
Findings of the Association for Computational Linguistics: EACL 2024, pages 10115–10125
November 12-16, 2024 ©2024 Association for Computational Linguistics

On the Similarity of Circuits across Languages:
a Case Study on the Subject-verb Agreement Task

Javier Ferrando1 Marta R. Costa-jussà2

1Universitat Politècnica de Catalunya
2FAIR, Meta

jferrandomonsonis@gmail.com

Abstract
Several algorithms implemented by lan-
guage models have recently been successfully
reversed-engineered. However, these findings
have been concentrated on specific tasks and
models, leaving it unclear how universal cir-
cuits are across different settings. In this paper,
we study the circuits implemented by Gemma
2B for solving the subject-verb agreement task
across two different languages, English and
Spanish. We discover that both circuits are
highly consistent, being mainly driven by a par-
ticular attention head writing a ‘subject num-
ber’ signal to the last residual stream, which
is read by a small set of neurons in the final
MLPs. Notably, this subject number signal is
represented as a direction in the residual stream
space, and is language-independent. Finally,
we demonstrate this direction has a causal ef-
fect on the model predictions, effectively flip-
ping the Spanish predicted verb number by in-
tervening with the direction found in English.1

1 Introduction

The widespread use of large language models
(LLMs; Brown et al., 2020; Hoffmann et al., 2022;
Chowdhery et al., 2023) highlights the importance
of research dedicated to interpreting how these
models work internally (Ferrando et al., 2024),
especially to ensure they are safe. Mechanistic
interpretability (MI) (Olah, 2022) aims to reverse-
engineer the algorithms implemented by language
models. A large set of MI works have focused
on circuit analysis (Räuker et al., 2023), which
locates subsets of components responsible for a
behavior while giving human-understandable ex-
planations of their roles. This research has made
progress in identifying circuits that handle differ-
ent tasks (Wang et al., 2023; Heimersheim and
Janiak, 2023; Stolfo et al., 2023a,b; Geva et al.,
2023; Hanna et al., 2023). However, it remains

1Code will be released upon acceptance.

unclear whether the findings obtained through cir-
cuit analysis transfer to different settings. For in-
stance, if different models learn similar circuits
for solving the same task, or if models find dif-
ferent solutions for the same task in two different
languages. In this work, we study the latter ques-
tion. Through the lens of the subject-verb agree-
ment (SVA) task (Linzen et al., 2016; Goldberg,
2019), we study the main components in Gemma
2B (Gemma Team et al., 2024) that are responsible
across both English and Spanish.

2 Experimental Setup

In our experiments, we use Gemma 2B
model (Gemma Team et al., 2024). This
model has a large vocabulary size (256k tokens),
making it particularly well-suited for circuit
analysis, especially when doing activation patch-
ing (Section 3) in a multilingual setting, since it has
a large set of non-English words with a reserved
token. Regarding the dataset, for the English
experiments use the subject-verb agreement (SVA)
dataset from Arora et al. (2024)2, built on top of
SyntaxGym (Gauthier et al., 2020). The dataset
consists of contrastive pairs that differ in the
subject number, which agrees with the verb form
continuation. This allows us to create ‘clean’ and
‘corrupted’ versions:

Clean: The executive that embarrassed the manager has

Corrupted: The executives that embarrassed the manager

Singular

Plural (1)

3 Methods

We start searching for a circuit in Gemma 2B for
solving the SVA in English. To do so we use com-
mon techniques in circuit analysis, mainly direct
logit attribution, activation patching, and attention
pattern analysis.

2aryaman/causalgym, subset agr_sv_num_subj-relc
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Figure 1: English dataset activation patching results on the logit difference metric on (a) the residual streams (b)
attention blocks outputs, (c) MLP outputs, and (d) on attention heads at the last position.

Direct Logit Attribution. Every model compo-
nent adds a vector f c(x) to the residual stream,
and the last residual stream state gets projected
onto the unembedding matrix, producing the logits
distribution. Due to the linearity of the residual
stream, the direct effect of a component to the log-
its can be measured by projecting its output onto
the unembedding matrix, f c(x)WU . We can also
measure the direct attribution to the logit difference
(DLDA) (Yin and Neubig, 2022; Wang et al., 2023)
of the two possible verb continuations (g and b):

DLDAc = f c(x̃)WU [:, g]− f c(x̃)WU [:, b]. (2)

Activation Patching. A Transformer LM can be
seen as a directed acyclic graph (DAG) represent-
ing a causal model (Geiger et al., 2021; Pearl, 2009;
Vig et al., 2020), where nodes are model compo-
nents, and edges representations. During the for-
ward pass on the corrupted input x we can inter-
vene on the value of a node, f c(x), or residual
stream state, f l(x) by taking the activation value
from the forward pass on the clean input x̃. This
is referred to as denoising activation patching (Vig
et al., 2020; Meng et al., 2022). We can express
the intervention using the do-operator (Pearl, 2009)
as f(x|do(f c(x) = f c(x̃))). Via a metric m we
measure how the prediction changes between both
runs:

APc = m
(
f(x), f(x|do(f c(x) = f c(x̃)))

)
. (3)

We are interested in finding components that in-
crease the clean verb prediction when patching on
the corrupted run. Thus, a natural choice for the
patching metric m is the logit difference between
the clean and the corrupted verbs’ logits. In the
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Figure 2: Average contribution to the logit difference
by each model component.

Example 1, this means computing the logit differ-
ence between ‘has’ and ‘have’, and we expect it
to increase as we patch activations from the clean
(which includes ‘executive’) into the corrupted for-
ward pass.

4 English Subject-Verb Agreement
Circuit

Locating relevant components and residual
stream states. We perform activation patching
on the residual stream states across the dataset and
show the average logit differences3 in Figure 1 (a).
We can see that the noun in the subject largely im-
pacts the prediction, and patching at its position in
early layers causes the verb prediction to aggres-
sively change to match its number. Information
from the subject flows towards the last residual
stream via the attention block at layer 13 (Figure 1
(b)), followed by some action from downstream
MLPs at the last position (Figure 1 (b)), especially
MLP at layer 13 (MLP13). We can also observe
that ‘that’ and the following verb (‘embarrassed’)
get information from the subject at middle layers.
We get a more granular understanding of the atten-
tion layers that seem relevant by doing activation

3See in Appendix A the average logit differences.
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Figure 3: Average contribution to the logit difference
by each neuron in MLP13.

Top Promoted Tokens Positive Neuron Activation
‘ are’, ‘are’, ‘were’, ‘ were’, ‘Are’, ‘aren’, ‘ ARE’,
‘ WERE’, ‘ weren’

Top Promoted Tokens Negative Neuron Activation
‘ gardent’, ‘ is’, ‘ has’, ‘ sembrano’, ‘ was’, ‘ continúan’,
‘ appartienment’, ‘ isn’, ‘ hasn’, ‘ sostu’

Table 1: Top promoted tokens by neuron 2069 in
MLP13 based on the sign of the neuron.

patching on the output of every attention head in
the last position (Figure 1 (d)). Attention head 7 in
layer 13 (L13H7) has the largest effect on the logit
difference, followed by L17H4. Notably, we also
observe a head (L17H7) that contributes negatively
to the logit difference. In Appendix F we show the
average output-value-weighted heatmaps of these
heads, and we see that L13H7 attends broadly to
the context, with a slight focus on ‘what’, while
L17H4 focuses on the subject’s noun. Although
attention blocks at layers 13 and 17 also have large
direct effects Figure 2, most of the direct contribu-
tion to the logit difference is carried by downstream
MLPs, specifically MLP14, MLP15, MLP16, and
most notably MLP13.

Analysis of Neurons. The contribution of
MLP13 to the logit difference is led by a single
neuron (2069) (Figure 3). Recall that Gemma mod-
els use gated MLPs, which compute

GMLP(x) =
(
g(xWgate)⊙ xWin︸ ︷︷ ︸

neurons

)
Wout, (4)

where g is the activation function (GeGLU),
Wgate,Win ∈ Rd×dmlp read from the residual
stream, and the linear combination of the rows
of Wout ∈ Rdmlp×d weighted by the neuron val-
ues is added back to the residual stream (see Ap-
pendix E for a visual description). This means
that, unlike standard MLPs, neurons in GMLPs can
take arbitrarily large positive and negative values.
In the case of neuron 2069 in MLP13, when the
neuron positively activates, their associated neu-
ron weights (row in Wout) write in the direction of

Figure 4: Dot product of the output of attention head
L13H7 and the input weights of neuron 2069 in MLP13.

Figure 5: Projections of L13H7 outputs onto the top 2
PCs on English (left) and Spanish (right) dataset.

plural verb forms (and suppress singular forms) (Ta-
ble 1). On the other hand, on negative activations,
the neuron weights write in the direction of singular
verb forms (and suppresses plural forms). Notably,
this is true for the English and the Spanish verbs in
our datasets, which are present and past tenses of
the verbs ‘to be’ and ‘have’, but we also observe
less common non-English plural verb forms pro-
moted on negative neuron activations. This neuron
seems to read a ‘subject number’ signal, but where
does this signal come from? A candidate is L13H7,
which has a large total effect on the logit difference.

We compute the dot product between the out-
put of attention head L13H7 at the last position
and column 2069 of Win (Win[:, 2069]) across the
whole dataset and show the results in Figure 4.
When the subject is singular, we get a negative
dot product (activation) and promote singular verb
forms (Table 1). When the subject is plural, we
get positive dot product values and promote plural
forms. We observe a similar pattern in other in-
fluential MLP neurons (Appendix C). We further
provide evidence of the role of L13H7 by applying
PCA on its outputs in the last residual stream (Fig-
ure 5). The first principal component (PC1) clearly
distinguishes between singular and plural subject
examples. This means that L13H7 writes into a
1-dimensional subspace where the subject number
signal is encoded, from which downstream neurons
read to promote the correct tokens.
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(a) (b) (c) (d)
Figure 6: Spanish dataset activation patching results on the logit difference metric on (a) the residual streams (b)
attention blocks outputs, (c) MLP outputs, and (d) on attention heads at the last position.

5 Spanish Subject-Verb Agreement
Circuit

To study the subject-verb agreement task in Span-
ish, we follow the style of the English dataset,
where we first prompt GPT4 (OpenAI et al., 2024)
to generate verbs and nouns, and remove those
words tokenized into multiple subwords. Then, we
build similar examples to the ones in the English
dataset. An example of a contrastive pair is:

Clean: El ingeniero que ayudó al cantante era

Corrupted: Los ingenieros que ayudaron al cantante

Singular

Plural
(5)

Spanish circuit is consistent with the English
circuit. With activation patching we see a similar
pattern to that of the English dataset. Information
from the subject flows to the last residual stream at
layer 13, where the attention block shows a large ef-
fect (Figure 6). Also similarly, downstream MLPs
are relevant for correctly solving the task, with
MLP13 showing the highest total effect (Figure 6
(b)), while MLP15, MLP16 and MLP17 having
large direct effects on the logit difference. The con-
tribution of MLP17 is notably greater than in the
English dataset (Figure 2), where we observe non-
English specific neurons (Appendix D). Activation
patching on individual attention heads (Figure 6
(d)) shows that, as in the English dataset, attention
heads L13H7 and L17H4 have a positive influence
on the correct verb form, while L17H7 influences
negatively.

Activation Steering. In both languages, the same
attention head (L13H7) composes with specific
neurons in downstream MLPs that are responsi-

(a) (b)

Figure 7: Spanish average logit difference in (a) singular
subject and (b) plural subject examples, before and after
steering the prediction with PC1English.

ble for the correct verb form prediction, suggest-
ing that this head writes a ‘subject number’ signal,
which is found via PC1 (Figure 5). Here, we study
whether this direction, found in 50 English exam-
ples (PC1English) has a causal effect on the model
predictions, also on Spanish sentences. Specifi-
cally, we do activation steering (Turner et al., 2023;
Li et al., 2023; Tigges et al., 2023) on the attention
head output at the last position (n)

Attn13,7n = Attn13,7n ± αPC1English, (6)

where the coefficient α scales the unit norm
PC1English vector to match Attn13,7n norm. Results
show that adding PC1English successfully flips the
Spanish verb number prediction to plural (Figure 7
(a)) on examples with singular subject, and that
subtracting PC1English flips the Spanish plural num-
ber prediction to singular. Furthermore, we ob-
serve that the top predicted tokens other than verbs
remain mostly unchanged (see example in Ap-
pendix G).

6 Related Work

Our work builds upon and extends several key stud-
ies in the field of probing neural language models
for syntactic knowledge, particularly focusing on
agreement mechanisms in multilingual contexts.
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Causal probing studies have provided evidence
for the existence of specific syntactic agreement
neurons in language models (Finlayson et al., 2021;
De Cao et al., 2022; Lakretz et al., 2019). Fur-
thermore, research has demonstrated that models
like BERT (Devlin et al., 2019) rely on a linear
encoding of grammatical number to solve the num-
ber agreement task (Lasri et al., 2022). However,
these studies have primarily focused on monolin-
gual models, leaving a gap in our understanding of
multilingual contexts.

Moving beyond monolingual studies, Chi et al.
(2020) investigated universal grammatical relations
in multilingual BERT. They developed a structural
probe (Hewitt and Manning, 2019), learning a lin-
ear mapping to a syntactic subspace where syn-
tactic features overlap between languages. This
study demonstrated the potential for identifying
cross-lingual syntactic similarities in multilingual
models. Mueller et al. (2022) conducted a causal
analysis of syntactic agreement neurons in multilin-
gual language models. Via counterfactual interven-
tions, they discovered significant overlap between
languages in terms of neurons that causally influ-
ence syntactic agreement.

7 Conclusion

In this work, we study how Gemma 2B solves the
subject-verb agreement task in two different lan-
guages, English and Spanish. Through activation
patching and direct logit attribution we find that
both languages rely on circuits that are highly con-
sistent. Moreover, we provide evidence of an atten-
tion head (L13H7) writing a ‘subject number’ sig-
nal as a direction from which downstream neurons
read to promote the correct verb number continua-
tion. Finally, we show this direction has a causal
effect, being able to flip the predicted verb number
across languages.

8 Limitations

We recognize two main limitations in our study.
First, we focused solely on Gemma 2B model.
This choice is motivated by its large vocabulary
size, which aids in studying multilingual settings.
Results obtained on Gemma 2B do not guarantee
they generalize to other models. Second, our study
is limited to two languages: English and Spanish.
Although we identified a language-agnostic sub-
ject number direction in the model’s representation
space, demonstrating its generality across these two

languages, we cannot conclude that the same ap-
plies to all other languages, particularly those that
are more linguistically distant.
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A Logit Differences Clean and Corrupted
prompts

Figure 8: Logit Difference on clean and corrupted inputs.
English dataset.

Figure 9: Logit Difference on clean and corrupted inputs.
Spanish dataset.

B Logit Difference by Neurons in MLPs
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Figure 10: Average contribution to the logit difference
by each neuron in MLP15.
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Figure 11: Average contribution to the logit difference
by each neuron in MLP16.

0 2
k

4
k

6
k

8
k

1
0
k

1
2
k

1
4
k

1
6
k

−0.1

0

0.1

0.2

0.3
Language

Spanish

English

Neuron

L
o
g
it

 D
iff

e
r
e
n
c
e

Figure 12: Average contribution to the logit difference
by each neuron in MLP17.

C Attention Head L13H7 Composition
with Downstream Neurons

Figure 13: Values of the dot product between the output
of attention head L13H7 and the input weights of neuron
971 in MLP16.

Figure 14: Values of the dot product between the output
of attention head L13H7 and the input weights of neuron
4408 in MLP16.

Figure 15: Values of the dot product between the output
of attention head L13H7 and the input weights of neuron
7540 in MLP16.

D Neuron 1138 in MLP17

Neuron 1138 in MLP17 only activates on sentences
with plural subjects. This can be seen in Figure 17,
the dot-product of Wgate[:, 1138] with L13H7 out-
put is negative for singular subjects, meaning that it
doesn’t activate. In contrast, on plural subjects the
dot product of Wgate[:, 1138] and L13H7 output is
positive, and Win[:, 1138] is negative, meaning that
the neurons fires negatively. In Table 2 we see that
the promoted tokens in this case are plural verb
forms of multiple non-English languages.

Figure 16: Values of the dot product between the output
of attention head L13H7 and the input weights Win of
neuron 1138 in MLP17.

Figure 17: Values of the dot product between the output
of attention head L13H7 and the input weights Wgate of
neuron 1138 in MLP17.
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Top Promoted Tokens Negative Neuron Activation
‘abbiano’, ‘ avevano’, ‘ sembrano’, ‘ avrebbero’, ‘ continúan’,
‘ fossero’, ‘ possano’, ‘ poseen’, ‘ tenham’, ‘ terão’
‘ ont’, ‘ constituyen’, ‘ lograron’

Table 2: Top promoted tokens by neuron 1138 in MLP17
based on negative neuron activations.

E MLP and Gated MLP (GMLP)

MLP

Gated MLP

Figure 18: A comparison between the operations per-
formed by the standard MLP and the Gated MLP
(GMLP) found in Gemma models.

F Attention Patterns Main Heads

Figure 19: L13H7 average attention patterns (output-
value weighted) across the English dataset.

Figure 20: L17H4 Average attention patterns (output-
value weighted) across the English dataset.

Figure 21: L13H7 average attention patterns (output-
value weighted) across the Spanish dataset.

Figure 22: L17H4 Average attention patterns (output-
value weighted) across the English dataset.

10124



G Example Top Predicted Tokens in
Steering Experiment

Top 10 Predicted Tokens Before Steering
’ se’, ’ de’, ’ en’, ’ era’, ’ y’, ’ del’, ’ ’, ’,’, ’ es’, ’ fue’

Top 10 Predicted Tokens After Steering
’ de’, ’ se’, ’ en’, ’ y’, ’ ’, ’ del’, ’ son’, ’,’, ’ no’, ’ eran’

Table 3: Top 10 Predicted Tokens before and after steer-
ing a spanish example. In bold are shown spanish forms
of the verb ‘to be’.
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