 40.6 43.1 40.6
θSw 46.8 40.2 40.6 40.5 43.7 41.8 35.5 35.4 36.1 41.0 42.3 44.0 40.8 44.0 40.9

θFr−En 47.0 40.3 42.2 39.5 45.9 41.3 36.9 36.5 35.6 41.1 41.9 44.9 41.2 44.6 41.3
θEs−En 47.0 40.6 42.2 38.9 45.5 41.1 37.1 36.6 35.7 40.9 41.9 44.5 41.3 44.4 41.2
θZh−En 46.7 40.3 41.9 39.2 45.3 41.1 37.0 36.7 35.7 40.4 41.6 44.2 40.5 45.2 41.1
θHi−En 47.2 40.7 40.6 41.1 45.2 41.6 36.0 37.0 36.2 41.4 42.1 45.4 42.0 43.7 41.4
θSw−En 46.9 40.3 40.6 40.3 43.8 41.3 35.7 36.2 36.1 41.5 43.0 44.4 40.8 44.1 41.0

θ
Prog
En 45.9 40.6 41.8 40.1 45.1 41.1 37.0 36.2 35.9 41.3 41.6 45.0 41.1 44.7 41.2

θ
Prog
Fr 46.9 40.1 41.7 39.5 45.8 40.8 36.8 35.8 35.2 40.9 40.8 44.7 41.2 45.2 41.1

θ
Prog
Es 47.0 40.1 41.5 39.7 46.4 41.0 36.5 35.8 35.6 41.1 41.0 44.4 42.1 45.1 41.2

θ
Prog
Zh 46.8 40.4 41.5 39.5 45.2 40.9 36.6 35.5 35.3 41.2 42.3 45.3 41.8 45.9 41.3

θ
Prog
Hi 47.0 40.0 40.5 40.5 44.3 41.0 35.5 35.6 35.5 35.8 40.9 42.1 41.9 43.1 40.2

θ
Prog
Sw 46.5 39.5 38.6 40.1 45.1 41.2 35.7 35.6 35.9 42.5 42.0 42.9 39.4 41.6 40.4

θ
Prog
Fr−En 46.9 40.6 42.0 40.0 45.8 42.3 37.4 36.6 35.6 41.9 41.3 45.1 41.6 45.2 41.6

θ
Prog
Es−En 47.1 40.8 42.2 39.9 46.5 41.3 37.2 36.3 35.5 41.2 41.1 45.1 42.2 45.6 41.6

θ
Prog
Zh−En 47.2 40.5 42.2 40.0 45.8 41.2 37.1 36.0 35.8 41.2 42.1 45.8 42.4 46.3 41.7

θ
Prog
Hi−En 47.3 40.3 41.2 40.3 45.4 41.6 36.2 36.8 36.1 41.3 42.2 45.2 42.1 45.3 41.5

θ
Prog
Sw−En 46.8 41.1 42.5 39.5 45.5 41.2 36.9 36.6 35.5 42.5 43.3 45.2 41.3 45.0 41.6

θ
Prog
En−Es 46.9 40.3 42.3 39.8 46.3 41.0 37.1 36.2 35.4 41.3 41.2 44.9 41.9 45.2 41.4

θ
Prog
En−Zh 46.2 40.8 42.6 39.9 45.9 41.3 36.9 36.1 35.8 41.0 42.3 45.7 42.0 45.5 41.6

Table 9: Accuracy scores on the XNLI task. The highest scores in each model are indicated in bold.
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Model Weight De Ja Fr Es Zh AVg.

XGLM-7.5B

θ 76.3 73.0 73.6 74.7 74.0 74.3

θFr-En 77.7† 74.2† 74.8† 75.7† 76.6† 75.8
θEs-En 77.8† 73.7† 75.1† 75.6† 76.1† 75.6
θZh-En 77.0† 73.9† 75.2† 75.8† 76.4† 75.6
θHi-En 76.2 73.1 75.5† 74.3 76.9† 75.2
θSw-En 76.3 73.4† 74.9† 75.9† 75.6† 75.2

Table 10: Accuracy scores on the MARC task.

Model Weight Ar Bg De El Hi Ru Sw Th Tr Ur Vi Fr Es Zh Avg.

XGLM

θ 0.790 0.786 0.441 0.775 0.520 0.811 0.824 0.784 0.770 0.751 0.791 0.820 0.792 0.723 0.741

θFr 0.799 0.800 0.449 0.779 0.580 0.81 0.816 0.79 0.784 0.744 0.788 0.806 0.794 0.688 0.744
θEs 0.804 0.795 0.464 0.79 0.626 0.811 0.809 0.793 0.776 0.764 0.79 0.811 0.769 0.683 0.748
θZh 0.801 0.785 0.418 0.785 0.601 0.814 0.826 0.802 0.786 0.770 0.793 0.819 0.796 0.694 0.749

θFr−En 0.795 0.799 0.492 0.777 0.583 0.814 0.814 0.788 0.761 0.740 0.783 0.801 0.795 0.682 0.744
θEs−En 0.801 0.804 0.494 0.789 0.604 0.818 0.816 0.795 0.773 0.757 0.790 0.805 0.774 0.674 0.749
θZh−En 0.797 0.803 0.481 0.785 0.585 0.823 0.825 0.802 0.781 0.755 0.795 0.804 0.792 0.681 0.751

mGPT

θ 0.535 0.556 0.603 0.554 0.465 0.520 0.525 0.512 0.569 0.462 0.546 0.569 0.586 0.520 0.537

θFr 0.571 0.601 0.477 0.605 0.496 0.614 0.591 0.564 0.609 0.550 0.662 0.678 0.673 0.591 0.591
θEs 0.589 0.600 0.485 0.602 0.493 0.605 0.573 0.565 0.599 0.557 0.653 0.659 0.658 0.581 0.587
θZh 0.595 0.621 0.461 0.626 0.481 0.627 0.581 0.561 0.626 0.556 0.670 0.688 0.698 0.590 0.598

θFr−En 0.573 0.593 0.464 0.610 0.502 0.624 0.579 0.581 0.606 0.549 0.662 0.673 0.689 0.603 0.593
θEs−En 0.589 0.601 0.480 0.608 0.492 0.621 0.583 0.567 0.620 0.550 0.666 0.676 0.682 0.580 0.593
θZh−En 0.600 0.625 0.468 0.620 0.488 0.628 0.585 0.581 0.627 0.566 0.671 0.689 0.700 0.604 0.603

BLOOM

θ 0.618 0.514 0.546 0.511 0.576 0.520 0.548 0.487 0.531 0.548 0.597 0.636 0.631 0.595 0.561

θFr 0.613 0.525 0.560 0.527 0.572 0.534 0.546 0.494 0.533 0.544 0.595 0.644 0.630 0.596 0.565
θEs 0.612 0.526 0.560 0.533 0.571 0.532 0.544 0.494 0.534 0.539 0.594 0.643 0.635 0.601 0.566
θZh 0.616 0.522 0.559 0.527 0.576 0.530 0.548 0.494 0.532 0.541 0.596 0.645 0.632 0.597 0.565

θFr−En 0.615 0.535 0.564 0.535 0.573 0.535 0.540 0.505 0.530 0.546 0.598 0.640 0.634 0.590 0.567
θEs−En 0.617 0.534 0.567 0.535 0.575 0.538 0.548 0.500 0.533 0.542 0.599 0.642 0.638 0.596 0.569
θZh−En 0.617 0.533 0.564 0.535 0.574 0.536 0.544 0.500 0.534 0.543 0.598 0.640 0.634 0.597 0.568

θ
Prog
Fr 0.614 0.539 0.562 0.532 0.570 0.534 0.547 0.507 0.539 0.547 0.607 0.645 0.639 0.592 0.569

θ
Prog
Es 0.618 0.537 0.564 0.543 0.568 0.534 0.555 0.513 0.549 0.546 0.616 0.650 0.651 0.594 0.574

θ
Prog
Zh 0.617 0.536 0.558 0.535 0.569 0.538 0.540 0.504 0.535 0.550 0.605 0.640 0.634 0.592 0.568

θ
Prog
Fr−En 0.624 0.527 0.560 0.530 0.570 0.530 0.554 0.501 0.540 0.540 0.607 0.642 0.642 0.604 0.569

θ
Prog
Es−En 0.626 0.548 0.564 0.544 0.568 0.534 0.557 0.516 0.542 0.546 0.610 0.651 0.655 0.605 0.576

θ
Prog
Zh−En 0.621 0.533 0.563 0.535 0.568 0.538 0.545 0.503 0.534 0.548 0.604 0.639 0.638 0.598 0.569

Table 11: RankC scores between English and each language.
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