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Abstract
Multimodal Large Language Models (MLLMs)
have seen growing adoption across various sci-
entific disciplines. These advancements encour-
age the investigation of molecule-text model-
ing within synthetic chemistry, a field dedi-
cated to designing and conducting chemical
reactions to synthesize new compounds with
desired properties and applications. Current
approaches, however, often neglect the criti-
cal role of multiple molecule graph interaction
in understanding chemical reactions, leading
to suboptimal performance in synthetic chem-
istry tasks. This study introduces PRESTO
(Progressive Pretraining Enhances Synthetic
Chemistry Outcomes), a new framework that
bridges the molecule-text modality gap by inte-
grating a comprehensive benchmark of pretrain-
ing strategies and dataset configurations. It pro-
gressively improves multimodal LLMs through
cross-modal alignment and multi-graph under-
standing. Our extensive experiments demon-
strate that PRESTO offers competitive results
in downstream synthetic chemistry tasks. The
code can be found at https://github.com/
IDEA-XL/PRESTO.

1 Introduction
Multi-modal Large Language Models (MLLMs)
have achieved extensive success across diverse sci-
entific domains, including medicine (Singhal et al.,
2023), material science (Jablonka et al., 2023),
and biochemistry (Liu et al., 2024b,a; Li et al.,
2023). Motivated by these advances, molecule-
text modeling emerges as a new research direc-
tion, aiming to bridge the modality gap between
molecules and texts (Liu et al., 2023a; Edwards
et al., 2022). These methods have shown promising
results on molecule captioning, retrieval, and de-
novo molecule design (Liu et al., 2024c; Edwards
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‡Corresponding Author.

et al., 2021; Li et al., 2024; Tang et al., 2024a; Luo
et al., 2024).

In this study, we explore molecule-text modeling
within synthetic chemistry. Synthetic chemistry in-
volves designing and executing chemical reactions
to create new compounds with specific properties
and applications. It is a field of immense practi-
cal value and includes tasks like forward reaction
and retrosynthesis prediction. Prior molecule-text
modeling works (Fang et al., 2024a; Christofidellis
et al., 2023; Lu and Zhang, 2022; Zhao et al., 2024)
have explored synthetic chemistry tasks, but they
mostly overlook the 2D molecular graph informa-
tion. However, 2D molecular graph information is
crucial for understanding molecular topologies and
is essential for synthetic chemistry in prior graph-
based retrosynthesis studies (Somnath et al., 2021;
Mao et al., 2021). On the other hand, while pio-
neering works (Liu et al., 2024c; Cao et al., 2023;
Liu et al., 2023c; Su et al., 2022) have enabled
text LLMs to perceive 2D molecular graphs, these
methods struggle to process multiple 2D molecular
graphs in chemical reactions, resulting in limited
performance on tasks such as forward reaction pre-
diction and reagent recommendation. This limita-
tion stems from their inadequate exploration and
analysis of multi-modal pretraining strategies (Cao
et al., 2023; Luo et al., 2023c) and dataset config-
uration (Liang et al., 2023; Li et al., 2024), which
do not fully support the comprehension of multiple
graphs:

• Multi-modal Pretraining Strategy. The effec-
tiveness of multi-modal LLMs is heavily influ-
enced by their pretraining strategy (Bai et al.,
2023; Lin et al., 2024; McKinzie et al., 2024),
involving decisions like tuning or freezing sub-
modules at various stages and selecting the gran-
ularity of molecular graph representations. The
pretraining strategy of existing molecule-text
modeling methods varies significantly (Liu et al.,
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Figure 1: Panel (top left) illustrates the components of a prototypical chemical reaction. Panel (bottom left) shows the synthetic
chemistry tasks that PRESTO can support as a dialogue assistant. Panel (right) provides an overview of the two primary stages
in our Progressive Pretraining Strategy PRESTO: the Molecule-Text Alignment stage and the Domain Incremental Pretraining
stage. These stages enable the evolution from single-graph text modeling to complex interleaved multi-graph text modeling.

2023c; Su et al., 2022; Liu et al., 2024c; Cao
et al., 2023), creating uncertainty about the most
effective approach for synthetic chemistry. Partic-
ularly, prior works notably overlook the continual
pretraining on synthetic chemistry corpus, which
can potentially improve performance.

• Dataset Configuration. The dataset plays a cru-
cial role in the performance of LLMs. For syn-
thetic chemistry tasks, it is evident that including
data with multiple molecular graphs in context is
essential. However, there is still uncertainty re-
garding which specific datasets (Kim et al., 2022;
Lowe, 2017; Edwards et al., 2021) are most ben-
eficial for synthetic chemistry. Additionally, it
remains to be explored whether incorporating
single-graph understanding tasks could further
enhance performance in synthetic chemistry.

To bridge this research gap, we first present a
comprehensive benchmark and the corresponding
analysis for pretraining strategies and dataset con-
figurations for synthetic chemistry. While several
prior benchmarks (Fang et al., 2024a; Yu et al.,
2024) overlap with synthetic chemistry, they, unfor-
tunately, encompass a limited subset of synthetic
chemistry tasks, often mishandle dataset splitting,
and sometimes include potential data leakage. We
prevent this by cleaning the data meticulously and
generating challenging test sets with scaffold split-
ting. Our analysis shows that progressive multi-
modal domain pretraining significantly enhances

reaction condition prediction accuracy. Further, we
find that increasing the granularity of molecular
representation and using interleaved molecule-text
data with name-conversion datasets during pretrain-
ing improve downstream task performance by bet-
ter leveraging domain knowledge.

Building on the insights from our benchmark,
we propose Progressive Pretraining Enhances
Synthetic Chemistry Outcomes (PRESTO), a spe-
cialized framework tailored for synthetic chemistry
tasks. PRESTO enables a MLLM to process and
understand interleaved molecular graph-text inputs,
enhancing the model’s understanding of the prin-
ciples of chemical reaction by effectively utilizing
mutual interactions between molecule-molecule
and molecule-text pairs in context. To achieve
this, PRESTO designs a pretraining strategy and
a pretraining dataset curated for multi-graph un-
derstanding. Specifically, PRESTO improves the
LLM’s performance on synthetic chemistry in
two stages progressively: (1) in the first training
stage, PRESTO cultivates the MLLM’s ability of
cross-modal alignment; (2) in the second stage,
PRESTO focuses on multi-graph understanding,
and injects domain knowledge of synthetic chem-
istry into the LLM. Further, to support effective
pretraining, we construct a dataset comprising ∼3
million samples of synthetic procedure descriptions
and molecule name conversions. Through exten-
sive experiments, we demonstrate that PRESTO
can effectively prepare a multi-modal LLM for
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downstream tasks of synthetic chemistry.

2 Related Works

Deep Learning for Synthetic Chemistry. Syn-
thetic chemistry, a fundamental problem in chem-
istry, has seen significant advances through deep
learning models that assist in various reaction-
related tasks using descriptor-based (Segler and
Waller, 2017; Segler et al., 2018), graph-based (Dai
et al., 2019; Tu and Coley, 2021), and sequence-
based approaches (Schwaller et al., 2019; Irwin
et al., 2022). Recent works (Lu and Zhang, 2022;
Schwaller et al., 2020; Fang et al., 2024a; Yu et al.,
2024) also adapt language models for tasks such as
forward reaction prediction (Schwaller et al., 2019),
retrosynthesis (Wan et al., 2022; Liu et al., 2024d),
and reaction type classification (Schwaller et al.,
2021a), demonstrating high accuracy. Although
these models specialize in specific synthetic chem-
istry tasks, their pretraining on domain-specific
data limits their ability to generalize and adapt to
other synthetic tasks. To address this issue, multi-
task methods (Lu and Zhang, 2022; Christofidellis
et al., 2023) have been explored and demonstrate
strong capabilities across domains. However, they
are constrained by using only molecular sequences
as input, overlooking the potential of textual in-
formation to assist in modeling. In contrast, our
approach integrates reaction-related textual infor-
mation with molecular modeling, enabling a flexi-
ble adaptation to various downstream tasks.

Molecule & Text Modeling (MTM). The in-
tegration of biomolecular modeling with natural
language leverages rich textual data sources to
enhance understanding and facilitate downstream
text-related molecular tasks (Edwards et al., 2022;
Christofidellis et al., 2023; Pei et al., 2023; Fang
et al., 2024a; Yu et al., 2024; Luo et al., 2023b).
Various approaches have been proposed to learn ef-
fective representations of molecules, including 1D
sequences (Fang et al., 2024b; Irwin et al., 2022;
Edwards et al., 2022; Schwaller et al., 2019; Wang
et al., 2019), 2D graphs (Rong et al., 2020; Ying
et al., 2021; Wang et al., 2022b; Liu et al., 2023d),
3D conformations (Liu et al., 2022; Zhou et al.,
2023) and a combination of them (Luo et al., 2023a;
Tang et al., 2024b). Cross-modalities modeling
includes contrastive learning over molecules and
text (Su et al., 2022; Liu et al., 2023a; Tang et al.,
2024b) or unified alignment of the two modali-
ties through language modeling (Zeng et al., 2022;

Zhao et al., 2023; Liu et al., 2023c; Li et al., 2024).
Prior works have primarily focused on individ-
ual molecule understanding or molecule-text re-
trieval, while our research expands to model multi-
ple molecules and contextual text, thereby facilitat-
ing tasks relevant to chemical reactions.

Multi-modal Language Models. The multi-
modal large language models (MLLMs) field
has seen rapid progress recently. Several works
(Alayrac et al., 2022; Wang et al., 2022a; Chen
et al., 2023; Dai et al., 2023; Li et al., 2023; Huang
et al., 2023; Liu et al., 2024b) have proposed dif-
ferent architectures for integrating visual informa-
tion into LLMs. Researchers have explored vari-
ous strategies for integrating external modalities
into LLMs. Lin et al. (2024) and McKinzie et al.
(2024) conducted ablation studies on textual and vi-
sual data composition during training. Karamcheti
et al. (2024) examined the design space of MLLMs,
including training pipeline, modality representa-
tions, and scaling. Recent studies have attempted
to apply similar methods to small molecule (Li
et al., 2024; Cao et al., 2023; Liang et al., 2023)
or protein domains (Wang et al., 2023b; Liu et al.,
2024e). However, there are very few studies inves-
tigating the specific design of training strategies in
the biomolecular domain.

3 PRESTO Framework

3.1 Preliminary
Here we introduce our model architecture, which
follows the common practice in multi-modal LLMs
(Liu et al., 2024b; Bai et al., 2023; Karamcheti
et al., 2024). Formally, our model processes
a collection of 2D molecule graphs represented
as {X(i)

G }ni=1, along with text prompt tokens

{X(j)
T }mj=1 describing synthetic processes or task

queries. The input sequence is designed to accom-
modate the interleaved nature of text and molecule
tokens, denoted {tk}m+n

k=1 , where each tk is a text
token X

(j)
T or a molecule graph X

(i)
G . These inputs

are processed through 1) a molecular representa-
tion encoder, 2) a molecule-language projector, and
3) a language model.
Molecular Representation. Each X

(i)
G is first

processed by a molecule encoder fM , which out-
puts a sequence of features p

(i)
M , such that p(i)M =

fM (X
(i)
G ). The length of p(i)M is variable and de-

pends on the granularity of the representation.
Molecule-Language Projector. Next, we map

10199



each p
(i)
M to embeddings e(i)M using a learned projec-

tor fψ, where e
(i)
M = fψ(p

(i)
M ).

Language Model. The interleaved input sequence
EI is formed by the ordered union of molecule

embeddings EM = {e(i)M }ni=1 and text token em-

beddings ET = {e(j)T |e(j)T = fembed(X
(j)
T )}mj=1:

EI = EM ∪o ET ,

where ∪o preserves the order of elements as they
appear in the original input sequence {tk}m+n

k=1 .
This interleaved sequence is passed to the language
model to generate the output text XO = LMθ(EI).

3.2 Training Procedure
Our complete training procedure includes the
PRESTO’s two-stage pretraining and the down-
stream supervised finetuning.

PRESTO-Stage1: Molecule-Text Alignment.
This stage aims to bridge the modality gap be-
tween the molecular and textual representations.
We start from a pretrained molecule encoder fM ,
a language model LMθ, and a randomly initial-
ized molecule-language projector fψ. fψ is then
trained on molecule-text pairs from (Kim et al.,
2022) while freezing the weights of fM and LMθ.
The template for captioning can be found in Ap-
pendix D.1.

PRESTO-Stage2: Domain Incremental Pre-
training. During this stage, we continue to train
the model on a large corpus of molecule-text pairs
with interleaved segments (Lowe, 2017; Kim et al.,
2022). Training on mixed data helps the model fur-
ther understand the relationships between molecu-
lar graphs and text. Both fM and LMθ are updated
in this stage. See Appendix D.1 for details of the
instruction template.

Supervised Fine-Tuning (SFT). The final stage
adapts the pretrained model to a diverse set of
downstream tasks by instruction tuning. Similar to
(Cao et al., 2023; Liu et al., 2023c), each example
consists of input molecules or reactions {X(i)

G }ni=1,

a natural language instruction {X(j)
T }mj=1, and the

target output XO. Details of the instruction tem-
plate can be found in the Appendix D.2.

3.3 Pretrain Dataset
We present datasets utilized in the PRESTO pre-
training pipeline. For the first stage of alignment,
we use a caption dataset, and for the second stage

of domain incremental pretraining, we use an inter-
leaved molecule-text and name-conversion dataset.

TASK # TRAIN # VALID # TEST # ALL

Pretrain Stage1: Molecule Caption
DATA SOURCE: Kim et al. (2022)
PubChem Caption 326,675 - - 326,675

Pretrain Stage2: Interleaved Molecule-Text
DATA SOURCE: Lowe (2017)
USPTO-Application 1,588,709 - - 1,588,709

Pretrain Stage2: Name Conversion
DATA SOURCE: Kim et al. (2022); Yu et al. (2024)
IUPAC to Formula 300,000 1,497 2,993 304,490
IUPAC to SMILES 300,000 1,497 2,993 304,490
Molecule Graph to Formula 300,000 1,497 2,993 304,490
Molecule Graph to IUPAC 300,000 1,497 2,993 304,490
Molecule Graph to SMILES 293,288 - - 293,288

Table 1: PRESTO progressive pretraining dataset.

Caption Dataset. We use molecule-text pairs
sourced from PubChem (Kim et al., 2022) for align-
ing molecule and text modalities. Each molecule
structure is associated with a textual description
of chemical and physical properties or high-level
bioactivity information.

Interleaved Molecule-Text Dataset. We start
by extracting raw descriptions of experimental
procedures from the chemical reaction database
USPTO-Applications (Lowe, 2017). Further, we
use BERN2 (Sung et al., 2022) to identify all
molecule entities in the texts and convert them into
2D molecular graphs. We then preprocess the data
to remove samples with too many molecule entities
or molecules with excessive atom counts to con-
trol input length. The resulting interleaved dataset
comprises approximately 1.6M samples, covering
more than 342K unique molecules. Refer to Ap-
pendix A.2 for detailed processing steps and data
statistics.

Name Conversion Dataset. A molecule can be
represented by 2D molecular graphs and differ-
ent 1D sequential representations: IUPAC names
(Favre and Powell, 2014), chemical formulas (Hill,
1900), and SMILES (Weininger, 1988). These 1D
sequential representations are used interchangeably
in the textual corpus, and each corresponds to a par-
ticular aspect of molecular structures. For example,
the IUPAC name highlights the subgraph compo-
sition of molecules, while SMILES explicitly lists
all atom types. Therefore, learning the conversion
between these 1D representations and 2D graphs
helps the LLM to align different molecular men-
tions in texts and improves its understanding of
molecular structures.
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"""Dissolve <mol1> (5.00 g, 22.2 mmol) and <mol2> (4.1 g, 23.0 
mmol) in carbon tetrachloride (25 mL) and add AIBN radical 
initiator (300 mg). Stir and maintain under a nitrogen atmosphere 
at 80-90° C. or optionally irradiate with a sunlamp ... Cool to room 
temperature and precipitate the <mol3> from the solution by 
allowing to stand overnight. Filter and wash the succinimide (2.25 
g) with <mol4> (20 mL) ..."""
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Figure 2: Panel (a) illustrates the interleaved molecule-text dataset format, primarily derived from USPTO-Application (Lowe,
2017). Panel (b) displays the five tasks included in the Molecular Name Conversion Tasks (directions drawn as arrows), with
data mainly sourced from PubChem (Kim et al., 2022), IUPAC (Favre and Powell, 2014), and ChEMBL (Zdrazil et al., 2023).

3.4 Downstream Tasks
We evaluate PRESTO on a diverse set of down-
stream tasks in synthetic chemistry, as detailed in
Table 2. Our assessment provides a more com-
prehensive and representative evaluation of down-
stream tasks, extending beyond the scope of previ-
ous benchmarks. The detailed data preprocessing
pipeline is provided in the Appendix A.3.

Reaction Prediction. This category includes two
tasks: Forward Prediction, which involves pre-
dicting the product molecules given the reactant
molecules, and Retrosynthesis, which predicts
the reactant molecules given the target product
molecule. Data from USPTO-full (Lowe, 2017;
Yu et al., 2024) and USPTO_500_MT (Irwin et al.,
2022; Fang et al., 2024a) are used for these tasks.

Reaction Condition Prediction. This category
involves predicting the reagents, catalysts, and sol-
vents for a given reaction. We utilize extracted reac-
tion condition information from Qian et al. (2023)
and re-split the reagent prediction dataset provided
by Fang et al. (2024a) into three separate sets.

Reagent Selection. This task, also known as
reagent recommendation, involves identifying the
most suitable reagents for a specific chemical reac-
tion or process. It is divided into three categories:
reactant selection, ligand selection, and solvent
selection. We formulate it as choosing the most
suitable reagent from a list of candidates. We adopt
the dataset collected from Guo et al. (2023).

Reaction Type Classification. This task aims to
classify a reaction into predefined types to nav-
igate chemical space and better understand the
underlying mechanisms. We use the USPTO 1K
TPL dataset from Schwaller et al. (2021a) with
1000 labeled classes. Learned representations can
also serve as reaction fingerprints, capturing fine-
grained differences.

Yield Regression. This task involves estimat-
ing the amount of product (yield) obtained from
a given chemical reaction. We test the model’s
performance on two High-Throughtput experimen-
tation (HTE) datasets: Buchwald-Hartwig and
Suzuki-Miyaura. Both datasets are obtained from
Schwaller et al. (2021b).

Remark: Generating an Uncontaminated and
Challenging Test Set. Data leakage is commonly
observed in recent LLM studies (Blevins and Zettle-
moyer, 2022; Deng et al., 2024; Li and Flani-
gan, 2024), and we have observed the same issue
in early benchmarks of chemical reaction predic-
tion (Fang et al., 2024a). This issue leads to skewed
evaluation and can hinder the development of truly
effective models. To present a reliable chemical
reaction task evaluation, we meticulously ensure no
overlap between our pretraining/training datasets
and testing datasets. Further, we establish a test
set for the reaction prediction task by including
only samples with a scaffold similarity below a
certain threshold compared to the training samples.
This approach separates the training and testing dis-
tributions, improving the robustness and accuracy
of our evaluations. Prior benchmarks often used
random splits, resulting in significant overlaps in
molecular scaffolds between training and test sets,
compromising the evaluation of real-world gener-
alization. For further details, please refer to the
Appendix A.1.

4 Analyzing Pre-Training Strategy and
Dataset Configuration

In this section, we conduct experiments to evaluate
the impact of different pretraining strategies and
dataset configurations on downstream tasks.

Experimental Setting. We use the GIN (Xu
et al., 2019) pretrained by MoleculeSTM (Liu et al.,
2023a) as the default graph encoder fM and a two-
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(d) PRESTO-Stage2 Dataset Configuration Ablation.

Figure 3: Performance analysis of different pretraining strategies and dataset configurations. (a) Ablation
study on the multi-modal pretraining strategy. (b) We explore various options for the granularity of molecular
encoded tokens. (c) Comparison between base (Llama-2) and instruct-tuned (Vicuna v1.5) language models. (d)
Ablation study on dataset configuration for PRESTO domain incremental pretraining stage.

layer MLP as the projector fψ. For the base LMθ,
we use Vicuna v1.5-7B (Chiang et al., 2023) by
default. We report the mean similarity measured by
Morgan (Schneider et al., 2015), MACCS (Durant
et al., 2002), RDKit (Landrum et al., 2024) fin-
gerprints for generation tasks, Top-1 accuracy for
classification tasks, and R2 scores for regression
tasks. Detailed experimental settings are available
in Appendix B.

4.1 Analyzing Pretraining Strategy
We investigate the impact of different pretraining
strategies, varying levels of molecular representa-

tion granularity, and different LLMs on the model’s
performance in downstream tasks. We divide the
pretraining pipeline into two stages: alignment and
domain incremental pretraining, as mentioned in
Section 3.2. Due to the high time and computation
costs of the incremental pretraining stage, we skip
it unless explicitly stated otherwise.

Finding 1: Progressive pretraining strategy
enhances downstream task performance. As
shown in Figure 3a, Direct SFT significantly de-
grades the prediction of reaction conditions and
yields. This degradation occurs because the model

10202



TASK # TRAIN # VALID # TEST # ALL

Reaction Prediction
DATA SOURCE: Lu and Zhang (2022); Yu et al. (2024); Fang et al. (2024a)
Forward Prediction 124,384 - 1,000 125,384
Retrosynthesis Prediction 124,384 - 1,000 125,384

Reaction Condition Prediction
DATA SOURCE: Qian et al. (2023); Guo et al. (2023); Fang et al. (2024a)
Reagent Prediction 57,162 6,216 6,378 69,756
Catalyst Prediction 10,232 1,059 1,015 12,306
Solvent Prediction 70,988 7,694 7,793 86,475

Reaction Condition Recommendation
DATA SOURCE: Guo et al. (2023)
Reagent Selection 3,955 - 300 4,255

Reaction Type Classification
DATA SOURCE: Schwaller et al. (2021a)
Reaction Type Classification 360,379 40,059 44,511 445,115

Yield Prediction
DATA SOURCE: Schwaller et al. (2021b)
Buchwald-Hartwig 3,855 - 100 3,955
Suzuki-Miyaura 5,660 - 100 5,760

Table 2: PRESTO downstream tasks dataset statistics.

must simultaneously learn to align different modal-
ities and adapt to various downstream tasks, in-
creasing the optimization difficulty. W/o align-
ment demonstrates that the alignment stage, which
acts as a warm-up for modality fusion, effectively
connects molecular and language information, aid-
ing the transition of a general-domain LLM to the
chemistry domain. Additionally, w/o incremen-
tal pretrain underscores the importance of domain
incremental pretraining in enhancing multi-graph
modeling and domain knowledge adaptation.

Finding 2: Molecular representation granular-
ity matters. Drawing from prior VLMs research
(Karamcheti et al., 2024; Lin et al., 2024), enhanc-
ing visual resolution improves downstream perfor-
mance by capturing intricate details. Similarly, we
utilize various granularities for molecular represen-
tation, including graph-level (a global token per
graph), atom-level (each atom represented by one
token), and fixed-length query-encoding (Li et al.,
2024; Liu et al., 2023c). In Figure 3b, scaling to the
atom level yields substantial improvements across
all tasks compared to graph-level modeling. Inter-
estingly, the query-encoding approach performs re-
markably well in regression and classification tasks
but severely underperforms in tasks that require
generating entire molecules. We speculate that the
learned queries may fail to capture fine-grained
molecular structures, resulting in suboptimal per-
formance in generating full molecules.

Finding 3: Base and instruct-tuned LLMs
demonstrate comparable capabilities. Instruct
tuning is a method to finetune base LLMs (trained
for next-token prediction) to function as dialogue

agents that can follow instructions more effectively.
Modern VLMs research (Liu et al., 2024b; Lin
et al., 2024) often use instruct-tuned models like
Vicuna as the base LLMs. We evaluate the im-
pact of instruct-tuned LLM on downstream syn-
thetic chemistry tasks via a head-to-head compar-
ison between a base LLM (Llama-2-7B (Touvron
et al., 2023)) and its instruct-tuned variant (Vi-
cuna v1.5). Figure 3c shows that instruction-tuned
LLMs slightly outperform base in reaction condi-
tion prediction and yield tasks, while base LLMs
excel in forward prediction and retrosynthesis.

4.2 Analyzing Dataset Configuration
Here, we analyze the impact of dataset configura-
tions on domain incremental pretraining.

Finding 4: Both interleaved data and name-
conversion data play crucial roles in domain
incremental pretraining. As shown in Figure
3d, relying solely on an interleaved molecule-text
dataset can improve model performance in retrosyn-
thesis, classification, and regression tasks, but the
improvement is marginal. We believe this is be-
cause interleaved data lack strict molecule-text cor-
respondence, making it difficult for the model to
use the surrounding text to learn molecular syntax
and semantics and recognize molecular structural
patterns. Therefore, we introduce a name conver-
sion task dataset to enhance contextual learning,
which aids tasks requiring a deeper understanding
of chemical entities and their functions. Experi-
ments demonstrate that incrementally, pretraining
with a blend of interleaved data and name conver-
sion data better leverages the domain knowledge
from the synthetic procedure corpus, facilitating
downstream tasks.

5 Comparison with the State-of-the-arts
We integrate the above findings to inform our
PRESTO framework at the 7B parameter scale.
We present results comparing PRESTO with pre-
vious domain expert models (Irwin et al., 2022;
Schwaller et al., 2019; Wan et al., 2022; Schwaller
et al., 2021a; Wang et al., 2022c; Probst et al., 2022;
Ahneman et al., 2018; Kwon et al., 2022; Schwaller
et al., 2021b) and other LLM-based methods (Fang
et al., 2024a; Livne et al., 2023; Christofidellis
et al., 2023; Yu et al., 2024; Taylor et al., 2022;
Zhao et al., 2024; Lu and Zhang, 2022).

Table 3 presents the performances for generation
tasks. We report commonly used metrics in the
MTM domain, including Exact Match, BLEU (Pa-
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MODEL EXACT↑ BLEU↑ LEVENSHTEIN↓ RDK FTS↑ MACCS FTS↑ MORGAN FTS↑ VALIDITY↑
Forward Reaction Prediction
Chemformer∗ (Irwin et al., 2022) 0.372 0.824 8.097 0.755 0.820 0.717 0.994
MoleculeTransformers∗ (Schwaller et al., 2019) 0.313 0.663 11.735 0.549 0.619 0.532 0.925
Mol-Instruction (Fang et al., 2024a) 0.065 0.428 24.076 0.260 0.430 0.249 0.999
LLama2-7b∗ (Touvron et al., 2023) 0.251 0.658 13.167 0.533 0.630 0.512 0.940
Vicuna v1.5-7b∗ (Chiang et al., 2023) 0.250 0.659 12.506 0.513 0.600 0.495 0.903
LlaSMol-Mistral (Yu et al., 2024) 0.055 0.750 15.558 0.221 0.471 0.202 0.788
nach0-base (Livne et al., 2023) 0.331 0.857 13.108 0.628 0.709 0.594 0.977
Text+Chem T5 (Christofidellis et al., 2023) 0.236 0.750 13.631 0.523 0.630 0.505 0.967
T5Chem (Lu and Zhang, 2022) 0.313 0.703 13.632 0.535 0.616 0.520 0.965

PRESTO 0.355 0.836 10.647 0.646 0.726 0.624 0.973

Retrosynthesis Prediction
Chemformer∗ 0.011 0.611 21.073 0.659 0.730 0.574 0.998
Retroformer∗ (Wan et al., 2022) 0.273 0.769 14.768 0.690 0.782 0.647 0.952
Mol-Instruction 0.039 0.395 31.611 0.279 0.478 0.26 1.0
LLama2-7b∗ 0.220 0.754 15.695 0.649 0.747 0.608 0.933
Vicuna v1.5-7b∗ 0.220 0.756 15.692 0.658 0.758 0.616 0.943
LlaSMol-Mistral 0.010 0.694 19.719 0.148 0.317 0.119 0.530
nach0-base 0.173 0.854 18.883 0.574 0.668 0.515 0.892
Text+Chem T5 0.042 0.620 13.952 0.261 0.281 0.206 0.345
T5Chem 0.208 0.725 17.278 0.595 0.662 0.566 0.994

PRESTO 0.275 0.902 14.433 0.655 0.747 0.619 0.980

Reaction Condition Prediction (Reagent)
LLama2-7b∗ 0.312 0.564 9.058 0.560 0.575 0.466 1.0
Vicuna v1.5-7b∗ 0.315 0.585 8.664 0.576 0.587 0.473 1.0
nach0-base 0.001 0.172 34.212 0.053 0.134 0.039 0.932
Mol-Instruction 0.0 0.219 27.108 0.034 0.098 0.030 1.0
T5Chem 0.019 0.559 11.044 0.366 0.461 0.374 0.994

PRESTO 0.458 0.776 6.206 0.678 0.683 0.601 0.999

Reaction Condition Prediction (Catalyst)
LLama2-7b∗ 0.680 0.720 2.545 0.882 0.868 0.687 1.0
Vicuna v1.5-7b∗ 0.685 0.703 2.451 0.883 0.869 0.692 1.0
nach0-base 0.0 0.072 36.442 0.129 0.055 0.009 0.849
Mol-Instruction 0.0 0.110 28.424 0.031 0.045 0.015 0.999
T5Chem 0.022 0.346 13.408 0.146 0.268 0.200 0.996

PRESTO 0.768 0.814 1.755 0.914 0.895 0.774 1.0

Reaction Condition Prediction (Solvent)
LLama2-7b∗ 0.311 0.462 3.819 0.452 0.48 0.417 1.0
Vicuna v1.5-7b∗ 0.320 0.436 3.809 0.459 0.486 0.427 1.0
nach0-base 0.0 0.072 36.442 0.129 0.055 0.009 0.849
Mol-Instruction 0.0 0.155 25.117 0.030 0.122 0.035 1.0
T5Chem 0.083 0.311 16.224 0.458 0.424 0.397 0.995

PRESTO 0.419 0.695 2.758 0.529 0.547 0.506 0.912

Table 3: Comparison of various models on forward reaction prediction, retrosynthesis prediction, and reaction condition
prediction tasks. Model indicates a domain expert method, and ∗ denotes our re-implementation.

METHOD REACTANT SOLVENT LIGAND

Reagent Selection
LLama2-7b∗ 0.670 0.550 0.010
Vicuna v1.5-7b∗ 0.690 0.580 0.440
GPT-4† 0.299 0.526 0.534
GAL-30B† (Taylor et al., 2022) 0.107 0.104 0.030
LLama2-13b-chat† 0.145 0.050 0.284
ChemDFM-13b (Zhao et al., 2024) 0.240 0.120 0.350

PRESTO 0.780 0.630 0.520

METHOD ACC↑ CEN↓ MCC↑
Reaction Type Classification
BERT classifier (Schwaller et al., 2021a) 0.989 0.006 0.989
ContraGIN (Wang et al., 2022c) 0.993 0.001 0.993
DRFP (Probst et al., 2022) 0.977 0.011 0.977
T5Chem 0.995 0.003 0.995
LLama2-7b∗ 0.804 0.079 0.803
Vicuna v1.5-7b∗ 0.888 0.048 0.887

PRESTO 0.991 0.004 0.991

METHOD B-H S-M

Yield Regression
DFT (Ahneman et al., 2018) 0.920 -
UAGNN (Kwon et al., 2022) 0.969 0.884
YieldBERT (Schwaller et al., 2021b) 0.950 0.815
T5Chem 0.970 -
LLama2-7b∗ -0.476 0.121
Vicuna v1.5-7b∗ -0.131 0.151

PRESTO 0.944 0.652

Table 4: Comparison with baselines on reagent selection, reaction type classification, and yield regression tasks. † denotes
results from (Zhao et al., 2024). For reagent selection, we report the result in top-1 accuracy except for LIGAND SELECTION,
where we report the top 50% accuracy. For yield regression, we report the R2 score.

pineni et al., 2001), Levenshtein distance, Validity,
and fingerprint similarities (RDKit, MACCS, and
Morgan). Table 4 reports on regression and classi-
fication tasks, evaluating metrics such as Accuracy,
Confusion Entropy of the confusion matrix (CEN),
Matthews Correlation Coefficient (MCC), and R2

scores. Results show that PRESTO outperforms
the baseline LLMs across all downstream tasks
and narrows the gap with domain expert models.
These improvements highlight the effectiveness of
our proposed progressive pretraining strategy and
comprehensive analytical design. However, it is

noteworthy that there is still room for improvement
in validity. Future efforts could involve replacing
SMILES with SELFIES (Krenn et al., 2019) to
enhance robustness in representation.

6 Conclusion and Future Work

This study explores integrating multimodal LLMs
into synthetic chemistry tasks to overcome the
molecule-text modality gap. We highlight the im-
portance of multi-graph datasets and progressive
pretraining methods, showing significant improve-
ments in reaction predictions and synthetic chem-
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istry tasks. As a result, we introduce PRESTO,
which outperforms baseline LLMs.

Meanwhile, current multimodal molecule mod-
els are limited to generating only 1D sequences. As
a potential direction, we envision developing mod-
els capable of producing comprehensive molecu-
lar representations (i.e., 2D, 3D). Future research
could also expand the diversity of datasets to in-
clude more molecular structures and improve the
LLM’s capability for dialogue. We aim to advance
the fields of synthetic chemistry and compound dis-
covery, ultimately creating a more powerful and
versatile assistant for chemists.

7 Limitations

Despite the significant advancements achieved by
PRESTO, several limitations remain. Firstly, we
did not conduct ablation studies on additional
molecular modalities, such as 3D structure informa-
tion, nor did we explore whether combining differ-
ent modalities could further enhance molecular rep-
resentations and improve downstream performance.
Secondly, we observed that the model’s ability
to answer general domain questions declined as
domain-specific finetuning (SFT) progressed. Fu-
ture training should consider integrating general
domain SFT datasets to prevent the forgetting is-
sue. Lastly, our base LLM is a general-domain
model, and the fields of chemistry and molecu-
lar science lack specialized LLMs with parameter
scales comparable to models like LLaMA. This
limitation restricts the coverage and application of
domain-specific knowledge, underscoring the need
to develop larger, more versatile domain-specific
LLMs for enhanced performance.

8 Potential Risks

The use of AI in synthetic chemistry carries sev-
eral potential risks. One major concern is the pos-
sibility of misuse to produce dangerous or illicit
substances, posing significant safety and ethical
challenges. Additionally, inaccuracies in the gen-
erated content could lead to hazardous chemical
reactions if not carefully verified, potentially caus-
ing harm or equipment damage. Over-reliance on
AI-generated synthesis procedures without proper
validation increases the risk of accidents and un-
safe practices. Strict oversight and robust ethical
guidelines are essential to mitigate these risks and
ensure safe application
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A Data Collection
All the SMILES strings are canonicalized using
RDKit (Landrum et al., 2024) to ensure a standard
representation. We apply additional data cleaning
steps, such as removing invalid SMILES and han-
dling duplicate entries.

A.1 Data Cleaning

Data leakage in prior works. Our experiments
identified data leakage issues in the previous popu-
lar benchmark study Mol-Instruction (Fang et al.,
2024a). For example, in the retrosynthesis pre-
diction task, we compared reactions in the train
and test splits after canonicalizing SMILES and
found that 72 chemical reactions in the test split
also appeared in the train split. Moreover, in the
reagent prediction task, 884 reactions in the train
split were identical to those in the test split of the
retrosynthesis prediction task. Additionally, the
study employed a random split method for train
and test sets, which resulted in significant molecu-
lar scaffold similarities (Fingerprint Tanimoto Sim-
ilarity avg ∼ 0.8) between the reactions in the train
and test splits. Consequently, the test results on
this benchmark lack generalizability for real-world
applications.

Our non-overlapping, scaffold-based dataset
splits. When splitting the dataset, we followed
two principles: (1) Ensure that chemical reactions
in the test splits of all downstream synthetic chem-
istry tasks do not appear in any train datasets, in-
cluding both the pretraining and SFT train datasets;
(2) Resample the test set based on a scaffold split-
ting approach, using a scaffold similarity threshold
(Fingerprint Tanimoto Similarity set between 0.5
and 0.6). The number of samples was maintained
consistent with the Mol-Instruction test set, with
additional samples selected from the LlaSMol (Yu
et al., 2024) test set. Figure 4 illustrates the scaffold
similarity distribution of reaction SMILES between
previous works and our resampled test set.

A.2 Data Collection and Preprocessing of
PRESTO

In this section, we provide details on the data col-
lection and preprocessing procedures for PRESTO
two pretraining stages.

PubChem Caption Dataset for Mol-Text Align-
ment. We constructed a molecule caption dataset
to enable the LLM to integrate molecule struc-
ture information and biomolecular domain knowl-

edge during the initial alignment phase. Using the
PubChem (Kim et al., 2022) database as the data
source, we followed the construction procedures
outlined in Liu et al. (2023a). For each molecule,
we used the “description” field from its annotation
page as the corresponding text description. This
resulted in a dataset of 326,675 molecule-text pairs.

Interleaved Dataset for Domain Incremental
Pretrain. Both BioT5 (Pei et al., 2023) and
MolXPT (Liu et al., 2023b) use interleaved corpora,
but they only replace identified molecule entities
in the text with their corresponding 1D sequen-
tial representations. We take this a step further by
replacing entities with encoded graph tokens. Mo-
tivationally, BioT5 masks parts of the 1D tokens to
use a mask learning mechanism that promotes the
model’s learning of molecular sequential represen-
tation. MolXPT aims to enable molecular SMILES
to leverage information from surrounding text and
vice versa. Our approach takes a step further, it not
only aims to align molecule tokens with text tokens
but also to encourage interactions between multiple
molecule entities. This is foundational for down-
stream tasks involving multi-molecule interactions,
such as forward reaction prediction.

In detail, we compiled the interleaved
molecule-text dataset primarily from USPTO-
Applications (Lowe, 2017), consisting of
approximately 2 million reactions and their
corresponding application records published by
USPTO between 2001 and September 2016. Raw
XML files were downloaded, and key information
for each reaction, including chemical reaction
equations and textual descriptions of experimental
procedures, was extracted. Following initial
deduplication and filtering procedures outlined
in (Wang et al., 2023a), we initially collected
1,593,329 procedure samples. Subsequently, we
proceeded with two main preprocessing steps:

• Entity Recognition: We used the Named Entity
Recognition tool BERN2 (Sung et al., 2022) to
extract molecule entities from procedure para-
graphs, retaining samples containing identifiable
molecule entities. All extracted molecules’ IU-
PAC names were then converted to SMILES for-
mat, suitable for further encoding into 2D molec-
ular graphs. After this step, 1,592,462 samples
remained.

• Removal of samples with excessive molecule
entities and sequence length: To manage token
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Figure 4: Comparison of similarity distributions for reaction prediction datasets. The plots show the count of
scaffolds within each similarity range for the full test datasets provided in Yu et al. (2024) and Fang et al. (2024a)
(raw data, lighter shade) and the selected subsets of 1000 scaffolds with the lowest similarities (darker shade).

space and prevent overly long sequences, sam-
ples containing more than 20 entities (filtering
out 1,556 samples) and text sequences exceeding
1024 tokens (filtering out 2,197 samples) were
removed. Finally, our constructed interleaved
dataset comprises 1,588,709 samples, encom-
passing over 342,401 unique molecules. The
statistics of the interleaved molecule-text dataset
are shown in Figure 5.

Name Conversion Dataset for Domain Incre-
mental Pretrain. We collected molecule entries
from PubChem (Kim et al., 2022) and utilized the
existing dataset from LLaSMol (Yu et al., 2024).
LLaSMol originally presents four tasks: SMILES
to Formula, SMILES to IUPAC name, IUPAC
name to SMILES, and IUPAC name to Formula.
We retained the latter two tasks as text-only data.
To integrate molecule graph tokens into PRESTO,
we replaced SMILES with graph representations
using Landrum et al. (2024), creating two new
tasks: Molecule Graph to Formula and Molecule
Graph to IUPAC. Additionally, we derived a fifth
task, Molecule Graph to SMILES, directly from
the Kim et al. (2022) molecule entries by parsing
the SMILES into graph representations similarly.

A.3 Downstream Tasks Dataset Construction
In this section, we provide details on the data collec-
tion process for all downstream tasks of PRESTO
introduced in Section 3.4. Additionally, Table 5
provides a comprehensive comparison of the capa-
bilities of each method across these tasks.

Reaction Prediction. We use USPTO-500-MT
(Lu and Zhang, 2022; Fang et al., 2024a) and

USPTO-full (Lowe, 2017; Yu et al., 2024) datasets
for reaction prediction. The training set of Fang
et al. (2024a) has been chosen for its wide usage
(Pei et al., 2023, 2024; Livne et al., 2023; Cao et al.,
2023; Zhao et al., 2024). However, while several
previous works have reported near-optimal accu-
racy on the test set of Fang et al. (2024a), we argue
that most models still fail in real-world hard cases.
To enhance the original test set’s complexity, we
add more challenging cases from Yu et al. (2024)’s
test set based on Bemis-Murcko scaffolds (Bemis
and Murcko, 1996). This ensures lower similarity
between train and test sets. The new test set has
1,000 samples to thoroughly evaluate the model’s
generalization ability.

Reaction Condition Prediction. The reaction
condition prediction tasks use combined data from
TextReact (Qian et al., 2023) and Mol-Instruction
(Fang et al., 2024a), both sourced from the USPTO
dataset. Following Qian et al. (2023), we further
annotate reaction condition prediction into subtasks
with reagents, catalysts, and solvents. Notably,
65.75% of the training reactions and 68.47% of
the test reactions in Qian et al. (2023) overlap with
Fang et al. (2024a). To ensure fair comparison and
utilize the additional data, we create a new dataset
by combining the overlapping reactions. The data
is split into train/valid/test sets with a ratio of 8:1:1
for each task.

Reagent Selection. Our study utilizes the reagent
selection dataset from ChemLLMBench (Guo et al.,
2023), comprising 4,255 valid samples originally
sourced from the Suzuki High-Throughput Experi-
mentation (HTE) dataset (Perera et al., 2018). Each
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Figure 5: Statistics of the Interleaved Molecule-Text Dataset.

Method Forward Retro Reaction Condition Pred Reagent
Recommend

Reaction
Type Yield

All Reagent Catalyst Solvent

T5Chem (Lu and Zhang, 2022) ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✓
Text+ChemT5 (Christofidellis et al., 2023) ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗
TextReact (Qian et al., 2023) ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗
ChemDFM (Zhao et al., 2024) ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✓
Mol-Instruction (Fang et al., 2024a) ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗
LlaSMol (Yu et al., 2024) ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗
BioT5+ (Pei et al., 2024) ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗
InstructMol (Cao et al., 2023) ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗
nach0 (Livne et al., 2023) ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗
PRESTO ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 5: Comparison of various models across different chemical reaction prediction tasks. The table
summarizes the capabilities of each method in forward reaction prediction, retrosynthesis prediction, reaction
condition prediction (overall, reagent, catalyst, and solvent), reagent recommendation, reaction type prediction, and
yield prediction. PRESTO demonstrates comprehensive support across all tasks.

sample includes reactants, a product, and a list of
candidate reagents. The objective is to select the
most suitable reagent from the candidate list to fa-
cilitate the reaction. The dataset is divided into
3,955 training samples and 300 testing samples,
maintaining the same test split as Guo et al. (2023).

Reaction Type Classification. For reaction type
classification, we use the USPTO 1K TPL dataset
(Schwaller et al., 2021a) derived from the USPTO
patent database (Lowe, 2017), which contains
445,115 reactions labeled with 1000 reaction
classes. Keeping the original configuration, the
dataset is split into 360,545 samples for training,
40,059 for validation, and 44,511 for testing.

Yield Regression. In this task, we use the
Buchwald-Hartwig dataset (Ahneman et al., 2018)
and the Suzuki-Miyaura dataset (Perera et al., 2018)
collected from Schwaller et al. (2021b). The
Buchwald-Hartwig dataset contains 3,955 reac-
tions, while the Suzuki-Miyaura dataset contains
5,760 reactions. We follow the approach of Chem-

LLMBench, using their predefined test sets (100
tests each). Notably, we convert it into a regression
task, and the yield values are normalized to the
range [0, 1].

A.4 Discussion on License.
As depicted in Table 6, we elaborate on the ori-
gins and legal permissions associated with each
data component utilized in the development of the
PRESTO. This encompasses both biomolecular
data and textual descriptions. Thorough scrutiny
was conducted on all data origins to confirm com-
patibility with our research objectives and sub-
sequent utilization. Proper and accurate citation
of these data sources is consistently maintained
throughout the paper.

B Implementation Details

B.1 Evaluation Metrics
We utilize a variety of metrics to comprehensively
evaluate the performance of the models across dif-
ferent types of tasks. The key metrics used for each

10213



DATA SOURCES LICENSE URL LICENSE NOTE

PubChem https://www.nlm.nih.gov/web_policies.
html

Works produced by the U.S. government are not subject to copyright
protection in the United States. Any such works found on National
Library of Medicine (NLM) Web sites may be freely used or reproduced
without permission in the U.S.

ChEBI https://creativecommons.org/
licenses/by/4.0/

You are free to: Share — copy and redistribute the material in any
medium or format. Adapt — remix, transform, and build upon the
material for any purpose, even commercially.

IUPAC https://iupac.org/wp-content/
uploads/2021/06/iupac-inchi-license_
2020.pdf

An "IUPAC license" generally refers to the permissions, guidelines, or
rights associated with using the standards, software, data, or publications
provided by the International Union of Pure and Applied Chemistry
(IUPAC). This can include adhering to IUPAC’s chemical nomenclature
guidelines in scientific communication, using their proprietary software
or databases under specific licensing terms, and obtaining permissions to
reproduce or adapt copyrighted materials.

USPTO https://www.uspto.gov/
learning-and-resources/
open-data-and-mobility

It can be freely used, reused, and redistributed by anyone.

Table 6: Data resources and licenses utilized in data collection for PRESTO.

type of task are as follows.

Classification Tasks. For classification tasks, we
report the following metrics:

• Accuracy: The ratio of correctly classified sam-
ples.

• CEN (Delgado and Núñez-González, 2019): The
CEN score is a measure of the overall entropy
of a confusion matrix, which is used to evaluate
classifiers in multi-class problems.

• MCC (Chicco et al., 2021): The MCC score
is a balanced measure of binary classification
quality, considering true and false positives and
negatives.

Regression Tasks. For regression tasks, we con-
sider the following metrics:

• MAE: Mean Absolute Error, the average abso-
lute difference between predicted and actual val-
ues.

• MSE: Mean Squared Error, the average squared
difference between predicted and actual values.

• R2: The coefficient of determination, indicating
the proportion of variance in the target variable
that is predictable from the input features.

Molecule Generation Tasks. For tasks involv-
ing SMILES (Weininger, 1988) representations of
molecules, we calculate:

• Exact Match: The proportion of predicted
SMILES strings that exactly match the ground
truth after canonicalization.

• BLEU (Papineni et al., 2001): The BLEU score
treats the SMILES strings as text, measuring n-
gram overlap between predictions and references.

• Levenshtein Distance (Levenshtein, 1966): The
minimum number of single-character edits re-
quired to change the predicted SMILES into the
reference.

• RDKit Similarity (Landrum et al., 2024): The
Tanimoto similarity between RDKit fingerprints
of the predicted and reference molecules.

• MACCS Keys Similarity (Durant et al., 2002):
The Tanimoto similarity between MACCS keys
fingerprints of the molecules.

• Morgan Fingerprint Similarity (Schneider
et al., 2015): The Tanimoto similarity between
Morgan circular fingerprints of the molecules.

• Validity: The proportion of predicted SMILES
strings that can be successfully parsed into valid
molecule structures by RDKit.

Note that if the origin model is trained on
SELFIES (Krenn et al., 2019), we use Alstonlo
et al. (2024) to translate the generated SELFIES to
SMILES before evaluation.

B.2 Experimental Details
Here we detail the hyperparameters for PRESTO
pretraining and SFT.

PRESTO Alignment Stage. We employed the
PubChem molecule caption dataset, comprising
approximately 327K samples, for training over 5
epochs. Training was conducted using 8×A6000
GPUs, with a total batch size of 128. AdamW
optimizer was utilized with β = (0.9, 0.999) and
a learning rate of 2e-3, without weight decay. The
learning rate was initially warmed up over 3% of
the total training steps, followed by a cosine decay
schedule. The model’s maximum sequence length
was set to 2048 for the base LLM. To conserve
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CUDA memory, we employed DeepSpeed ZeRO-2
strategy and gradient checkpointing.

PRESTO Domain Incremental Pretrain Stage.
Using the projector checkpoint from the alignment
stage, training followed the fundamental settings
of the alignment stage, with adjustments made to
the total batch size, set to 64, and the learning rate,
set to 2e-5. Due to the prohibitive costs associated
with fully finetuning the base 7B LLMs and the
extensive pretraining dataset, all experiments were
limited to one epoch.

Supervised Finetuning. We utilize the updated
projector and LLM weights from the pretraining
stage and combine all downstream task training
sets for joint model training. For the full finetuning
experiment, we train for three epochs by default, us-
ing the same hyperparameters as in the pretraining
stage except for setting the total batch size to 128.
For the LoRA ablation, we set the peak learning
rate to 8e-5.

C More Ablations

This section extends Section 4 to introduce more
findings according to the ablation experiments.

C.1 Analyzing SFT
Here, we explore important aspects of supervised
finetuning, such as parameters, training time, and
data scaling.

Finding 5: Updating LLMs is essential. We
conducted an ablation study on the trainable pa-
rameters of LLMs during the SFT stage (Figure
6a), progressing from not updating any LLM pa-
rameters to updating the attention block’s q_proj
and v_proj layers with LoRA, then updating all
linear layers except the lm_head layer with LoRA,
and finally fully finetuning all parameters. All ex-
periments involved training for 3 epochs on the
SFT dataset. We found that not updating the LLM
parameters during SFT led to nearly zero perfor-
mance, highlighting the necessity of parameter up-
dates for adapting to downstream tasks. Incorpo-
rating LoRA modules significantly boosted perfor-
mance, and adding more trainable LoRA modules
consistently improved results. Moreover, when
computational resources allow, full-tuning outper-
forms LoRA-tuning across various downstream
tasks.

Finding 6: Balancing SFT training time opti-
mizes downstream task performance. We in-

vestigate the impact of SFT training time on a sub-
set of our SFT training dataset (1/7 size, detailed
in the Appendix). Unlike existing Vision LMs,
which typically undergo only one epoch of training,
we compare performance across different numbers
of epochs. We observe severe underfitting with
only one epoch of training. Surprisingly, we find
steady improvement across all tasks when trained
for up to three epochs but encounter overfitting
when training to four epochs, leading to perfor-
mance degradation. In conclusion, we recommend
training for three epochs for optimal performance
on downstream tasks.

Finding 7: Coverage and diversity of SFT
dataset are critical for better results. We ex-
amined the impact of data repetition (i.e., allocat-
ing FLOPs across multiple epochs on the same
data) and SFT-data size on downstream tasks. In
our experiments on forward and retrosynthesis
prediction, we fixed the training FLOPs (equiv-
alent to the FLOPs used to train for 1 epoch with
the full dataset) and successively halved the train-
ing dataset while doubling the number of training
epochs. We used two subsampling methods: (1)
random subsampling and (2) hierarchical subsam-
pling based on scaffold clustering. Figure 7 re-
vealed that for a fixed compute budget, training up
to four epochs with repeated data resulted in neg-
ligible changes in loss compared to using unique
data. Moreover, we found that the coverage and
diversity of the SFT training set are crucial; even
when the training set size was halved, maintain-
ing the number of scaffold clusters led to higher
performance on the test set.

C.2 Graph v.s. SMILES
Finding 8: 2D graphs outperform 1D SMILES
in modeling molecules. We provide a compari-
son between Vicuna v1.5-7B (using 1D SMILES as
molecule input) and PRESTO (using 2D graphs as
molecule input) across several synthetic chemistry
tasks. To ensure fairness, we bypassed PRESTO’s
two pretraining stages. Table 7 and 8 show that
the 2D graph modality outperforms the 1D sequen-
tial representation for modeling molecules across
synthetic chemistry tasks.

C.3 Generalize to Smaller LLMs
A straightforward question arises: does adapting
the PRESTO method to smaller LLMs still yield
improvements? To investigate this, we imple-
ment PRESTO training on phi-3-mini (Abdin et al.,
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on the trainable parameters in the LLM during SFT. An increase in trainable parameters consistently enhances
performance. (b) Analysis of training duration impacts on SFT. Performance improves up to three epochs, while
training for four epochs results in overfitting.
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Figure 7: Impact of SFT training dataset coverage and diversity on downstream task performance. Training up
to four epochs with repeated data resulted in negligible changes in loss compared to using unique data. Maintaining
the number of scaffold clusters even when the training set size was halved led to higher performance on the test set.

2024) (3.8B) and assess its efficacy in forward re-
action prediction, retrosynthesis, and condition pre-
diction. Our findings indicate that PRESTO en-
hances phi-3-mini’s performance across all tasks,
surpassing the best baseline for each. For illus-
tration, we present phi-3-mini’s performance on
forward reaction prediction as in Table 9.

D Instruction Templates

In this section, we provide a basic description of the
instruction templates utilized in PRESTO. These
templates are designed to guide the model during
pretraining and downstream tasks. We have a va-
riety of templates for each task, and we present a
randomly selected template in this part.
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MODEL EXACT↑ BLEU↑ LEVENSHTEIN↓ RDK FTS↑ MACCS FTS↑ MORGAN FTS↑ VALIDITY↑
Forward Reaction Prediction
Vicuna v1.5-7b 0.250 0.659 12.506 0.513 0.600 0.495 0.903

ours (w/o stage-1&2) 0.298 0.763 12.763 0.576 0.663 0.557 0.975

Retrosynthesis Prediction
Vicuna v1.5-7b 0.220 0.756 15.692 0.658 0.758 0.616 0.943

ours (w/o stage-1&2) 0.184 0.896 16.393 0.681 0.766 0.627 0.959

Reaction Condition Prediction (Reagent)
Vicuna v1.5-7b 0.315 0.585 8.664 0.576 0.587 0.473 1.0

ours (w/o stage-1&2) 0.405 0.747 6.940 0.642 0.651 0.556 1.0

Reaction Condition Prediction (Catalyst)
Vicuna v1.5-7b 0.685 0.703 2.451 0.883 0.869 0.692 1.0

ours (w/o stage-1&2) 0.748 0.822 1.851 0.917 0.899 0.752 1.0

Reaction Condition Prediction (Solvent)
Vicuna v1.5-7b 0.320 0.436 3.809 0.459 0.486 0.427 1.0

ours (w/o stage-1&2) 0.366 0.662 2.948 0.487 0.507 0.461 0.912

Table 7: Comparison of 1D SMILES and 2D graphs as representations of molecules for tasks involving forward reaction
prediction, retrosynthesis prediction, and reaction condition prediction.

METHOD REACTANT SOLVENT LIGAND

Reagent Selection
Vicuna v1.5-7b 0.78 0.58 0.44

ours (w/o stage-1&2) 0.78 0.55 0.63

METHOD ACC↑ CEN↓ MCC↑
Reaction Type Classification
Vicuna v1.5-7b 0.888 0.048 0.887

ours (w/o stage-1&2) 0.988 0.007 0.987

METHOD B-H S-M

Yield Regression
Vicuna v1.5-7b -0.131 0.151

ours (w/o stage-1&2) 0.695 0.480

Table 8: Comparison of 1D SMILES and 2D graphs as representations of molecules for tasks involving reagent selection,
reaction type classification, and yield regression.

Base LLMs w/ PRESTO Training FTS↑

nach0-base No 0.642

Vicuna-v1.5-7B No 0.536
Vicuna-v1.5-7B Yes 0.590 (+10.1%)
Phi-3-mini No 0.560
Phi-3-mini Yes 0.644 (+15.0%)

Table 9: Fingerprint similarity for different scale of LLMs
with and without PRESTO training on forward reaction pre-
diction task.

D.1 Template for Pretraining
Here are six templates used in the pretraining stage
of PRESTO:

1. PubChem Caption (Table 10)
2. IUPAC to Formula (Table 11)
3. IUPAC to SMILES (Table 12)
4. Molecule Graph to Formula (Table 13)
5. Molecule Graph to IUPAC (Table 14)
6. Molecule Graph to SMILES (Table 15)

D.2 Template for Downstream Tasks
Here are 10 templates used for downstream tasks
of PRESTO:

1. Forward Prediction (Table 16)
2. Retrosynthesis Prediction (Table 17)
3. Catalyst Prediction (Table 18)

4. Reagent Prediction (Table 19)
5. Solvent Prediction (Table 20)
6. Reagent Selection (Table 21)
7. Ligand Selection (Table 22)
8. Solvent Selection (Table 23)
9. Yield Prediction (Table 24)

10. Reaction Type Classification (Table 25)

E Case Studies

We show some selected cases for forward predic-
tion (Table 8), retrosynthesis prediction (Table 9),
reagent prediction (Table 10), solvent prediction
(Table 12), and catalyst prediction tasks (Table 11).
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System Prompt:
You are a chemist. Now you are given a representation of a molecule. Please help me to understand the
molecule.
Instruction:
Provide a brief overview of this molecule: <molecule>.
Output:
Sure! Here is a description of this molecule. <caption>.

Table 10: An instruction template for generating captions for molecules. This template guides the generation of
a brief description or overview of the given molecule representation.

System Prompt:
You are a chemist. Please follow the instructions to convert the structure to the corresponding name.
Instruction:
<input> is the IUPAC name of a molecule. Please give its molecular formula.
Output:
The molecular formula is <output>.

Table 11: An instruction template for converting IUPAC names to molecular formulas. This template guides
the conversion from the given IUPAC name to its corresponding molecular formula.

System Prompt:
You are a chemist. Please follow the instructions to convert the structure to the corresponding name.
Instruction:
Convert the IUPAC name of a molecule <input> into SMILES representation.
Output:
The SMILES representation is <output>.

Table 12: An instruction template for converting IUPAC names to SMILES representations. This template
guides the conversion from the given IUPAC name to its corresponding SMILES representation.

System Prompt:
You are a chemist. Please follow the instructions to convert the structure to the corresponding name.
Instruction:
<input> is the representation of a molecule. What is its molecular formula?
Output:
The molecular formula is <output>.

Table 13: An instruction template for converting molecular graph to molecular formula. This template guides
the conversion from the given graph representation to its corresponding molecular formula.

System Prompt:
You are a chemist. Please follow the instructions to convert the structure to the corresponding name.
Instruction:
<input> is the representation of a molecule. What is its IUPAC name?
Output:
The IUPAC name is <output>.

Table 14: An instruction template for converting molecule graph to IUPAC name. This template guides the
conversion from the given graph representation to its corresponding IUPAC name.
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System Prompt:
You are a chemist. Please follow the instructions to convert the structure to the corresponding name.
Instruction:
The representation of a certain molecule is <input>. Can you provide its SMILES representation?
Output:
The SMILES representation is <output>.

Table 15: An instruction template for converting the molecule graph to SMILES representation. This template
guides the conversion from the given graph representation to its corresponding SMILES representation.

System:
You are a chemist. Your task is to predict the SMILES representation of the product molecule, given the
molecule representations of the reactants.
Instruction:
Using <reactant_1>.<reactant_2>.<reactant_3> as the reactants and reagents, tell me the potential
product.
Output:
Sure. A potential product: <product_1>.<product_2>.

Table 16: An instruction template for forward prediction. This template guides the prediction of the product
based on the given reactants and reagents. The reactants and reagents are specified, and the model must predict the
potential product from the reaction.

System:
You are a chemist. Your task is to predict the SMILES representation of the reactant molecules, given
the molecule representations of the product.
Instruction:
Using <product_1>.<product_2>.<product_3> as the products, predict the possible reactants that could
have been utilized to synthesize these products.
Output:
Here are possible reactants: <reactant_1>.<reactant_2>.

Table 17: An instruction template for retrosynthesis prediction. This template guides the prediction of the
possible reactants based on the given product. The product is specified, and the model must predict the reactants
that could have been used to synthesize this product.

System Prompt:
You are a chemist. Now, you are given a reaction equation. Your task is to predict the SMILES
representation of the catalyst, given molecule representation of the reaction.
Instruction:
Based on the given chemical reaction: <reactant_1>.<reactant_2>.<reactant_3> » <prod-
uct_1>.<product_2>, propose some likely catalysts that might have been utilized.
Output:
A possible catalyst can be <catalyst>.

Table 18: An instruction template for catalyst prediction. This template guides the prediction of possible catalysts
based on the given reaction components. The reactants and products are specified, and the model must predict the
potential catalyst from the reaction.
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System Prompt:
You are a chemist. Now, you are given a reaction equation. Your task is to predict the SMILES
representation of the reagents, given molecule representation of the reaction.
Instruction:
Based on the given chemical reaction: <reactant_1>.<reactant_2>.<reactant_3> » <prod-
uct_1>.<product_2>, propose some likely reagents that might have been utilized.
Output:
A possible reagent can be <reagent>.

Table 19: An instruction template for reagent prediction. This template guides the prediction of possible reagents
based on the given reaction components. The reactants and products are specified, and the model must predict the
potential reagent from the reaction.

System Prompt:
You are a chemist. Now, you are given a reaction equation. Your task is to predict the SMILES
representation of the solvents, given molecule representation of the reaction.
Instruction:
Based on the given chemical reaction: <reactant_1>.<reactant_2>.<reactant_3> » <prod-
uct_1>.<product_2>, propose some likely solvents that might have been utilized.
Output:
A possible solvent can be <solvent>.

Table 20: An instruction template for solvent prediction. This template guides the prediction of possible solvents
based on the given reaction components. The reactants and products are specified, and the model must predict the
potential solvent from the reaction.

System Prompt:
You are an expert chemist. Given one reactant, two reagents, and one solvent of a Suzuki reaction,
predict the optimal reactant that maximizes the yield with the rest of the reaction components. Only
return the option from the given list.
Instruction:
Given the rest of the reaction components: <reactant_1> > <reagent_1>.<reagent_2> » <solvent>.
Select the optimal reactant: <reactant_2>.<reactant_3>
Output:
Optimal reactant: <reactant_3>.

Table 21: An instruction template for reagent selection. This template guides the prediction of the optimal
reactant based on the given reaction components. The reactant, reagents, and solvent are specified, and the model
must choose the best reactant from the provided list.
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System Prompt:
You are an expert chemist. Given two reactants, one reagent, and one solvent of a Suzuki reaction,
predict the optimal ligand that maximizes the yield with the rest of the reaction components. Only
return the option from the given list.
Instruction:
Given the rest of the reaction components: <reactant_1>.<reactant_2> » <reagent>.<solvent>.
Select the optimal ligand: <ligand_1>.<ligand_2>
Output:
Optimal ligand: <ligand_1>.

Table 22: An instruction template for ligand selection. This template guides the prediction of the optimal ligand
based on the given reaction components. The reactants, reagents, and solvents are specified, and the model must
choose the best ligand from the provided list.

System Prompt:
You are an expert chemist. Given two reactants, one ligand, and one base of a Suzuki reaction, predict
the optimal solvent that maximizes the yield with the rest of the reaction components. Only return the
option from the given list.
Instruction:
Given the rest of the reaction components: <reactant_1>.<reactant_2> » <ligand>.<base>.
Select the optimal solvent: <solvent_1>.<solvent_2>
Output:
Optimal solvent: <solvent_2>.

Table 23: An instruction template for solvent selection. This template guides the prediction of the optimal solvent
based on the given reaction components. The reactants, ligand, and base are specified, and the model must choose
the best solvent from the provided list.

System Prompt:
You are a chemist. Now, you are given a reaction equation. Your task is to predict the yield ratio of
the reaction. The return value should be in the range of 0-1. The higher the value, the more likely the
reaction is to occur.
Instruction:
Based on the given chemical reaction: <reactant_1>.<reactant_2>.<reactant_3> » <prod-
uct_1>.<product_2>, what is the yield ratio of the reaction?
Output:
The yield ratio is <ratio>.

Table 24: An instruction template for yield prediction. This template guides the prediction of the yield ratio
based on the given reaction components. The reactants and products are specified, and the model must predict the
yield ratio from the reaction.
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System Prompt:
You are a chemist. Now, you are given a reaction equation. Your task is to predict the class of the
reaction. Your task is to predict the class number of the reaction.
Instruction:
Based on the given chemical reaction: <reactant_1>.<reactant_2>.<reactant_3> » <prod-
uct_1>.<product_2>, predict the class number of the reaction.
Output:
The class number is <class_number>.

Table 25: An instruction template for reaction type classification. This template guides the prediction of the
reaction class number based on the given reaction components. The reactants and products are specified, and the
model must predict the reaction class number from the reaction.
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Figure 8: More examples of the Forward Prediction task. We include Mol-Instruction (Fang et al., 2024a) and
nach0 (Livne et al., 2023) as baselines.
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Figure 9: More examples of the Retrosynthesis Prediction task. We include Mol-Instruction (Fang et al., 2024a)
and nach0 (Livne et al., 2023) as baselines.
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Figure 10: More examples of the Reagent Prediction task. We include Mol-Instruction (Fang et al., 2024a) and
nach0 (Livne et al., 2023) as baselines.
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Figure 11: More examples of the Catalyst Prediction task. We include Mol-Instruction (Fang et al., 2024a) and
nach0 (Livne et al., 2023) as baselines.
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Figure 12: More examples of the Solvent Prediction task. We include Mol-Instruction (Fang et al., 2024a) and
nach0 (Livne et al., 2023) as baselines.
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