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Abstract

Model fusing has always been an important
topic, especially in an era where large language
models (LLM) and multi-modal language mod-
els (MLM) with different architectures, param-
eter sizes and training pipelines, are being cre-
ated all the time. In this work, we propose a
post-hoc framework, aiming at fusing hetero-
geneous models off-the-shell, which we call
likelihood composition, and the basic idea is
to compose multiple models’ likelihood dis-
tribution when doing a multi-choice visual-
question-answering task. Here the core con-
cept, likelihood, is actually the log-probability
of the candidate answer. In likelihood com-
position, we introduce some basic operations:
debias, highlight, majority-vote and ensemble.
By combining (composing) these basic ele-
ments, we get the mixed composition methods:
mix-composition. Through conducting compre-
hensive experiments on 9 VQA datasets and
10 MLMs, we prove the effectiveness of mix-
composition compared with simple ensemble or
majority-vote methods. In this framework, peo-
ple can propose new basic composition meth-
ods and combine them to get the new mixed
composition methods. We hope our proposed
likelihood composition can provide a new per-
spective of fusing heterogeneous models and
inspire the exploration under this framework.1

1 Introduction

Recently numerous multi-modal language models
are emerging, e.g., LLaVA (Liu et al., 2023b,a,
2024b), MiniGPT4 (Chen et al., 2023a), BLIP-
2 (Li et al., 2023a), Qwen-VL (Bai et al., 2023),
InternVL (Chen et al., 2023b), and SPHINX (Lin
et al., 2023; Gao et al., 2024), each characterized
by different architectures, parameter sizes, training
datasets, and pipelines. Consequently, these mod-
els exhibit varying strengths across different tasks

1Code is released zhaoshitian/Likelihood-Composition-
Toolkit

and domains. Some works (Ilharco et al., 2023;
Wortsman et al., 2021, 2022) have demonstrated
that fusing multiple models can enhance perfor-
mance and generalizability across diverse domains.
Thus, several model fusion techniques have been
devised to leverage the complementary capabilities
of these models.

Many works focus on getting a new model by
inheriting the knowledge from multiple parent mod-
els. Some of them interpolate several models’
weights to get the new model’s weight, e.g., WiSE-
FT (Wortsman et al., 2021) and model soup (Worts-
man et al., 2022). However, in this process, all
the parent models and the new derived model need
to have the same architecture and parameter sizes,
i.e., in most cases, the parent models are the fine-
tuning versions of one pretrained model, leading
to lack of diversity of these models. There are also
some works focusing on distilling the knowledge
from several different parent models (Wan et al.,
2024a,b). However, the training computation cost
makes it hard for researchers to combine parent
models freely, i.e., the computation cost of the dis-
tillation training process limits researchers to do
lots of trial-and-error experiments to get a good
parent models recipe.

Considering these issues, a promising line of
work (Zhao et al., 2023; Li et al., 2024; Chuang
et al., 2023; Wang et al., 2022) fuse different mod-
els via manipulating or composing their likeli-
hood distributions2, with the advantage of being
fully post-hoc, training-free and the same archi-
tecture of parent models is not necessary. The ba-
sic operation is to average all models’ likelihood
distribution of the candidate answers, called “en-
semble”. (Dietterich, 2000) Recently some works

2Presicely, “likelihood” actually refers the log-probability
of the generated answer, following (Wang et al., 2022), the
detailed computing method is shown in Sec.3. Likelihood
distribution contains likelihood of multiple candidate answers,
here we assume by default that we are discussing a multiple-
choice visual question task.
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Figure 1: Two categories of likelihood composition:
self-composition and mutual-composition.

also tried to combine the likelihood distributions
from one model with different prompts as in-
put (Zhao et al., 2023; O’Brien and Lewis, 2023;
Leng et al., 2023; Zhang et al., 2023b). Behind
these works, the core concept is to fuse differ-
ent models via combining their likelihood distri-
bution of the candidate answers, to boost the per-
formance of downstream tasks, specifically multi-
choice VQA tasks. Thus, we propose a framework
named likelihood composition. Under this frame-
work, we introduce some basic operations: de-
bias, highlight, ensemble and majority-vote, some
of which have been proposed in the previous re-
search (Niu et al., 2021; Zhao et al., 2023; Wang
et al., 2022). And these basic operations are clas-
sified into two classes: “self-composition” and
“mutual-composition”. By composing these basic
operations, we derive some new likelihood compo-
sition methods, e.g., ensemble-debias, ensemble-
highlight, majority-debias and majority-highlight,
which we call “mix-composition”.

To explore the likelihood composition’s effec-
tiveness on fusing models and boosting the perfor-
mance on downstream tasks, we conduct the ex-
periments on LLaVA series and other 4 advanced
multi-modal language models and 9 VQA datasets.
Our experiment results reveal some interesting find-
ings:

(1) Self-composition can help model improve its
performance on VQA tasks, especially for not
well-developed models, e.g., debias can bring
a +12.08% improvement for LLaVA-7B on
MMVP.

(2) Mix-composition performs better compared to
mutual-composition with respect to boosting

the performance on VQA tasks, e.g., simply
combining debias and ensemble can bring a
+7.93% improvement on MMVP compared
to vanilla ensemble method, a +6.93 improve-
ment on MME compared to vanilla majority-
vote.

(3) When fusing models using likelihood compo-
sition, models’ quality is more important than
models’ quantity, e.g., fusing LLaVA1.5-13B,
LLaVA1.6-7B and LLaVA1.6-13B can make
a better performance than fusing all models in
LLaVA series.

2 Related Works

Multi-modal Language Models Based on the
booming of large language models, lots of multi-
modal language models have developed, e.g.,
LLaVA(Liu et al., 2023b), InternVL(Chen et al.,
2023b), Qwen-VL(Bai et al., 2023), Yi-VL,
SPHINX(Gao et al., 2024) and CogAgent(Hong
et al., 2023b). These models have similar archi-
tectures and training pipelines. The composition
of the model architecture is to use a MLP layer
or Q-Former(Li et al., 2023a) to connect a pre-
trained visual encoder, which could be the visual
encoder in CLIP(Radford et al., 2021) or pretrained
DINO(Caron et al., 2021), to a pretrained large lan-
guage model, e.g., LLaMA(Touvron et al., 2023),
Mistral and InternLM(Team, 2023). The training
pipeline mainly follows the two stage design: first
align the vision and language modality by train-
ing on massive image-text pair data, e.g., CC3M
and CC12M(Changpinyo et al., 2021); then fine-
tune the model using visual instruction data(Liu
et al., 2023b). By doing so, these models show a
good performance on multi-modal understanding
and VQA tasks.

Model Ensemble To boost the performance on
downstream tasks, a usual method is to ensem-
ble multiple models. In this literature, many
lines of research are developed: weight interpo-
lation(Wortsman et al., 2022, 2021), model collab-
oration(Besta et al., 2023; Hong et al., 2023a; Shen
et al., 2024; Yao et al., 2023) and distillation-based
methods(Wan et al., 2024b,a).

Decoding Methods for Language Models Given
a pretrained large language model, the decoding
method also matters a lot. Some works focus on
the decoding techniques of LLM, e.g., contrastive
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decoding(O’Brien and Lewis, 2023), contrasting
a pair of weak and strong LLM’s logits to im-
prove the strong model’s generation quality; proxy
tuning(Liu et al., 2024a, 2021), doing arithmetic
among three pretrained LLMs to boost the genera-
tion ability.

3 Preliminary

Before introducing the detailed methodology of
likelihood composition officially, it is necessary to
make clear some core concepts that may be men-
tioned in the methodology part. So in this section,
we give a clear description of the task formulation,
which is the basic setting of our study, and an ac-
curate definition of “likelihood”, the core concept
used in our framework.
Task Formulation Considering most multi-modal
tasks, e.g., visual grounding and image retrieval
can be formulated as a visual-question-answering
task(Gao et al., 2024). In this paper, we exclu-
sively investigate multi-choice visual question an-
swering (VQA) tasks. The task formulation is as
follows: Given a dataset D = {Si} comprising
numerous VQA samples, Si = (Ii,Qi,Ci) con-
sists of an image Ii and a question Qi. The candi-
date answers for this image-question pair are repre-
sented as Ci, a list containing n candidate answers:
Ci = [ci0, ..., c

i
n]. And we need to input (Ii,Qi,Ci)

into MLM to predict the right answer’s option let-
ter.
Likelihood Calculation For a VQA sample
(I,Q,C), during the normal forward process, both
I and Q are input into the model. C is a list of
choices, denoted as [c0, c1, ..., cn], where n is the
number of choices. The likelihood of candidate ci
is calculated as follows:

yi(X) = exp
1
Ki

∑Ki
k=1 logP (tk|X,t1,t2,...,tk−1), (1)

where yi represents the likelihood value of ci
conditioned on X , the input to the model.
P (tk|X, t1, t2, ..., tk−1) denotes the probability of
generating the kth token tk conditioned on X and
the previously generated tokens t1 ∼ tk−1. Ki

represents the total number of tokens in ci.
Once the likelihood of each choice is calculated,

we denote the list containing all the choices’ like-
lihood values as Y, upon which composition is

performed.34

4 Likelihood Composition

First, we organize the basic operations in the likeli-
hood composition framework into two categories:
self-composition and mutual-composition, as illus-
trated in Fig.1. Then we mix these basic elements,
resulting in the mix-composition.

4.1 Self-Composition

The primary idea behind self-composition involves
devising various prompt formats and preprocess-
ing input samples using these prompts to generate
different explicit inputs. Considering a VQA sam-
ple S = (I,Q,C), we design m prompting meth-
ods: Prompt1, ...,Promptm. By applying these
prompting methods to S, we obtain multiple re-
sults: X1, ...,Xm. Subsequently, inputting these
results into the model yields corresponding like-
lihood distributions on C: Y1, ...,Ym, on which
we conduct the composition method. In this sec-
tion, we introduce two self-composition methods:
Debias and Highlight.
Debias

Question: Q 
Choices:\n(A) 𝐜ଵ \n(B) 𝐜𝟐 \n(C) 𝐜𝟑 \n(D) 𝐜𝟒
Answer:

𝐏𝐫𝐨𝐦𝐩𝐭𝐬𝐢𝐦𝐩𝐥𝐞

Question: Q 
Choices:\n(A) 𝐜ଵ \n(B) 𝐜𝟐 \n(C) 𝐜𝟑 \n(D) 𝐜𝟒
Answer:

𝐏𝐫𝐨𝐦𝐩𝐭𝐧𝐨𝐢𝐦𝐠

No
Image

Figure 2: Prompt design of debias.

For multi-modal language models, language priors
may be modeled during the training process on the
multi-modal datasets, i.e., the model will give the
hallucinated answer ignoring the actual content of
the provided image. (Agrawal et al., 2018; Li et al.,
2023b; Niu et al., 2021) For example, when pro-
viding a picture containing a black color banana
to an MLM and ask “What is the color of the ba-
nana?”, the model will say “Yellow”, which is the
language prior bias in the training set. To model

3Here, after getting Y, we actually perform softmax on
it to make likelihood distributions from different models at
the same scale. For convenience, we use Y to illustrate the
likelihood composition framework and the experiments in the
following sections.

4It should be noted that in our practice, the input X also
contains C, and each option’s likelihood is actually the corre-
sponding option letter’s likelihood.
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the language prior bias existing in the MLM, we
only input the question into the model, inducing
the model to give the most common answer, which
reflects the language bias.

The prompt design is shown in Fig.2. Based on
these prompt methods, we obtain corresponding
likelihood values, Ysimple and Ynoimg. We then
subtract Ynoimg from Ysimple with a coefficient α,
as formalized below:

Y = (1 + α)Ysimple − αYnoimg (2)

Finally, among the likelihood values of the n
choices in Y, we select the option corresponding to
the highest likelihood as the predicted answer.
Highlight

Question: Q 
Choices:\n(A) 𝐜ଵ \n(B) 𝐜𝟐 \n(C) 𝐜𝟑 \n(D) 𝐜𝟒
Answer:

𝐏𝐫𝐨𝐦𝐩𝐭𝐩𝐨𝐬𝐢𝐭𝐢𝐯𝐞

Question: Q 
Choices:\n(A) 𝐜ଵ \n(B) 𝐜𝟐 \n(C) 𝐜𝟑 \n(D) 𝐜𝟒
Give me the wrong answer.\nAnswer:

𝐏𝐫𝐨𝐦𝐩𝐭𝐧𝐞𝐠𝐚𝐭𝐢𝐯𝐞

Figure 3: Prompt design of highlight.

Based on the idea of highlighting by using the op-
posite side, we introduce Highlight. First, we use
the a positive instruction, e.g., “Give me the right
answer.”, to instruct the model to produce a high
likelihood value of the right candidate. Then we
use a negative instruction, e.g., “Give me the wrong
answer.”, to prone the model to the wrong candi-
dates, producing a high likelihood value for the
wrong answers. Finally, by contrasting these two
likelihood distributions, we highlight the right an-
swer.

We list the prompt design of highlight in Fig.3.
It should be noted that in Promptpositive we do
not use a positive instruction, e.g., “Give me the
right answer.”, since usually MLM will give the
right answer with no special note. Wrap the
(I,Q,C) with Promptnegative, we get the explicit
input to the model. Then, the corresponding likeli-
hood, termed as Ynegative is produced conditioned
on the Promptnegative(I,Q,C). To highlight the
right answer among all the candidates, we subtract
Ynegative from Ypositive:

Yhighlight = (1 + α)Ypositive − αYnegative, (3)

on which the selection of the predicted answer is
based.

4.2 Mutual-Composition
Except for composing the likelihood distribu-
tion produced by one model, we can also com-
pose the likelihood distribution output from mul-
tiple different models with varying architectures,
sizes and training pipelines, termed as “mutual-
composition”.
Ensemble
Based on the task formulation mentioned in Sec. 3,
the most explicit composition method is to aver-
aging all the provided likelihood distribution from
different models, conditioned on the same input.
Specifically, say there are N models: {Fi|i =
1, ...,N}, and conditioned on the given sample,
(I,Q,C), we can get N likelihood distribution of
the candidate answers from the N corresponding
models, termed as {Yi|i = 1, ...,N}. To ensemble
them, we do the simplest averaging:

Yensemble =
1

N

N∑

i=1

Yi, (4)

from which the predicted option is selected.
Majority-vote
There have been some works focusing on ensemble
models’ output, e.g., CoT-SC(Wang et al., 2022).
The basic operation used in these works is to do the
majority-voting among the outputs despite being
produced by one model or multiple heterogeneous
models. And majority-vote actually can also be
expressed using the likelihood composition lan-
guage. Compared to ensemble mentioned above,
majority-vote actually just adds a mask during the
composition process:





Ymajority−vote =
1

N

N∑

i=1

1 ∗ [MASK]i, Unweighted

Ymajority−vote =
1

N

N∑

i=1

Yi ∗ [MASK]i, Weighted,

(5)

where 1 is an all ones vector having the same length
with Yi. [MASK]i is a 0-1 vector, where the el-
ement with the same index as that of the max ele-
ment in Yi is 1, and the other elements are 0.

4.3 Mix the Self-Composition and
Mutual-Composition

The basic idea of likelihood composition is to
compose different likelihood distributions from ei-
ther one model or multiple heterogeneous models.
From this perspective, we can mix the two intro-
duced composition methods mentioned in Sec. 4.1
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and Sec. 4.2, and we call the mixed method: mix-
composition.

In detail, say there are N models, {Fi|i =
1, ...,N} we first apply the self-composition, either
debias or highlight, to the likelihood distribution
output by one model. Then, we use the ensemble
method to fuse the N manipulated likelihood distri-
bution of different models. The arithmetic formula
is shown below:

Ymix =
1

N

N∑

i=1

((1 + α)Ysimple,i − αY∗,i), (6)

where * is either noimg or negative, the prompt
method used in self-composition.

Similarly, when combining self-composition and
majority-vote, the composition would be:

Ymix =
1

N

N∑

i=1

((1+α)Ysimple,i−αY∗,i)∗[MASK]i, (7)

where * is either noimg or negative.

5 Experiments

To evaluate the efficiency of likelihood composi-
tion methods on improving MLM’s performance
on VQA tasks, we conduct experiments on 10 ad-
vanced multi-modal language models and 9 VQA
benchmarks.

5.1 Used Multi-modal Language Model

In our early experiments, we find the likelihood
composition’s efficiency varied in models with dif-
ferent levels of capabilities and different training
schemas. To show the likelihood composition’s
general effectiveness, we select the LLaVA series,
from LLaVA-7B to LLaVA1.6-13B, with similar
architectures, training schemas and stepwise ca-
pability increase. Also, we select other 4 well-
developed MLMs: Yi-VL, Qwen-VL, InternVL,
and Internlm-Xcomposer, to see how likelihood
composition performs on heterogeneous models.

- LLaVA series(Liu et al., 2023b,a) are multi-modal lan-
guage models developed on pretrained large language
models, e.g., LLaMA(Touvron et al., 2023) and Vi-
cuna(Chiang et al., 2023), and pretrained visual encoder,
e.g., vision encoder in pretrained CLIP(Radford et al.,
2021). A simple linear layer or MLP layer is used for
aligning the vision and language modalities. Models in
this family are trained on vision-text pairwise data and
visual instruction data. We select LLaVA-7B, LLaVA-
13B, LLaVA1.5-7B, LLaVA1.5-13B, LLaVA1.6-7B and
LLaVA1.6-13B with increased multi-modal ability in
our experiments.

- Other Heterogeneous MLMs contains Yi-VL, Qwen-
VL(Bai et al., 2023), InternVL(Chen et al., 2023b), and
Internlm-Xcomposer(Zhang et al., 2023a), which are
all trained on vision-language pairwise data and multi-
modal instruction data. These models have good visual
understanding and reasoning abilities.

5.2 Used Datasets
We include different types of VQA datasets in our
experiments, to prove the likelihood composition’s
generalizability with respect to data and tasks.

- Comprehensive VQA benchmarks include MME(Fu
et al., 2023) and MMBench(Liu et al., 2023c), two com-
prehensive VQA benchmarks containing various tasks,
from object existence to code reasoning. And the ques-
tion format is multi-choice VQA, which is fitted for our
task formulation, introduced in Sec. 3.

- Diagnose VQA Benchmarks contains VSR, POPE(Li
et al., 2023b) and MMVP(Tong et al., 2024). POPE is
a Yes-No format VQA benchmark aimed at diagnos-
ing MLM’s object hallucination. MMVP is a dataset
exploring the shortcomings of MLMs.

- Reformed Academic VQA Datasets include the split
and reformed versions of VQAv2(Goyal et al., 2017),
OKVQA(Marino et al., 2019), GQA(Hudson and Man-
ning, 2019) and Vizwiz(Gurari et al., 2018) from
ReForm-Eval(Li et al., 2023c), and we use a superscript
“*” to represent the reformed versions.

5.3 Main Results
We reported the results of applying likelihood com-
position on LLaVA series MLMs and 4 advanced
MLMs with varying hyperparameters in Table.5,2
and Table.3 respectively. In Table.5, baseline is
the MLM’s intrinsic performance, while in Table.2
and Table.3, baselines are ensemble and majority-
vote, which we refer as mutual-composition in our
framework.
Results on LLaVA Series As shown in Table.5,
applied with self-composition methods mentioned
in Sec. 4.1, LLaVA series’ performance on the
9 datasets consistently improved, e.g., +12.08%
for LLaVA-7B on MMVP, +4.39% for LLaVA-
13B on MMBench, +6.96% for LLaVA1.5-7B on
VSR, etc. Overall, for the early models in LLaVA
family, i.e., LLaVA-7B and LLaVA-13B, which
is not well developed relatively, self-composition
methods improve their performance significantly.
Also, aggressive self-composition, i.e., with α =
1.0 works better in most cases than that with α =
0.1, for LLaVA-7B and LLaVA-13B.

For those well-developed models, i.e.,
LLaVA1.5-7B, LLaVA1.5-13B, LLaVA1.6-7B and
LLaVA1.6-13B, the improvement self-composition
brings is not as significant as before. In more
detail, for the best model, LLaVA1.6-13B, the

10156



α
De
bias

High
light

MME MMVP MMBench VSR POPE VQAv2* Vizwiz* GQA* OKVQA*

7B

991.26 0.67 40.62 54.91 61.83 38.99 36.66 36.83 31.94

1.0
✓ 1069.56 12.75 44.67 57.20 76.76 42.07 38.52 38.19 32.54

✓ 973.94 4.70 46.70 51.47 70.82 38.53 32.02 35.24 31.15

0.1
✓ 988.63 2.01 41.81 55.65 61.76 39.69 36.89 37.07 32.34

✓ 987.84 4.03 42.86 59.33 63.35 39.97 36.43 36.20 31.94

13B

1106.00 4.70 41.58 61.62 55.72 37.87 31.79 38.58 28.77

1.0
✓ 1124.50 8.72 38.50 62.60 59.46 38.20 32.95 37.07 29.17

✓ 1197.31 13.42 40.16 55.32 54.64 34.10 25.06 33.09 25.00

0.1
✓ 1090.73 8.72 45.97 61.54 57.00 39.46 34.11 38.98 30.56

✓ 1114.30 8.72 41.88 60.31 58.83 36.99 31.32 36.04 27.78

v1.5-7B

1741.14 24.16 71.17 58.92 85.78 73.09 64.04 65.08 73.81

1.0
✓ 1723.09 25.50 70.30 65.88 70.19 73.60 63.34 64.52 73.41

✓ 1804.74 21.48 68.52 54.34 73.82 71.83 61.95 64.52 68.85

0.1
✓ 1747.96 24.83 71.42 60.80 85.95 73.13 64.27 65.31 73.81

✓ 1756.19 22.82 71.05 58.02 73.43 73.13 64.04 65.08 72.22

v1.5-13B

1782.34 26.17 73.09 68.17 84.70 75.70 75.17 67.70 76.19

1.0
✓ 1833.70 26.17 73.25 73.90 79.83 75.42 75.64 67.70 75.40

✓ 1819.68 26.17 68.61 71.11 59.11 75.79 75.17 66.27 72.22

0.1
✓ 1789.38 26.85 73.22 69.89 86.04 75.75 75.41 67.70 75.79

✓ 1779.75 25.50 72.97 70.29 60.56 75.84 75.14 68.10 76.19

v1.6-7B

1691.81 13.42 71.30 66.12 67.33 67.07 54.52 59.35 72.62

1.0
✓ 1765.97 14.77 70.46 64.81 71.11 66.84 54.76 58.31 71.43

✓ 1679.07 17.45 51.61 60.23 60.61 67.07 52.90 59.51 68.85

0.1
✓ 1711.07 13.42 71.14 66.45 68.50 67.16 54.99 59.11 72.42

✓ 1703.37 14.09 70.41 65.96 72.42 69.26 67.02 59.19 72.42

v1.6-13B

1807.45 26.85 74.05 66.94 84.74 76.21 81.67 66.75 75.99

1.0
✓ 1790.79 28.86 73.95 69.89 81.36 75.70 78.42 67.46 75.60

✓ 1726.69 27.52 70.37 68.33 56.83 75.89 77.73 68.18 74.60

0.1
✓ 1800.68 28.19 74.11 67.92 84.78 76.35 80.97 67.06 76.59

✓ 1814.42 28.86 74.05 68.90 59.47 76.21 81.21 66.91 76.19

Table 1: Self-composition methods bring a consistent improvement to all the LLaVA series models. (1) For debias,
when α is set to 1.0, it improves LLaVA-7B’s performance on all 9 datasets and LLaVA-13B’s performance on
7 datasets. When α is set to 0.1, debias improves LLaVA1.5-7B and LLaVA1.5-13B’s performance on 9 and 8
datasets respectively; improves LLaVA1.6-7B and LLaVA1.6-13B’s performance on 5 and 7 datasets respectively.
(2) For highlight, when setting α to 0.1, it improves LLaVA1.6-13B, LLaVA1.6-7B and LLaVA-7B’s performance
on 5 datasets.

improvement on MMVP is +2.01%, relatively
small than that of LLaVA-7B: +12.08%. In some
cases, self-composition will cause the performance
drop, e.g., the performance of LLaVA1.6-7B
on MMBench dropped from 71.30% to 71.14%.
Concerning the α, the value of 0.1 works better.

In Table.2, we reported the results applying
mutual-composition and mix-composition. For
the mutual-composition, i.e., vanilla ensemble and
weighted majority-vote (likelihood as the weight),
the performance is significantly higher than that
of unweighted majority-vote, which is a main-
stream model ensemble and collaboration method.
For example, on MMVP, the performance of the
vanilla ensemble method is higher than that of
unweighted majority-vote by +12.08% and this
number for weighted majority-vote is +9.4%. For
mix-composition methods, which means mix the
two self-compositon methods: debias or highlight
into the mutual-composition pipeline, we can see
that after the mixing, the performance on most

VQA datasets will be improved further, e.g., mix-
ing debias and weighted majority-vote brings a
+13.42% improvement on MMVP and +2.13%
improvement on VSR.

In general, by conducting experiments on model
families with increased abilities, we find:

- Self-composition with a high α value works
better for not well-developed models. While
self-composition with a low α value is suitable
for advanced models. More analysis could be
found in Sec.6.

- Mix-composition works better than mutual-
composition when fusing different models.

Results on 5 Advanced MLMs We apply mutual-
composition and mix-composition on 5 advanced
MLMs: LLaVA, Yi-VL, Qwen-VL, InternVL
and Internlm-Xcomposer. As shown in Table.3,
mutual-composition brings significant improve-
ment on most datasets, e.g., +4.62% improvement
on VQAv2* and +3.36% improvement on MMVP.
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α
De
bias

High
light

MME MMVP MMBench VSR POPE VQAv2* Vizwiz* GQA* OKVQA*

Majority-vote

unweighted 1751.98 14.09 73.34 67.35 84.77 73.69 68.68 63.64 76.19
weighted 1826.62 23.49 74.48 69.64 87.49 77.80 74.48 69.21 79.17

1.0
✓ 1820.95 36.91 74.71 70.87 82.49 77.66 72.62 69.85 78.37

✓ 1773.69 24.16 72.72 59.00 61.83 77.66 75.17 68.66 78.77
✓ ✓ 1797.63 30.20 74.37 67.76 70.05 77.99 74.48 69.29 79.17

0.5
✓ 1833.01 34.23 74.87 71.77 85.35 78.08 72.85 70.01 78.17

✓ 1833.32 24.16 73.22 63.18 62.26 77.94 74.94 68.89 79.56
✓ ✓ 1797.60 28.19 74.39 69.56 76.53 77.85 74.25 69.93 78.97

0.1
✓ 1836.29 26.17 74.53 70.30 87.30 78.03 74.25 69.93 78.57

✓ 1840.52 23.49 74.34 68.99 62.90 78.13 73.55 69.05 80.56
✓ ✓ 1837.14 23.49 74.41 69.89 71.67 78.26 74.48 69.77 79.96

Ensemble

1837.33 26.17 74.66 70.13 82.72 77.75 72.85 70.80 78.57

1.0
✓ 1813.03 31.54 74.78 70.87 79.79 77.80 72.85 70.49 78.37

✓ 1822.79 24.16 71.90 56.87 61.29 78.17 74.01 69.61 78.57
✓ ✓ 1832.44 27.52 73.79 66.12 61.82 78.26 73.78 69.69 78.17

0.5
✓ 1817.50 33.56 74.94 70.87 80.90 78.36 73.78 70.88 78.37

✓ 1816.52 24.16 73.25 62.77 61.63 77.66 73.32 69.69 78.57
✓ ✓ 1823.61 27.52 74.37 67.84 62.36 78.22 74.48 70.41 78.97

0.1
✓ 1839.75 28.86 74.82 70.79 82.45 77.80 73.55 71.12 78.37

✓ 1836.15 26.17 74.48 69.72 66.51 77.52 73.09 70.56 78.57
✓ ✓ 1834.62 26.17 74.87 70.54 80.25 77.80 73.32 70.64 78.37

αd = 0.5
αh = 0.1

1822.77 28.19 74.78 70.95 83.35 78.26 74.25 71.20 78.57

Table 2: Combining self-composition and mutual-composition can significantly further improve the performance
over that of mutual-composition. In most cases, combining debias with mutual-composition can bring a further
improvement. (1) When setting α to 0.5, combining debias with majority-vote can bring improvement on 6 datasets.
(2) When setting α to 0.1, combining debias with ensemble can bring improvement on 7 datasets. (3) In the last line,
we combine both debias and highlight and set the αd to 0.5, αh to 0.1.

And mix-composition brings further improvement,
e.g., +9.08 on MME.

6 Additional Analysis

(a) Debias

(b) Highlight

Figure 4: (a) Applying debias on LLaVA series models
with α ranging from 1.0 to 0.1. (b) Applying highlight
on LLaVA series models with α ranging from 1.0 to 0.1.

Exploring α’s Consequence on Self-
Composition. In the previous experiments,
α’s value shows different consequences on models
with different levels of ability. Generally, a high
α’s value works better for not well-developed
models and a low α’s value is suitable for
advanced models. So we conduct a more detailed
analysis, ranging the α’s value from 0.1 to 1.0, and
visualize the results in Fig.4.

When setting α = 0.0, we do not use the self-
composition method, which is the baseline. In

subfigure (a), as we can see, debias works for all
models on VSR. The highest results appear when α
is set low for LLaVA-7B, LLaVA-13B, LLaVA1.5-
7B and LLaVA1.5-13B, while for LLaVA1.6-7B
and LLaVA1.6-13B, the best performance appears
when α is set relatively low, which is 0.5. On MM-
Bench and MMVP, debias works well for LLaVA-
7B and LLaVA-13B. But for the other more ad-
vanced models, a high α may bring damage to
the performance and α with low value may bring
improvement.5 In subfigure (b), highlight does
not work so well as debias. But overall, high-
light works better for LLaVA-7B and LLaVA-13B,
which are two relatively weak models.

Applying self-composition between different
models. To investigate how debias and high-
light works between different models, e.g., subtract
likelihood distribution derived by model A using
Promptnoimg from the likelihood distribution de-
rived by another model B using Promptsimple. In
Fig.5, the x-axis represents model B and y-axis
represents model A, the value is the difference

5On MMVP, α with 1.0 works well for LLaVA1.6-7B and
LLaVA1.6-13B, which are two relatively advanced model.
But it should be noted that all models do not perform well
on MMVP, i.e., on MMVP, all models are actually not “ad-
vanced”.
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α
De
bias

MME MMVP VSR POPE VQAv2* Vizwiz* GQA* OKVQA*

LLaVA 1807.45 26.85 66.94 84.74 76.21 81.67 66.75 75.99

Yi-VL 1977.21 35.57 59.90 81.50 76.96 72.39 72.39 78.57

Qwen-VL 1769.19 26.85 69.80 86.96 76.12 63.80 70.41 74.80

InternVL 1714.89 17.45 69.39 85.97 60.12 46.87 55.93 37.10

Internlm
-Xcomposer

1896.67 28.86 77.58 87.47 63.95 56.84 57.84 51.79

Ensemble

2026.23 38.93 77.74 87.13 81.58 78.65 74.14 79.76
1.0 ✓ 2021.66 32.89 76.35 86.02 81.06 74.71 74.46 80.56
0.5 ✓ 2009.15 36.24 76.51 87.87 81.58 76.8 74.46 80.16
0.1 ✓ 2035.31 35.57 77.66 87.63 81.53 78.65 74.54 80.16

0.05 ✓ 2030.53 37.58 77.58 87.34 81.53 79.12 74.38 79.76

Table 3: Results of applying mutual-composition and mix-composition on LLaVA, Yi-VL, Qwen-VL, InternVL and
Internlm-Xcomposer. As we can see, in most cases, mixing debias with ensemble can bring the further improvement.

between the performance of applying debias or
highlight on model A and model B and the per-
formance of model B.6 Thus, a higher value in
the heatmap means debias or highlight works well
between model A and model B.

(a) Debias

(b) Highlight

Figure 5: This figure illustrates the results of applying
debias and highlight on model A and model B, which
are different models. More details could be found in
Sec.6. The x-axis represents model B and the y-axis
represents model A.

As we can see, positive values and small neg-
ative values appear on the upper right part of the
heatmap, i.e., when model B is relatively better
than model A, the method we mentioned above can
work. Also, the highest value is always derived
from two adjacent models on the coordinate axis,
e.g., in subfigure (a), the highest value is derived be-
tween LLaVA1.6-7B and LLaVA1.6-13B. In sum-
mary, when applying self-composition method
between two different models, if these two mod-
els are similar on the downstream task perfor-
mance, it may work.
Adjusting the Number of Models to Ensemble.
When conducting experiments on LLaVA series,
we apply mutual-composition and mix-composition

6α is set to 1.0 in all experiments in Fig.5.

on all the 6 models. However, fusing all the mod-
els may not be the best choice. Thus, we re-
duce the models to fuse and show the performance
change in Fig.6. In this figure, each datapoint rep-
resents the result of applying mutual-composition
or mix-composition to the model of the datapoint’s
x-coordinate and all the models to its left.

As we can see, in most cases, the best per-
formance does not appear at the far right but at
“LLaVA1.5-13B” i.e., only fusing LLaVA1.5-13B,
LLaVA1.6-7B and LLaVA1.6-13B works better
than fusing all 6 models. Thus, when applying
mutual-composition and mix-composition, models’
quality is more important than models’ quan-
tity.

(a) Debias

(b) Highlight

Figure 6: We change the number of models used for
mutual-composition and mix-composition. At each po-
sition of the x-axis, we show the results of applying
mutual-composition and mix-composition on the model
at this position and the models left to it. It is obvious
that models’ quality is more important than models’
quantity.

7 Conclusion

In this work, we propose “likelihood composition”,
a framework unifying some operation in the model

10159



fusing field. Based on this framework, we fur-
ther propose “mix-composition”, mixing the “self-
composition” and “mutual-composition”. In our
experiments, we find “self-composition” can boost
the MLM significantly on VQA tasks and “mix-
composition” also bring significant improvement
compared with “mutual-composition”.

8 Limitations

In our work, we did not consider closed source
MLMs. For example, we can prompt closed-source
MLMs to give their confidence on the list of an-
swers and utilize these likelihood distributions in
our proposed composition methods.
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A Appendix

A.1 Answer with no images.
In our proposed debias method, we make the model
to produce likelihood distribution conditioned only
on the question and choices, with no image pro-
vided. We can select the predicted answer based
this likelihood distribution in the absence of the
image. The results is shown in Fig.7.

We find that the performance of the model with
no image provided increases with the increases of
the performace conditioned on the image, which
is so interesting. It seems that with the model’s
multi-modal understanding ability increasing,
the model’s ability of “guessing correctly” in-
creases also.

Figure 7: We investigate models’ performance when not
providing the image. In the figure, the black dashed line
represents the random choice score, “full” represents
the normal case and “no image” represents not inputting
the image to the model when doing VQA tasks. What’s
interesting is that models with higher multi-modal un-
derstanding ability “guess” better when not inputting
the image.

A.2 Statistics of Datasets
In Table 4, the statistics of each benchmark, in-
cluding version and number of samples, are listed.

Benchmark Version Number of Samples

MME - 2373
MMBench dev 4377
MMVP - 300
POPE Popular,Random,Adversarial 8910
VSR - 1222
OKVQA ReForm-Eval(Li et al., 2023c) 504
VQAv2 ReForm-Eval 2144
Vizwiz ReForm-Eval 431
GQA ReForm-Eval 1257

Table 4: Statistics of each benchmark.

A.3 Full Results of Debias and Highlight with
Different α’s Values

In Table.5, we show the full results of applying
debias and highlight on LLaVA (Liu et al., 2023b,a,
2024b) series with different α’s values.
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α
De
bias

High
light

MME MMVP MMBench VSR POPE VQAv2* Vizwiz* GQA* OKVQA*

7B

991.26 0.67 40.62 54.91 61.83 38.99 36.66 36.83 31.94

10
✓ 1204.57 12.08 44.46 60.47 67.85 41.14 37.82 39.46 31.15

✓ 980.52 2.68 43.82 51.47 68.90 36.38 27.75 34.37 28.77

1.0
✓ 1069.56 12.75 44.67 57.20 76.76 42.07 38.52 38.19 32.54

✓ 973.94 4.70 46.70 51.47 70.82 38.53 32.02 35.24 31.15

0.5
✓ 1036.94 10.07 43.71 56.38 70.50 40.67 38.75 38.58 31.94

✓ 971.97 6.71 45.72 52.78 69.72 39.23 35.73 35.08 31.35

0.1
✓ 988.63 2.01 41.81 55.65 61.76 39.69 36.89 37.07 32.34

✓ 987.84 4.03 42.86 59.33 63.35 39.97 36.43 36.20 31.94

13B

1106.00 4.70 41.58 61.62 55.72 37.87 31.79 38.58 28.77

10
✓ 1190.97 8.05 32.81 62.93 62.13 37.22 30.39 35.24 26.79

✓ 1248.54 14.09 32.60 52.13 53.50 33.3 22.04 33.09 23.41

1.0
✓ 1124.50 8.72 38.50 62.60 59.46 38.20 32.95 37.07 29.17

✓ 1197.31 13.42 40.16 55.32 54.64 34.10 25.06 33.09 25.00

0.5
✓ 1099.25 8.72 41.95 62.68 58.59 39.51 35.50 36.75 30.75

✓ 1156.91 14.77 42.22 58.10 57.28 34.93 27.38 34.37 25.40

0.1
✓ 1090.73 8.72 45.97 61.54 57.00 39.46 34.11 38.98 30.56

✓ 1114.30 8.72 41.88 60.31 58.83 36.99 31.32 36.04 27.78

v1.5-7B

1741.14 24.16 71.17 58.92 85.78 73.09 64.04 65.08 73.81

10
✓ 1626.79 23.49 66.51 66.69 68.56 73.88 62.65 63.33 72.22

✓ 1674.43 20.81 61.78 52.78 74.33 67.35 56.84 62.29 61.31

1.0
✓ 1723.09 25.50 70.30 65.88 70.19 73.60 63.34 64.52 73.41

✓ 1804.74 21.48 68.52 54.34 73.82 71.83 61.95 64.52 68.85

0.5
✓ 1736.78 24.83 70.98 63.58 77.18 73.69 63.57 64.92 73.61

✓ 1802.38 22.15 69.61 55.97 73.84 72.48 62.41 65.23 70.04

0.1
✓ 1747.96 24.83 71.42 60.80 85.95 73.13 64.27 65.31 73.81

✓ 1756.19 22.82 71.05 58.02 73.43 73.13 64.04 65.08 72.22

v1.5-13B

1782.34 26.17 73.09 68.17 84.70 75.70 75.17 67.70 76.19

10
✓ 1796.79 26.85 72.17 73.08 71.06 75.33 73.78 67.14 74.60

✓ 1740.95 28.19 55.36 61.54 58.88 70.85 73.32 65.31 60.71

1.0
✓ 1833.70 26.17 73.25 73.90 79.83 75.42 75.64 67.70 75.40

✓ 1819.68 26.17 68.61 71.11 59.11 75.79 75.17 66.27 72.22

0.5
✓ 1805.9 26.17 73.27 72.83 84.55 75.51 75.41 67.86 75.60

✓ 1791.54 25.50 71.21 72.42 59.27 76.31 75.64 67.14 73.21

0.1
✓ 1789.38 26.85 73.22 69.89 86.04 75.75 75.41 67.70 75.79

✓ 1779.75 25.50 72.97 70.29 60.56 75.84 75.14 68.10 76.19

v1.6-7B

1691.81 13.42 71.30 66.12 67.33 67.07 54.52 59.35 72.62

10
✓ 1653.97 16.78 68.59 58.35 72.38 66.09 54.76 57.84 70.83

✓ 1679.73 17.45 34.73 51.55 61.17 50.00 29.00 52.11 58.33

1.0
✓ 1765.97 14.77 70.46 64.81 71.11 66.84 54.76 58.31 71.43

✓ 1679.07 17.45 51.61 60.23 60.61 67.07 52.90 59.51 68.85

0.5
✓ 1754.84 14.77 70.92 66.53 70.54 67.02 54.99 58.55 72.22

✓ 1692.89 16.11 59.33 62.44 60.57 67.07 52.90 59.51 71.23

0.1
✓ 1711.07 13.42 71.14 66.45 68.50 67.16 54.99 59.11 72.42

✓ 1703.37 14.09 70.41 65.96 72.42 69.26 67.02 59.19 72.42

v1.6-13B

1807.45 26.85 74.05 66.94 84.74 76.21 81.67 66.75 75.99

10
✓ 1803.29 32.21 71.30 68.09 76.65 73.65 71.00 67.14 73.02

✓ 1723.66 27.52 61.96 53.60 56.70 71.88 73.55 68.26 69.64

1.0
✓ 1790.79 28.86 73.95 69.89 81.36 75.70 78.42 67.46 75.60

✓ 1726.69 27.52 70.37 68.33 56.83 75.89 77.73 68.18 74.60

0.5
✓ 1787.40 25.50 74.18 70.29 83.79 76.07 80.04 67.46 76.59

✓ 1746.43 28.19 72.38 70.79 57.03 76.49 79.81 67.70 74.80

0.1
✓ 1800.68 28.19 74.11 67.92 84.78 76.35 80.97 67.06 76.59

✓ 1814.42 28.86 74.05 68.90 59.47 76.21 81.21 66.91 76.19

Table 5: Full results of debias and highlight.
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