@inproceedings{rajan-etal-2024-knowledge,
title = "Knowledge-based Consistency Testing of Large Language Models",
author = "Rajan, Sai Sathiesh and
Soremekun, Ezekiel and
Chattopadhyay, Sudipta",
editor = "Al-Onaizan, Yaser and
Bansal, Mohit and
Chen, Yun-Nung",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2024",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-emnlp.596/",
doi = "10.18653/v1/2024.findings-emnlp.596",
pages = "10185--10196",
abstract = "In this work, we systematically expose and measure the inconsistency and knowledge gaps of Large Language Models (LLMs). Specifically, we propose an automated testing framework (called KONTEST) which leverages a knowledge graph to construct test cases. KONTEST probes and measures the inconsistencies in the LLM`s knowledge of the world via a combination of semantically-equivalent queries and test oracles (metamorphic or ontological oracle). KONTEST further mitigates knowledge gaps via a weighted LLM model ensemble. Using four state-of-the-art LLMs (Falcon, Gemini, GPT3.5, and Llama2), we show that KONTEST generates 19.2{\%} error inducing inputs (1917 errors from 9979 test inputs). It also reveals a 16.5{\%} knowledge gap across all tested LLMs. A mitigation method informed by KONTEST`s test suite reduces LLM knowledge gap by 32.48{\%}. Our ablation study further shows that GPT3.5 is not suitable for knowledge-based consistency testing because it is only 60{\%}-68{\%} effective in knowledge construction."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="rajan-etal-2024-knowledge">
<titleInfo>
<title>Knowledge-based Consistency Testing of Large Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sai</namePart>
<namePart type="given">Sathiesh</namePart>
<namePart type="family">Rajan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ezekiel</namePart>
<namePart type="family">Soremekun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sudipta</namePart>
<namePart type="family">Chattopadhyay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yaser</namePart>
<namePart type="family">Al-Onaizan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohit</namePart>
<namePart type="family">Bansal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yun-Nung</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this work, we systematically expose and measure the inconsistency and knowledge gaps of Large Language Models (LLMs). Specifically, we propose an automated testing framework (called KONTEST) which leverages a knowledge graph to construct test cases. KONTEST probes and measures the inconsistencies in the LLM‘s knowledge of the world via a combination of semantically-equivalent queries and test oracles (metamorphic or ontological oracle). KONTEST further mitigates knowledge gaps via a weighted LLM model ensemble. Using four state-of-the-art LLMs (Falcon, Gemini, GPT3.5, and Llama2), we show that KONTEST generates 19.2% error inducing inputs (1917 errors from 9979 test inputs). It also reveals a 16.5% knowledge gap across all tested LLMs. A mitigation method informed by KONTEST‘s test suite reduces LLM knowledge gap by 32.48%. Our ablation study further shows that GPT3.5 is not suitable for knowledge-based consistency testing because it is only 60%-68% effective in knowledge construction.</abstract>
<identifier type="citekey">rajan-etal-2024-knowledge</identifier>
<identifier type="doi">10.18653/v1/2024.findings-emnlp.596</identifier>
<location>
<url>https://aclanthology.org/2024.findings-emnlp.596/</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>10185</start>
<end>10196</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Knowledge-based Consistency Testing of Large Language Models
%A Rajan, Sai Sathiesh
%A Soremekun, Ezekiel
%A Chattopadhyay, Sudipta
%Y Al-Onaizan, Yaser
%Y Bansal, Mohit
%Y Chen, Yun-Nung
%S Findings of the Association for Computational Linguistics: EMNLP 2024
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F rajan-etal-2024-knowledge
%X In this work, we systematically expose and measure the inconsistency and knowledge gaps of Large Language Models (LLMs). Specifically, we propose an automated testing framework (called KONTEST) which leverages a knowledge graph to construct test cases. KONTEST probes and measures the inconsistencies in the LLM‘s knowledge of the world via a combination of semantically-equivalent queries and test oracles (metamorphic or ontological oracle). KONTEST further mitigates knowledge gaps via a weighted LLM model ensemble. Using four state-of-the-art LLMs (Falcon, Gemini, GPT3.5, and Llama2), we show that KONTEST generates 19.2% error inducing inputs (1917 errors from 9979 test inputs). It also reveals a 16.5% knowledge gap across all tested LLMs. A mitigation method informed by KONTEST‘s test suite reduces LLM knowledge gap by 32.48%. Our ablation study further shows that GPT3.5 is not suitable for knowledge-based consistency testing because it is only 60%-68% effective in knowledge construction.
%R 10.18653/v1/2024.findings-emnlp.596
%U https://aclanthology.org/2024.findings-emnlp.596/
%U https://doi.org/10.18653/v1/2024.findings-emnlp.596
%P 10185-10196
Markdown (Informal)
[Knowledge-based Consistency Testing of Large Language Models](https://aclanthology.org/2024.findings-emnlp.596/) (Rajan et al., Findings 2024)
ACL