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Abstract

Built upon the Transformer, large language
models (LLMs) have captured worldwide at-
tention due to their remarkable abilities. Never-
theless, all Transformer-based models includ-
ing LLMs suffer from a preset length limit and
can hardly generalize from short training se-
quences to longer inference ones, namely, they
cannot perform length extrapolation to handle
long sequences, which severely hinders their
application in scenarios demanding long input
sequences such as legal or scientific documents.
Thus, numerous methods have emerged to en-
hance the length extrapolation of Transformers.
Despite the great research efforts, a systematic
survey is still lacking. To fill this gap, we delve
into these advances in a unified notation from
the perspective of positional encoding (PE), as
it has been considered the primary factor on
length extrapolation. Specifically, we begin
with extrapolatable PEs that have dominated
this research field. Then, we dive into extrap-
olation methods based on them, covering po-
sition interpolation and randomized position
methods. Finally, several challenges and future
directions in this area are highlighted. Through
this survey, we aim to enable the reader to gain
a deep understanding of existing methods and
provide stimuli for future research.

1 Introduction

It has been suggested that with limited learning re-
sources, humans can potentially comprehend utter-
ances of infinite length by understanding their com-
ponents and structures (Chomsky, 1957; MON-
TAGUE, 1970). In natural language processing
(NLP), given the limited training data (Kazem-
nejad et al., 2023) and compute, models cannot
learn from large-scale long sequences and thus are
also expected to possess such generalization ability
to process long sequences (Shaham et al., 2023).
However, it is a challenging task for the de facto
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Transformer architecture (Vaswani et al., 2017),
though Transformer-based large language models
(LLMs) (Touvron et al., 2023a; OpenAI, 2023)
have drastically advanced the NLP field.

Transformer-based models are trained on se-
quences with a maximum length (Raffel et al.,
2020; Zhang et al., 2020; Brown et al., 2020), as a
result of the quadratic memory and computational
complexity with regard to input length. To make
matters worse, some research reveals that Trans-
formers might have gained their performance from
surface-level memorization instead of abstract, gen-
eralizable skills (Razeghi et al., 2022; Wu et al.,
2024), which means they can hardly break through
the maximum training length and perform poorly
on sequences with length beyond it (Dai et al.,
2019; Neishi and Yoshinaga, 2019), i.e., they can-
not perform length extrapolation (Mitchell et al.,
2018; Press et al., 2021). To offer a more compre-
hensive understanding of the challenges in length
extrapolation, we present comparison results of
three state-of-the-art models with different context
sizes on several generation tasks in Appendix A.1.

The length limit together with poor length ex-
trapolation prevents LLMs from handling long
sequences, such as DNA and protein sequences
(Abramson et al., 2024), high-resolution images
(Liu et al., 2023a), and even videos (Lin et al.,
2023). Moreover, existing approaches for harness-
ing the full potential of LLMs also demand a larger
context window, to incorporate elaborate prompts
(Liu et al., 2023c), sufficient in-context demonstra-
tions (Brown et al., 2020) and long-term mem-
ory of agents (Park et al., 2023). Hence, there is
a growing body of research trying to strengthen
length extrapolation of LLMs (Press et al., 2021;
Ontanon et al., 2022; Anil et al., 2022; Chi et al.,
2023b; Sun et al., 2023), mostly from the perspec-
tive of positional encoding (PE).

Despite the prosperity in this area, a systematic
survey is still lacking. We aim to fill this blank
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Figure 1: Taxonomy for length extrapolation of Transformers.

by investigating existing approaches that enable
and enhance length extrapolation of Transform-
ers. Specifically, a brief formal introduction to
Transformer is given in §2 as a solid foundation for
further discussion. Then, we comprehensively sum-
marize extrapolatable PEs proposed from the birth
of Transformer to the prevalence of LLMs in §3.
Note that we focus exclusively on PEs proposed
for better extrapolation and omit others, since there
is already an insightful survey on PEs of Trans-
former (Dufter et al., 2022). Based on these PEs,
many novel methods emerge in the era of LLMs
to further enhance extrapolation, which we inten-
tionally centralize in §4, covering popular position
interpolation methods and randomized methods.
These advancements demonstrate the vibrancy and
vastness of this area, from which we distill future
directions and insights, represented in §5 and §6.

2 Preliminary

In this section, we follow Dufter et al. (2022) to
present a formal description of the encoder layer
of the Transformer, as the decoder layer is almost
the same except for the cross-attention mechanism.
Given an input matrix X ∈ Rn×d as a sequence of
n embeddings with dimension d, an encoder layer
f : Rn×d −→ Rn×d with f(X) = Z is defined by:

C =
QKT

√
d

(1)

A = Softmax(C)V (2)

O = LayerNorm1(A+X) (3)

F = ReLU(OW (f1) + b(f1))W (f2) + b(f2) (4)

Z = LayerNorm2(O + F ) (5)

where Q = XW q,K = XW k,V = XW v are
queries, keys and values, with W q,W k,W v ∈
Rd×d being the projection matrices.

Firstly, the compatibility scores C are computed
as the dot product between queries and keys with

a scaling factor1 1/
√
d (Equation 1). Then, the

row-wise softmax function converts compatibility
scores into weights, and the weighted sum of the
values is the output of the attention layer (Equa-
tion 2). The fully connected feed-forward net-
work consists of two linear transformations with a
ReLU activation between (Equation 4), with param-
eters W (f1) ∈ Rd×df ,W (f2) ∈ Rdf×d, bf(1) ∈
Rdf , b(f2) ∈ Rd, where df is the intermediate di-
mension. Besides, residual connection (He et al.,
2016) and layer normalization (Ba et al., 2016) are
leveraged (Equation 3 and 5) to enhance scalability.

Note that in the above descriptions, we have not
imposed any limit on input length n, which means
the Transformer is naturally equipped with a notion
of length extrapolation. Theoretically, a fixed set-
ting of Transformer weights defines a sequence-to-
sequence function on sequences of arbitrary length
(Yun et al., 2019). If the function applies the cor-
rect transformation for inputs of any length, it is
expected to length extrapolate (Zhou et al., 2023).

However, we have to break this nature by in-
tegrating PE with Transformers to inject position
information into them. Otherwise, they are per-
mutation equivalent or order invariant2. Thus,
PEs are central to length extrapolation and form
the core focus of this survey.

3 Extrapolatable Positional Encodings

Sinusoidal position embeddings are proposed with
Transformer as it may help extrapolate to longer
sequences beyond training (Vaswani et al., 2017).
The idea behind this claim, that length extrapola-
tion can be enabled by simply changing PE, has
been widely supported and demonstrated (Neishi
and Yoshinaga, 2019; Press et al., 2021; Ruoss
et al., 2023). Hence, developing better PEs has

1We will omit this scaling factor in the following for sim-
plicity and clarity.

2Note that some existing research suggests causal language
models can learn position information without PE (Tsai et al.,
2019; Haviv et al., 2022; Chi et al., 2023a).
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PE Manifestation Learnable Integration
Injection

Layer
A

PE

Sinusoidal (Vaswani et al., 2017) Embedding ✕ Add Initial

with Shift Invariance

SHAPE (Kiyono et al., 2021) Embedding ✕ Add Initial
CAPE (Likhomanenko et al., 2021) Embedding ✕ Add Initial

with Smoothness

Complex (Wang et al., 2020) Embedding ✓ Multiply Initial
FLOATER (Liu et al., 2020) Embedding ✓ Add Initial

R
PE

Shaw et al. (2018) Embedding ✓ Add Every

T5 Family

T5 Bias (Raffel et al., 2020) Bias ✓ Add Every
ALiBi (Press et al., 2021) Bias ✕ Add Every
KERPLE (Chi et al., 2022) Bias ✓ Add Every
SANDWICH (Chi et al., 2023b) Embedding ✕ Add Every
FIRE (Li et al., 2023b) Bias ✓ Add Every
CAPE (Zheng et al., 2024) Bias ✓ Add Every

RoPE Family

RoPE (Su et al., 2024) Embedding ✕ Multiply Every
xPOS (Sun et al., 2023) Embedding ✕ Multiply Every

Table 1: A list of extrapolatable PEs. Bolded methods
are proposed or widely adopted for LLMs. Manifesta-
tion shows how the position infomation is introduced.
Learnable shows whether it can adjust based on the
input. Integration shows how the position representa-
tions are integrated with token representations. Injection
Layer shows the injecting position PE.

been the predominant avenue to enhance length
extrapolation of Transformers. Table 1 presents a
characterization of these extrapolatable PEs.

Basically, absolute positional encodings (APEs)
map each position to a unique representation and
integrate it with corresponding word embedding,
while relative positional encodings (RPEs) encode
the relative distance between tokens and directly
inject it into the attention module. Besides, RPEs
usually keep modifications independent of value
vectors and leaves them not entangled with posi-
tion information. Hence, position information of
RPEs can be scalars and usually recurs at each
layer. Figure 2 illustrates these general differ-
ences. We divide Table 1 and this section based on
whether the PE is absolute or relative, as existing
research suggests this distinction significantly im-
pacts length extrapolation (Neishi and Yoshinaga,
2019; Likhomanenko et al., 2021; Chi et al., 2022).

3.1 Absolute Positional Encodings

Specifically, for a token in position pos, the sinu-
soidal position embedding is defined as:

[. . . , sin(
pos

100002i/d
), cos(

pos

100002i/d
), . . . ], (6)

where i ∈ [0, d/2 − 1] is the dimension of the
position embedding and d denotes model dimen-
sion. Then, each position embedding is added to
the corresponding token embedding and the sum

is fed into Transformer, so the compatibility score
between query qi and key kj can be formalized as

qik
T
j = ((xi + pi)W q)((xj + pj)W k)

T . (7)

This equation is the basis of many other PEs.
However, researchers subsequently found that

sinusoidal APE is hard to extrapolate (Dai et al.,
2019; Neishi and Yoshinaga, 2019). Hence, a wide
variety of APEs have been proposed to enhance
sinusoidal APE and extrapolation of Transformers
from different perspectives, either trying to inte-
grate shift invariance in sinusoidal APE (§3.1.1) or
aiming to generate position embeddings varying
smoothly with position indices (§3.1.2).

3.1.1 Integrating Shift Invariance
Taking inspiration from the three properties of PEs
proposed by Wang et al. (2020), Kiyono et al.
(2021) speculated superior extrapolation perfor-
mance comes from shift invariance, the property
of a function to not change its output even if its
input is shifted. Aiming to incorporate the benefit
of shift invariance in sinusoidal APE, they simply
shift every position index of a sequence by a ran-
dom offset k during training, which prevents the
model from using absolute positions and instead
encourages the use of relative positions.

Following a similar idea, Likhomanenko et al.
(2021) took it a step further by leveraging continu-
ous signals. In addition to shifting every position
index of APE by an identical random offset, which
they call global shift, they also introduced local
shift, i.e., shifting each position index by a differ-
ent random shift, and global scaling, i.e., scaling
every position index by an identical random scalar,
to further prevent capturing spontaneous correla-
tions and memorizing distances.

3.1.2 Enhancing Smoothness
Apart from above relatively straightforward meth-
ods based on sinusoidal APE, there are several
APEs taking quite different theoretical avenues to
enhance length extrapolation, aiming to improve
the smoothness of the position representations.

Wang et al. (2019) proposed to extend each
word embedding as a continuous function over an
independent variable, i.e., position, so that word
representations vary smoothly with increasing po-
sitions. Through mathematically sound derivation,
their general complex-valued embedding f(j, pos)
of a word wj in position pos is

[rj,1e
i(ωj,1pos+θj,1), · · · , rj,dei(ωj,dpos+θj,d)], (8)
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Figure 2: General differences between APE (left part)
and RPE (right part), where orange denotes elements
holding position information.

where amplitude r = [rj,1, . . . , rj,d], frequency
ω = [ωj,1, . . . , ωj,d] and initial phrase θ =
[θj,1, . . . , θj,d] are all trainable. In addition to rep-
resenting positions in complex plane for the first
time, multiplying position embeddings with word
embeddings is another of their innovations.

An alternative approach is to directly capture the
dynamics between position representations. Liu
et al. (2020) introduced a dynamical system to
model position representations {pi ∈ Rd : i =
1, . . . , n}, which can be characterized as

p(t) = p(s) +

∫ t

s
h(τ,p(τ);θh)dτ, 0 ≤ s ≤ t < ∞

(9)
with an initial vector p(0), where p(t) : R+ 7→ Rd

is the continuous version of the discrete sequences
{pi}. h(τ,p(τ);θh), which is the "latent force"
that drives the changes from pi to pi+1, is actually
a neural network parameterized by θh and takes in
the previous state (τ,p(τ)).

Highlights: As the first PE for Transformer, si-
nusoidal APE has a significant impact on PEs there-
after, despite its poor extrapolation. To improve
this, researchers either leverage random shift to
incorporate shift invariance in sinusoidal APE or
generate position embeddings varying smoothly
with position. Among them, simple random shift-
ing is like a small patch for sinusoidal APE and
has limited benefits for extrapolation, at the cost of
possible semantic confusion in position encoding,
while the latter can hopefully lead to better extrapo-
lation, coming with a much higher parameter- and
computation-complexity.

3.2 Relative Positional Encodings
Albeit for the efforts in extrapolatable APEs, it
is believed that RPEs are theoretically capable of
running on unseen lengths and are more robust to
input length change (Neishi and Yoshinaga, 2019;
Likhomanenko et al., 2021; Chi et al., 2022), as
RPEs only rely on relative position information,
which means they encode the idea of shift invari-
ance naturally and are not subject to a maximum
position value. Besides, there is a consensus that
in natural language, it is not absolute but relative
position that matters (Huang et al., 2020; Sinha
et al., 2022). Thus, RPEs become the dominant
way to encode positions, which we detail in this
section. Before that, we reformulate Equation 7 as
follows to clarify the perspective of RPEs:

qik
T
j = (xiW q)(xjW k)

T ⊕ p(j − i), (10)

where p(j − i) encodes the relative position infor-
mation, ⊕ denotes any approach of integrating the
position information into the compatibility score.

Among the first, Shaw et al. (2018) intro-
duced the idea of RPE based on above formulation.
Specifically, they concretized Equation 10 as

qik
T
j = (xiW q)(xjW k + pr)

T , (11)

where pr ∈ Rd is a trainable relative position em-
bedding and r = clip(j − i, rmin, rmax) denotes
the clipped relative position. By clipping the rela-
tive positions to a determined range, the number of
position embeddings to be learned is reduced and
length extrapolation is enhanced as unseen position
embeddings are avoided. This RPE can also be
regarded as a derivation of sinusoidal APE. Fol-
lowing this line, more RPEs have been proposed
to better model position information, such as Dai
et al. (2019), Huang et al. (2020) and TUPE (Ke
et al., 2020). We omit them here since they are not
proposed for stronger length extrapolation.

3.2.1 RoPE Family
Also inspired by sinusoidal APE, Su et al. (2024)
proposed to multiply keys and queries by rotation
matrices, leaving compatibility scores as

qTi kj = (Rd
Θ,ixiW q)

T (Rd
Θ,jxjW k)

= W T
q x

T
i R

d
Θ,j−ixjW k, (12)

where Rd
Θ,j−i = (Rd

Θ,i)
TRd

Θ,j with Rd
Θ,i being a

block-diagonal matrix with rotation matrices
(
cos iθm − sin iθm
sin iθm cos iθm

)
(13)
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on its diagonal, given the parameters Θ =
(θm)m=1,2,...,d/2 where θm = 10000−2(m−1)/d.
Here the base is 10000, and λm = 2π/θm is wave-
length. This method is called Rotary Position Em-
bedding (RoPE) as intuitively it rotates key/value
embeddings according to their position index:

f{q,k}(xi, i) = Rd
Θ,ixiW {q,k}. (14)

It is noteworthy that despite the absolute nature of
this rotary process, the compatibility score and thus
attention depend only on relative distance. This
property together with long-term decay for inter-
token product benefit length extrapolation.

As RoPE has been widely used in popular LLMs
(Touvron et al., 2023a; Jiang et al., 2023; Anil et al.,
2023), there are some variants proposed to improve
it. Sun et al. (2023) defined attention score expecta-
tion between two tokens at a specific distance and
further attributed the poor extrapolation of RoPE
to the dramatic oscillation of their attention expec-
tations. They proposed to fix this issue by incorpo-
rating a balancing term to punish the oscillation of
unstable dimensions and keep the distribution of
stable ones, which can be simplified to:

qTi kj = γi−jW T
q x

T
i R

d
Θ,j−ixjW k, (15)

where γ ∈ (0, 1) is a scalar hyperparameter.

3.2.2 T5-Bias Family
Different from complex embedding form, some re-
searchers reduce position information p(j − i) to a
simpler form. Raffel et al. (2020) utilized learnable
scalars to represent relative position information:

qik
T
j = (xiW q)(xjW k)

T + βi,j . (16)

In addition, they extended the clipping mechanism
by a logarithmic bucket assignment to achieve pre-
cise discrimination of nearby positions and less
precise discrimination of further positions (e.g.,
mapping the position indices 1-4 to themselves, 5-
6 to 5, 7-8 to 6, 9-12 to 7, and so forth.), which
further reduces the parameters to be learned and
is beneficial for extrapolation (Chi et al., 2022).
Moreover, Wennberg and Henter (2021) introduced
TISE, which leverages a radial-basis function of
relative distance with multiple trainable parameters
to add a bias to attention scores.

As the first PE aiming mainly for length extrap-
olation, ALiBi (Press et al., 2021) takes an even
simpler way to represent relative position:

qik
T
j = (xiW q)(xjW k)

T +m(j − i), (17)

where scalar m is a head-specific slope fixed be-
fore training. It is worth noting that there is no
additional learnable parameter, which leads to su-
perior efficiency and may also contribute to better
extrapolation of ALiBi. Empirical experiments on
language modeling demonstrated its superiority.

From the perspective of kernel methods, Chi
et al. (2022) considered ALiBi as a triangle ker-
nel and extended it to KERPLE, a framework that
generalizes relative position embeddings for ex-
trapolation by kernelizing positional differences
using conditionally positive definite kernels. In this
framework, various RPEs can be derived from dif-
ferent conditionally positive definite kernels in a
principled way, among which the logarithmic vari-
ant achieves preferred extrapolation performance,
by calculating the compatibility score as follows:

qTi kj = (xiW q)
T (xjW k)−r1·log(1+r2|i−j|),

(18)
where r1, r2 are positive scalar parameters.

Aware of the overfitting issue of sinusoidal APE,
Chi et al. (2023b) proposed to overcome it by sim-
plifying sinusoidal APE to a new RPE, Sandwich.
Specifically, they dropped the cross terms in Equa-
tion 7 and kept the inner product of two position
embeddings as position information:

qTi kj = (xiwq)
T (xjW k) + pT

i pj . (19)

It is worth noting that in this formula, pT
i pj be-

comes a temporal bias term with the same decay-
with-distance pattern as ALiBi, which is exactly
what the authors want to achieve as they suggested
this pattern is likely to be the secret to success-
ful length extrapolation. Besides, since position
embeddings here only need to interact with them-
selves, the authors make the dimension of them a
hyperparameter to further improve performance.

FIRE (Li et al., 2023b) integrates positional
information into Transformers following T5 bias:

qik
T
j = (xiW q)(xjW k)

T + b(i, j), (20)

where the bias b(i, j) is mapped from positions us-
ing a learnable continuous function fθ : R −→ R,
e.g., MLP. To avoid the generalization issue when
the inputs are outside the training domain of the
function, they proposed progressive interpolation
by normalizing the distance by query position in-
dex, namely b(i, j) = fθ(

i−j
i ). Note that in

causal attention, the normalized distance is always
bounded between [0, 1], which aligns the inference

9963



domain with the training domain for any sequence
lengths, leading to better length extrapolation.

However, the above methods separate positional
bias from semantics completely, which may cause
semantic similarity to be overshadowed by position
information. Hence, Zheng et al. (2024) proposed
Context-Adaptive Positional Encoding (CAPE) to
integrate both semantic and positional information:

qikj
T = (xiW q)(xjW k)

T

+ f((xiW q)(xjW k)
T , b(i, j)). (21)

Here f : R × R → R is parameterized by a two-
layer LeakyReLU neural network and b(i, j) come
from other RPEs(e.g., ALiBi and FIRE).

In addition to RPEs introduced previously, there
are some methods cannot be categorized into RoPE
or T5-bias family. He et al. (2024) introduce
bilevel PE that employs two distinct PE for each
position: an APE for intra-segment position to
help model capture the semantics contained therein,
while an RPE for inter-segment position to capture
relationships between segments and exhibits extrap-
olation. This decoupling offers greater flexibility
in addressing the length extrapolation problem.

Based on the observation that existing PEs use
token as the unit of measurement, Golovneva
et al. (2024) claimed that this feature prevents PEs
from generalizing to higher levels of abstraction
such as sentences and paragraphs. Therefore, they
proposed Contextual Positional Encoding (CoPE),
which allows the model to determine semantic unit
(e.g., word and sentence) and assign tokens therein
a same position index. Since CoPE can distribute
positions to a much larger number of tokens and
focus attention on semantic units at a higher level
of abstraction, it exhibits stronger extrapolation.

Highlights: Earlier RPEs had been greatly in-
fluenced by sinusoidal APEs by modifying terms
in Equation 7 and replacing absolute embeddings
with relative embeddings. These methods usually
leverage clipping or binning strategy to avoid out-
of-distribution position embeddings and enhance
extrapolation. Since RPEs decouple the one-to-one
correspondence between position and position rep-
resentation, incorporating bias term directly into
compatibility score (Equation 10) becomes a fea-
sible and even better way to encode positional in-
formation, which is much simpler and naturally
disentangles value vectors and position informa-
tion. However, despite the strong extrapolation of
these bias methods, they cannot represent complex

distance-attention functions based on Fourier basis
like RoPE. Therefore, RoPE become the de facto
PE of recent LLMs due to its advanced general
performance, in spite of its poor extrapolation.

4 Extrapolation Methods in LLMs Era

Based on PEs in §3, various methods have been
developed to further enhance length extrapolation
of LLMs. This section is separated in response to
this wave, focusing on interpolation methods and
randomized PEs, as illustrated in Figure 3.

4.1 Position Interpolation
Despite the large quantity of PEs with better ex-
trapolation, RoPE has been most widely adopted
in recent LLMs due to its superior in-distribution
performance. Hence, loads of methods have been
proposed to enhance the extrapolation of RoPE, the
most prevalent of which is position interpolation.

Chen et al. (2023b) firstly 3 introduced posi-
tion interpolation for RoPE to extrapolate LLMs
to longer sequences by applying linear scaling
to down-scale position indices so that the maxi-
mum position index matches the previous length
limit during pre-training. Formally, this method
replaces RoPE f (Equation 14) by f ′ defined as
f ′(x, i) = f(x, iLL′ ), where L is the length limit
during pre-training and L′ is the longer sequence
length at inference. The scale ratio κ = L′/L
transforms position n to n/κ. This method reduces
absolute position indices from [0, L′) to [0, L) and
maximum relative distance from L′ to L, aligning
the ranges of position indices and relative distances
to mitigate effects on attention score computation.

However, from the perspective of Neural Tan-
gent Kernel (NTK) theory (Jacot et al., 2018),
simply interpolating RoPE’s Fourier space linearly
will cause the loss of high-frequency information
and prevent models from distinguishing nearby po-
sitions.Hence, NTK-Aware Scaled RoPE (NTK-
aware interpolation) (bloc97, 2023b) has been pro-
posed by modifying the base of RoPE:

θ∗m = (b · κ d
d−2 )−2(m−1)/d, (22)

where b is the original base and κ is still the scale
ratio. The core idea here is to scale high frequen-
cies less and low frequencies more to reduce infor-
mation loss of high frequencies. As NTK-aware
interpolation does not scale the Fourier features

3There is a concurrent work: https://kaiokendev.
github.io/til#extending-context-to-8k
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Figure 3: Essentials of position interpolation and ran-
domized PE. Randomized PE aims to ensure that posi-
tions falling outside the context window at inference re-
main in distribution through advanced exposure in train-
ing. Position interpolation, on the other hand, works
during the inference stage by scaling a longer position
range into the original context window.

directly, all positions are distinguishable from each
other. Moreover, this method does not require any
fine-tuning to extend the context window.

Further, Dynamic-NTK interpolation (emozilla,
2023) combined NTK-aware interpolation with dy-
namic scaling, using exact positions for tokens
within pre-trained context window to prevent per-
formance degradation and dynamically increases
scale ratio κ as current sequence length increases
to adjust positions beyond the window:

κ =

{
L′/L, if L′/L > 1,

1, otherwise,
(23)

where L′ is the sequence length of the current se-
quence, which will increase after each step.

Either scaling position indices or modifying
bases, all position representations become closer to
each other, impairing LLM’s ability to distinguish
the positional order of close-by tokens. Besides,
bloc97 (2023a) observed that some RoPE dimen-
sions have wavelengths longer than the pre-trained
context window, where they presume absolute po-
sitional information remains intact4. Hence, they
proposed NTK-by-parts, which does not interpo-

4From the perspective of frequency, the full range of high-
frequency components have been seen by the model during
training, while low-frequency components have not. Thus,
every position within the context window leads to a unique
value in these low-frequency components, based on which
models can determine the absolute position of each token.

late dimensions of small wavelengths at all while
always interpolating those of big ones.

Similar observations with NTK-by-parts have
been made by Pal et al. (2023), based on which
they proposed to use the truncated basis:

θ∗i =





θi for θi ≥ b,

ρ for a < θi < b,

0 for θi < a.

(24)

where ρ is a fixed value that is relatively small, and
a and b are chosen cutoff values. This way, mod-
els will experience all values of the basis in the
context length used during fine-tuning by choos-
ing appropriate cutoff values, and are supposed to
extrapolate better during inference.

Additionally, Peng et al. (2023b) observed that
by introducing a temperature t into compatibility
score before Softmax, perplexity decreases consis-
tently. Combining this finding with NTK-by-parts
interpolation, they subsequently proposed YaRN
that surpasses previous interpolation methods in
both fine-tuned and non-fine-tuned scenarios.

The interpolation methods reflect the critical im-
pact of the rotary base of RoPE on length extrapo-
lation, prompting efforts to enhance extrapolation
of RoPE-based LLM by fine-tuning it with a scaled
base (Xiong et al., 2023; Rozière et al., 2023; Liu
et al., 2023d). However, fixed scaling factors over-
look the gradual length-extension process and im-
pair performance at shorter lengths, leading to the
proposal of dynamic scaling methods (Chen et al.,
2023a; Zhang et al., 2024b; Ding et al., 2024). Inno-
vatively, Wang et al. (2024) scale each dimension’s
base by rounding its wavelength to the nearest inte-
ger, avoiding phase shifts after each full rotation.

Highlights: Recently, position interpolation
methods have raised widespread interest in the re-
search community, as a natural result of their supe-
rior extrapolation performance and extremely low
overhead. Current interpolation methods either in-
terpolate position indices or RoPE’s base, guided
by sound theoretical intuition. Besides, different
from other extrapolation methods, position interpo-
lation methods have already seen their presence in
the open-source models (Bai et al., 2023a; Touvron
et al., 2023b; AI et al., 2024).

4.2 Randomized Positional Encoding

For PEs without clipping mechanism, length ex-
trapolation means positions beyond those that have
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been observed during training, leading to out-of-
distribution position representations and thus per-
formance degradation. To address this, an intu-
itive way is enabling models to observe all possible
position representations during training, which is
exactly the core idea behind randomized PEs.

As a realization of this idea, Ruoss et al. (2023)
proposed to simulate a much longer range of posi-
tions (M ) and randomly selects an ordered subset
to fit the training context window for each iteration.
Thus, through adequate training, we can ensure that
the model encounters enough unique positions and
all M positions have been fully trained, leading to
consistent extrapolation performance.

Different from Ruoss et al. (2023), PoSE (Zhu
et al., 2023) partitions a sequence into chunks
and adjusts the position indices by adding dis-
tinct skipping bias terms between chunks. Hence,
PoSE keeps the positions continuous in each chunk,
which bears a close resemblance to pre-training,
while simultaneously help the model adapt to all
positions within a longer context window.

Highlights: Essentially, randomized PEs sim-
ply decouple the trained context window with the
longer inference one by introducing randomized
positions during training or fine-tuning, boosting
exposure of all possible positions in advance. This
idea is quite different from that of position interpo-
lation methods, where the latter tries to interpolate
positions during inference to make them fall into
the trained range. For the same reason, position
interpolation methods are mostly plug-and-play
while randomized PEs usually need further fine-
tuning, which makes position interpolation much
more appealing due to its low overhead.

5 Future Directions

Evaluation and Benchmark. Initially, researchers
evaluated length extrapolation by training models
on sequences with a length limit and testing them
on slightly longer sequences (Liu et al., 2020;
Likhomanenko et al., 2021). During this phase,
evaluation samples and metrics came from vari-
ous downstream tasks such as machine translation
and question answering. Given the demonstrated
versatility of pre-trained language models in vari-
ous downstream tasks (Raffel et al., 2020; Brown
et al., 2020), language modeling and perplexity
have emerged as the standard metrics for evaluat-
ing length extrapolation (Press et al., 2021; Haviv
et al., 2022). Thus, we statistically present some

empirical results of trending PEs on language mod-
eling in Appendix A.2. However, it has become
clear that perplexity alone does not adequately re-
flect downstream task performance and is insuffi-
cient (Tay et al., 2021; Kazemnejad et al., 2023; Pal
et al., 2023; Hu et al., 2024). Therefore, dedicated
benchmarks and evaluation methods are needed to
further advance the field of length extrapolation.

To stimulate subsequent research, we present
several preliminary thoughts on the construction of
a standardized benchmark in Appendix A.3.

Explainability and Principle. Despite the re-
markable progress, our understanding of length
extrapolation remains limited, lacking a general
and solid theoretical foundation. The decaying-
with-distance pattern was initially thought to be
crucial for extrapolatable PEs (Press et al., 2021;
Su et al., 2024), but it was later shown to merely ac-
commodate the recency bias of language modeling
(Chi et al., 2023c). Although Qin et al. (2024) fur-
ther provided a theoretical analysis and elaborated
that exponential convergence is a sufficient condi-
tion for RPEs to length extrapolate, their definition
of length extrapolation is also based on language
modeling and perplexity, which may limit the ap-
plicability of their theorem. Besides, extrapolation
methods tend to avoid out-of-distribution positions
via interpolation or advanced exposure. Thus, it
remains unclear when or if Transformers length
extrapolate in real-world scenarios and whether or
how existing methods help with it.

Long Context Utilization. Existing length ex-
trapolation methods mostly focus on expanding
context window of Transformers, while much less
attention has been paid to the investigation and
optimization of the utilization of long context. In
fact, as a result of recent advances, state-of-the-art
LLMs are claimed to be capable of processing se-
quences with up to 128k tokens (Abdin et al., 2024;
AI, 2024). Given such a long context, the extent to
which the models can effectively utilize it becomes
a critical question. Previous study has revealed
that LLMs tend to "lost in the middle" (Liu et al.,
2023b), i.e., they cannot effectively leverage infor-
mation in the middle of a long context. Despite
a few preliminary explorations trying to improve
long context utilization (Staniszewski et al., 2023;
Ravaut et al., 2024), recent long-context bench-
marks (Li et al., 2023a; An et al., 2024; Bai et al.,
2024; Zhang et al., 2024a) suggest that trending
long-context LLMs still struggle on long sequences,
and significant advancements are required.
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6 Discussions

6.1 Length-Extrapolated and Long-Context
Transformers

Throughout this survey, we position length extrapo-
lation as a promising avenue towards long-context
transformers. However, as stated in §1, it’s the
length limit and poor length extrapolation together
that prevents transformers from processing long
sequences, thus the more direct way to extend the
context window is to simply relax the length limit.

The most intuitive way to achieve large con-
text window is directly pre-training the model or
fine-tuning (continual pre-training) a pre-trained
model on long sequences. Xiong et al. (2023) em-
pirically demonstrated that long context continual
pre-training is more efficient and similarly effec-
tive compared to pre-training from scratch with
long sequences. However, both pre-training and
fine-tuning (continual pre-training) are costly and
demand large-scale high-quality long data, which
is scarce (Kazemnejad et al., 2023). To reduce
memory and computational overhead during train-
ing, recurrent Transformer variances integrate re-
currence with attention (Dai et al., 2019; Bulatov
et al., 2022) while efficient Transformer variants
(Tay et al., 2022; Fournier et al., 2023) mainly aim
at improving the quadratic complexity of attention
mechanism, but both usually compromise some of
the modeling capability and still need large-scale
long sequence data. Flash Attention (Dao et al.,
2022; Dao, 2023) greatly improves both training
and inference efficiency of Transformers with little
to no overhead, leading to models with much larger
context window (Jiang et al., 2023; Gunasekar
et al., 2023; Li et al., 2023a).

On the other side, there are more radical re-
search efforts that attempt to abandon attention and
its quadratic complexity with regard to sequence
length completely, such as S4 (Gu et al., 2022),
RWKV (Peng et al., 2023a), and Hyena (Poli
et al., 2023). Further, some recent studies have
attempted to scale these novel architectures to bil-
lions of parameters, leading to the emergence of
Mamba (Gu and Dao, 2023) and RWKV-5/6 (Peng
et al., 2024). However, it has been demonstrated
that Transformer models perform dramatically bet-
ter than state space models like S4 at copying and
retrieving information from context (Jelassi et al.,
2024). Thus, whether these novel architectures are
better than Transformer and how they perform on
real-world scenarios remains to be evaluated.

6.2 Length Extrapolation and Generalization

In parallel to research efforts that deem length ex-
trapolation as a promising approach to extend con-
text window of LLMs, another line of research
treats it as a generalization problem and analyzes
the length generalization behavior of Transform-
ers within small context window on synthetic tasks
such as arithmetic and deductive reasoning in a con-
trolled setup (Lake and Baroni, 2018; Dubois et al.,
2020; Abbe et al., 2023), where some intriguing
observations and insights have been discovered.

One common observation is that Transformers
often struggle with length generalization, whether
they are trained from scratch on synthetic tasks
(Lee et al., 2023; Kazemnejad et al., 2023), fine-
tuned from pre-trained LLMs (Anil et al., 2022) or
tested in in-context learning (Saparov et al., 2023).

As explanations, Dziri et al. (2023) hypothesize
certain tasks may not possess the inherent com-
positionality and allow for shortcut pattern match-
ing. On the other side, Transformers are proven
to length generalize on specific tasks (Zhou et al.,
2023; Xiao and Liu, 2024) or with the right combi-
nation of data format and PE (Zhou et al., 2024).
Meanwhile, some studies show other factors in
length generalization. Anil et al. (2022) find that
fine-tuning regime, scaling data, model sizes, and
compute does not improve length generalization,
while scratchpad (Nye et al., 2022) or chain-of-
thought (Wei et al., 2022) in the in-context learning
regime do. In addition, Kazemnejad et al. (2023)
show that explicit PE is not essential for decoder-
only Transformer to length generalize on small-
scale synthetic tasks. These studies have deep-
ened our understanding of length extrapolation in a
mechanistic way and broadened our perspectives
to go beyond PE, demonstrating that the extrapola-
tion ability needs a systematic design where PE is
crucial but by no means the sole component.

7 Conclusion

Through this survey, we systematically summa-
rized existing methods and recent advances in
length extrapolation from the perspective of PE.
Specifically, we meticulously categorize extrapo-
latable PEs and further dive into methods based on
these PEs in LLMs era. In addition, we highlight
existing challenges and identify new trends in this
research field, hoping to facilitate researchers and
provide stimuli for future research.
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Limitation

This survey presented a systematic review of exist-
ing methods and recent trends in length extrapola-
tion of Transformers. However, due to the lack of
standardized benchmark and evaluation methods,
we primarily focus on high-level comparisons and
distinctions in principle of different approaches,
rather than fine-grained empirical analysis. Further-
more, in this work, we focus on length extrapola-
tion studies aimed at extending the context window
of LLMs in real-world scenarios. Although we
acknowledge the importance of studies analyzing
length generalization in synthetic tasks within a
small context window as well, we provide only a
brief discussion on them due to the page limitation.
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A Appendix

A.1 Length Extrapolation on Generation
Tasks

To help readers gain a deeper understanding of
the challenges of length extrapolation, we leverage
LongBench-E (Bai et al., 2023b) as our testbed
and choose three trending LLMs with different con-
text window sizes to evaluate their performance on
various generation tasks and different evaluation
length ranges. The results are shown in Table 2.

From the results, some intriguing conclusions
can be drawn:

1. When evaluating models on sequences beyond
the original context window, a consistent per-
formance degradation can be observed across
models and tasks, which strongly supports the
necessity of studying length extrapolation.

2. Thanks to the shift-invariance and decay-with-
distance property of RPE these LLMs use,
they can maintain a reasonable performance
when dealing with sequences beyond the con-
text window, i.e., the performance will grad-
ually decline rather than immediately crush
after length exceeding the context window.

3. Even evaluating on sequences within the con-
text window, the increase in sequence length
still leads to degraded performance. This may
be as a result of the increasing difficulty with
increasing length or due to the sparsity of long-
range dependencies in concatenated training
long sequences, meaning length extrapolation
as a problem even exists within training con-
text window and long-context transformers
trained on long sequences do not necessarily
possess strong length extrapolation capability.

A.2 Results on Language Modeling
To offer an empirical comparison between popular
PEs, we statistically collect results from published
literatures and form Table 3.

We highlight several important conclusions from
these results:

• RPEs demonstrate better in-distribution
performance. On sequences with length
within context window, RPEs already demon-
strate better performance, compared to APEs.
We explain the results as RPE is consistent
with the nature of natural language (relative

position matters rather than absolute posi-
tions).

• RPEs demonstrate better extrapolation ca-
pability. In the length extrapolation setting
that this survey concerns most, RPEs also out-
perform APEs due to intrinsic shift-invariance
and binning strategy (for T5 bias) or expo-
nentially decay with distance (for ALiBi and
RoPE).

• RPEs seek a balance between expressive-
ness (embedding-based RPE) and extrapo-
lation (bias-based RPE) and perplexity is in-
sufficient. As in comparisons between RPEs,
we can see that bias methods (T5 bias and
ALiBi) lead to lower perplexity on sequences
with length both within and beyond the con-
text window, which indicates bias methods
are better at language modeling by explicitly
pandering recency bias. Note that it does
not mean our claim that embedding-based
methods like RoPE are more expressive is
wrong, considering that models with ALiBi
have worse performance than RoPE-based
models on current trending benchmarks (Pal
et al., 2023) like MMLU (Hendrycks et al.,
2020) and LMSys arena (Zheng et al., 2023).
This further shows that perplexity is insuffi-
cient to reflect performance in these down-
stream tasks.

A.3 Thoughts on Standardized Benchmark
Realizing the difficulty and complexity of con-
structing a standardized benchmark for length ex-
trapolation, we present some preliminary thoughts
on it as follows:

• The benchmark should have no position bias.
This means the model cannot consistently rely
on tokens at specific locations to reach the
correct answer. Thus, language modeling is
not an ideal task due to its recency bias, which
makes it possible for the model to generate the
correct token based solely on nearby tokens.

• The benchmark should require modeling the
full range. This indicates the model cannot
depend on a small portion of the input but
needs to attend and model the full range of
context to give correct responses. Thus, the
popular Needle In A Haystack test (gkam-
radt, 2024) is not an ideal benchmark, as it
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Task Evaluation Window Llama2-7B-Chat (4K) ChatGLM3-6B (8K) Vicuna-v1.5-7b-16k

QA

2WikiMQA
0-4K 34.56 21.86 31.19
4-8K 23.95 21.85 17.71
8K+ 23.12 13,72 12.33

HotpotQA
0-4K 37.59 25.92 37.35
4-8K 27.84 19.63 24.09
8K+ 23.17 15.96 21.91

MultiFieldQA-en
0-4K 41.42 44.04 47.1
4-8K 34.29 29.31 33.83
8K+ 21.21 28.45 28.29

Summarization

MultiNews
0-4K 26.67 25.71 27.96
4-8K 22.33 21.37 23.62
8K+ 22.46 20.4 21.22

GovReport
0-4K 30.66 30.7 33.95
4-8K 27.39 23.39 29.91
8K+ 25.6 22.2 24.89

Code Completion

LCC
0-4K 63.73 52.18 56.14
4-8K 61.59 43.63 57.69
8K+ 56.83 40.37 43.25

Table 2: Performance of Llama2-7B-Chat (Touvron et al., 2023b), ChatGLM3-6B (GLM et al., 2024) and
Vicuna-v1.5-7b (Zheng et al., 2023) on LongBench-E, where the context window of each model is indicated in
parentheses.

Dataset WikiText-103 OpenWebText2 ArXiv

Context Window 512 1024 512
Evaluation Window 512 1012 1024 2024 512 1024 512 1024

APE
Sinusoidal 20.05 43.54 19.34 51.09 26 14168 5.8 1070
RPE
T5 Bias 19.65 18.79 18.8 18.34 22.6 22.2 5.16 4.91
ALiBi 19.73 18.73 18.66 18.05 22.8 23.3 5.25 5.41
RoPE 20.07 21.37 19.33 31.17 23 61 5.25 16.02

Table 3: Empirical comparisons of different PEs on language modeling. The results on WikiText-103 are obtained
from Sun et al. (2023) and the results on OpenWebText2 and ArXiv are obtained from Chi (2024). Note that the
results may not be fairly comparable across dataset due to differences in model and training.
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only requires the model to search and retrieve
only a small portion of the input that is signif-
icantly different from other content, which is
quite different from understanding and use of
context (Liu et al., 2023b).

• This benchmark should offer flexibility in se-
quence length with relatively stable diffi-
culty. This means the benchmark should con-
sist of enough sequences at increasing lengths
but not increasing difficulty. Thus, the bench-
mark can directly help with the fine-grained
evaluation of the length extrapolation capabil-
ity of Transformers without the need to crop a
complete sequence, where the consistency of
difficulty ensures the evaluation is only rele-
vant to the increasing length.

As for a concrete example, calculating long se-
quences containing only addition and subtraction
within ten (and keeping the intermediate results in a
small range) might be a promising evaluation task,
considering that the task itself is simple enough for
common LLMs (Li et al., 2024) and we can thus
focus on the impact of increasing length.
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