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Abstract

The emergence of Mixture of Experts (MoE)
LLMs has significantly advanced the develop-
ment of language models. Compared to tra-
ditional LLMs, MoE LLMs outperform tradi-
tional LLMs by achieving higher performance
with considerably fewer activated parameters.
Despite this efficiency, their enormous param-
eter size still leads to high deployment costs.
In this paper, we introduce a two-stage com-
pression method tailored for MoE to reduce
the model size and decrease the computational
cost. First, in the inter-expert pruning stage,
we analyze the importance of each layer and
propose the Layer-wise Genetic Search and
Block-wise KT-Reception Field with the non-
uniform pruning ratio to prune the individual
expert. Second, in the intra-expert decompo-
sition stage, we apply the low-rank decom-
position to further compress the parameters
within the remaining experts. Extensive exper-
iments on Qwen1.5-MoE-A2.7B, DeepSeek-
V2-Lite, and Mixtral-8×7B demonstrate that
our proposed methods can both reduce the
model size and enhance inference efficiency
while maintaining performance in various zero-
shot tasks. The code will be available at https:
//github.com/xiaochengsky/MoEI-2.git

1 Introduction

Large Language Models (LLMs) have recently
demonstrated remarkable language understand-
ing and generation proficiency, excelling in com-
plex tasks (Achiam et al., 2023; Touvron et al.,
2023a; Wu et al., 2020). However, deploying
these models presents substantial challenges due
to their significant storage and computational de-
mands. To overcome these issues, the Mixture-
of-Experts (MoE) LLM has been proposed (Jiang
et al., 2024), which activates only a subset of its

*Equal Contribution.

parameters during training and inference. For in-
stance, with a smaller model size, the Mixtral-
8×7B model with a total of 47B parameters sur-
passes the performance of dense Transformer mod-
els like LLaMA-2-70B (Touvron et al., 2023b). Ad-
ditionally, Qwen1.5-MoE-A2.7B (Bai et al., 2023)
demonstrates highly competitive performance com-
pared to other 7B models, and the recently in-
troduced DeepSeekv2 MoE (DeepSeek-AI, 2024)
achieves performance levels comparable to GPT-4,
demonstrating the powerful capabilities of MoE
models.

MoE models have garnered significant attention
recently due to their ability to dynamically select
subsets of parameters for each input, enabling effi-
cient handling of diverse tasks. Despite their poten-
tial, a notable challenge with MoE models is that
they are still burdened by substantial parameter
size and computation cost. For example, Mixtral-
8×7B (Jiang et al., 2024) not only has 47B pa-
rameters but also activates 13B parameters during
inference. While this architecture allows for scala-
bility and flexibility, it also introduces complexities
and huge memory in deployment and inference,
particularly when considering resource constraints
and efficiency. Consequently, decreasing and main-
taining these large-scale models remains a critical
area of research.

Model compression techniques, such as pruning,
knowledge distillation, and quantization, have been
utilized to slim the model size. (Lu et al., 2024)
proposed to reduce the parameter count of MoE
models by expert pruning, but it does not reduce
the parameters during inference efficiently. (Li
et al., 2024) merges several experts into one and ap-
plies the low-rank decomposition to further reduce
the model size. Although this approach achieves
a good compression ratio and performance, it re-
quires calibration and fine-tuning for each down-
stream task individually, which is not suitable for
large-scale LLMs, and time costs are very high.
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Several works (Zhou et al., 2021; Sun et al., 2023;
Frantar and Alistarh, 2023) focus on unstructured
sparsity to decrease the parameters of models while
maintaining high performance. However, unstruc-
tured pruning struggles to achieve practical acceler-
ation, decrease inference, and save storage without
a specific design for hardware and libraries.

To solve these problems, we start by analyzing
parameter redundancy in the MoE model from mul-
tiple levels. First, since identifying redundant ex-
perts using brute-force search (Lu et al., 2024)
is infeasible in practice, it is necessary to design
efficient methods to reduce the time complexity.
Second, we aim to compress as many experts as
possible while ensuring that the model maintains
its zero-shot performance, rather than being lim-
ited to handling a single down-stream task (Li et al.,
2024). Finally, our method can adapt to any MoE
model, particularly those with a large number of
experts and diverse structures, and automatically
identifies a suitable compression strategy for each
type of MoE model without the need for manual
settings.

In this paper, we propose a novel end-to-end
framework for MoE models, MoE-I2, for the task-
agnostic compression of the MoE models. To our
knowledge, MoE-I2 is the first end-to-end frame-
work designed task-agnostic for structured com-
pression of MoE LLMs. Our contributions are
summarized as follows:

• We introduce a two-stage MoE compression
framework for expert slimming that consid-
ers both inter-expert and intra-expert relation-
ships.

• In the inter-expert pruning stage, we analyze
the importance of each MoE layer and pro-
pose a non-uniform pruning ratio for each
layer. Then, we find that previous MoE prun-
ing methods lead to high time complexity and
local optima. To address these issues, we in-
troduce a layer-wise genetic search to reduce
time complexity and a block-wise combina-
tion strategy to approximate a global optimum
better.

• In the intra-expert decomposition stage, we
measure the importance of each expert and
assign non-uniform ranks accordingly. Sub-
sequently, we apply a low-rank decomposi-
tion to further compress the parameters within
each expert in a fine-grained manner.

• We conduct extensive experiments with
MoE models, including Qwen1.5-MoE-
A2.7B (14.3B), DeepSeek-V2-Lite (16B), and
Mixtral-8×7B (47B), across various nine
datasets to assess both the generation quality
and the zero-shot classification performance,
demonstrating the effectiveness of our pro-
posed MoE-I2 framework.

2 Related Works

2.1 Mixture-of-Experts LLMs

MoE-LLMs have gained significant attention in re-
cent years due to their ability to scale efficiently
while maintaining high performance. MoE mod-
els divide the network into several experts and dy-
namically select a subset of these experts for each
input, which reduces computational overhead and
enhances scalability. (Shazeer et al., 2017) intro-
duced the MoE model in their work on the Sparsely-
Gated Mixture-of-Experts Layer, and (Lepikhin
et al., 2020) further advanced the MoE architecture
by demonstrating its scalability to trillions of pa-
rameters while retaining manageable computation
costs by distributing the experts across multiple
devices. With the recent advancements in decoder-
only architecture(Touvron et al., 2023a), MoE mod-
els built on this structure have become increasingly
popular (Jiang et al., 2024). In this paper, we focus
on how to build an end-to-end framework to solve
post-training expert pruning and decomposition for
MoE LLMs to decrease computation and storage.

2.2 Compression on MoE LLMs

Recent advancements in large language models
have underscored the need to reduce parameter
sizes and latency (Ma et al., 2023). Compres-
sion techniques for language models include net-
work pruning (Xu et al., 2021), knowledge distilla-
tion (Sun et al., 2019, 2020), quantization (Yao
et al., 2022), decomposition (Hsu et al., 2022;
Yuan et al., 2023; Wang et al., 2024), and meth-
ods like early exit (Xin et al., 2020). Building
on these techniques, pruning, and sparsity is cru-
cial for MoE models, which often have up to 95%
of parameters dedicated to experts. Pruning MoE
models involves removing less important experts
or neurons to reduce the number of active pa-
rameters during inference. For example, (Kim
et al., 2021) retains the most activated experts to
enhance machine translation MoE models, while
(Koishekenov et al., 2022) introduces gate statistics-
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based pruning during decoding. Although effec-
tive, these methods are mostly confined to linguis-
tic models in machine translation. (Chen et al.,
2022) dropping-while-training approach progres-
sively removes non-essential experts for specific
tasks, tested on Switch Transformers (Fedus et al.,
2022). The merge-compression (Li et al., 2024)
method and EPP (Lu et al., 2024) approach, which
is similar to ours, consider pruning and skipping in
MoE models but face challenges in reducing com-
putational costs. Given a pruned or sparse model,
finetuning aims to restore performance on original
tasks. Recent studies on LLMs (Sun et al., 2023;
Ma et al., 2023) focus on pruning linear layers, but
these methods often fail to reduce computing costs
without specialized hardware or libraries. Efficient
post-finetuning expert pruning and sparsity meth-
ods for task-agnostic MoE LLMs remain underex-
plored. This gap highlights the need for advanced
techniques to effectively balance pruning and spar-
sity while maintaining or enhancing performance
across various tasks.

3 Method

In this section, we introduce the details of our pro-
posed framework, MoE-I2, which consists of three
stages: Inter-Expert Pruning stage (Sec. 3.1), Intra-
Expert Decomposition stage (Sec. 3.2), and fine-
tuning stage (Sec. 3.3). The overall pipeline is
shown in Figure 1.

3.1 Inter-Expert Pruning
In this stage, our goal is to prune individual unim-
portant experts to reduce the parameter size and
computational cost. It raises two crucial questions:
(1) Given an overall pruning ratio, how many ex-
perts should be pruned in each layer? (2) How to
determine which experts to prune?

3.1.1 Layer Importance Analysis
To answer the first question, we start by analyzing
the importance of each layer. The layer importance
of i-th layer, denoted by Ii, is defined as the average
loss degradation by removing individual experts
within this layer. Specifically, to calculate Ii in the
i-th layer, we first calculate the expert importance.
We consecutively pruning j-th expert in the i-th
layer, denoted by ei,j , where j = 1, 2, · · · ,Mi.
The Mi represents the total number of experts in
the i-th layer. Next, each pruned model predicts
the next token with the calibration samples. The
expert importance of ei,j is calculated as:

Ii,j =
∑

B

L(X , {Ei} \ {ei,j}) (1)

where {Ei} = {ei,1, ei,2, · · · , ei,Mi} denotes the
set of all experts in i-th layer. X represents the
calibration dataset, and B denotes the batche size.
L denotes the output of the MoE model under the
condition that the j-th expert in the i-th layer is
removed. Once we have determined the impor-
tance score of the j-th expert in the i-th layer, the
overall importance score of i-th layer is defined
as Ii =

∑Ei
j=1 Ii,j . Given the overall pruning rate,

we normalize the layer importance to obtain the
pruning rate for each layer.

Following this paradigm, we demonstrate the
layer importance for Mixtral-8×7B (Jiang et al.,
2024), Qwen1.5-MoE-A2.7B (Bai et al., 2023),
and DeepSeek-V2-Lite (DeepSeek-AI, 2024) as
shown in Figure 2. Note that the previous work (Lu
et al., 2024) overlooks the varying importance of
layers and simply applies a uniform pruning ratio
to each layer, leading to a suboptimal solution. In
contrast, our analysis shows that some models per-
form in ways that largely diverge from this strategy.
For example, the analysis of DeepSeek-V2-Lite
(Figure 2) reveals that layer importance rapidly in-
creases with depth, indicating that deeper layers
are more sensitive than shallower ones.

3.1.2 Inter-Expert Pruning Strategy
To answer the second question, it is required to
identify a combination of N experts that have the
least impact on prediction loss. Previous work (Lu
et al., 2024) utilizes brute-force search to find the
least impactful combination of N experts within
each layer. However, this method presents two sig-
nificant drawbacks. First, the brute-force search
has high time complexity, making it extremely time-
consuming, especially when pruning the MoE with
a large number of experts. For example, Qwen1.5-
MoE-A2.7B and DeepSeek-V2-Lite have 60 and
64 experts per layer, respectively. If 25% of experts
need to be pruned, (Lu et al., 2024) needs to tra-
verse C60

15 and C64
16 times for each layer respectively,

which is unacceptable in terms of time consump-
tion. Second, it restricts the search space within
the current layer, only achieving a local optimum
and potentially missing a more globally optimal
solution.

To mitigate these challenges, we leverage Ge-
netic Search (Grefenstette, 1993; Alam et al., 2020)
with KT-Receptive Field methods to enhance search
efficiency and concurrently identify the least im-
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Figure 1: The three-stage pipeline of MoE-I2. The first stage (left) represents Inter-Expert Pruning, where MoE-I2

conducts the Layer Importance Analysis on the target MoE model. By using a predefined overall pruning rate, it
determines varying pruning ratios of different layers. Subsequently, the unimportant experts in MoE are determined
by Layer-wise Genetic Search and Block-wise KT-Reception Field. The MoE is pruned accordingly. The second
stage (middle) represents Intra-Expert Analysis. Similarly, MoE-I2 automatically performs Expert Importance
Analysis on the pruned model and using a predefined overall decomposition rate, applies varying ranks and low-rank
decomposition to different experts, resulting in a final compressed model. The third stage (right) shows that we
fine-tuned the compressed MoE model to recover performance.

pactful combinations of experts on a more global
scale.
Layer-wise Genetic Search. To avoid extreme
time consumption caused by brute-force search (Lu
et al., 2024), we leverage the genetic search to
select the M candidate combinations in each layer.

For the i-th layer, we define all possible prun-
ing combinations as CPi . Here, Pi represents the
number of experts to be be pruned in the i-th layer.
Given that there are Mi experts in the i-th layer,
CPi denotes the number of combinations for se-
lecting Pi experts to prune from the total of Mi

experts.
In the initial stage of Genetic Search, we first

initialize a population {CPi,1, CPi,2, . . . , CPi,N},
where the population size N = 100. We then calcu-
late the loss for each combination in the population:

Ln
i =

∑

B

∥Fi(X )−Fi(X , {Ei}\CPi,n))∥F (2)

where Fi represents the output of layer i of the
MoE model, and ∥ · ∥F donates Frobenius norm.

We select the combinations with the smallest
loss from CPi,n as parents. Using union and
random sampling, we generate offspring combina-
tions. Each individual in the offspring population
undergoes some mutations, where a few experts to
be pruned are randomly replaced. This process is
repeated iteratively in 50 steps and we can obtain
the optimal a few combinations of expert pruning

as candidate combinations in the i-th layer.

Block-wise KT-Reception Field. After obtaining
the n candidate combinations, we only keep K
best combinations with the smallest loss in each
layer as the candidate combinations to be used
for the block-level optimization. We aim to select
one of the K combinations from each layer such
that they minimize the output loss. During this
selection process, instead of only considering the
importance of experts in just the current layer (Lu
et al., 2024), we extend the scope of candidate
selection from one layer to T layers, achieving
a block-wise combination. Specifically, we
partition all layers into

⌈
L
T

⌉
blocks. Within each

block, we select the combination in a brute-force
scheme. Given K candidates in each layer, and
considering there are T layers in one block, we
traverse all possible combinations by selecting one
combination from each of T layers, yielding a total
of KT options. Subsequently, we calculate the
output loss and select the optimal combinations for
pruning. The pipeline is shown in Figure 3.

Expert Pruning. Given the to-be-pruned experts,
we conduct the expert pruning operation by remov-
ing the entire expert in a structured manner.

3.2 Intra-Expert Decomposition

In this stage, we propose to further compress the
remaining experts in a fine-grained way by perform-
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Figure 2: Importance analysis of Mixtral-8×7B (left), Qwen1.5-MoE-A2.7B (middle), and DeepSeek-V2-Lite
(right) models. A larger loss indicates greater importance. For Mixtral-8×7B and Qwen1.5-MoE-A2.7B, the
importance of the different layers is relatively consistent, but for DeepSeek-V2-Lite, the importance increases as
one approaches the output layer.
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Figure 3: The process of KT-Receptive Filed in Mixtral-
8×7B for satisfied 25% pruning ratio. In this case, the
number of candidate combinations per layer is K = 3,
and the number of layers per block is T = 3. For
each layer, we select K optimal candidates using the
Layer-wise Genetic Search (top-left). Within a consec-
utive sequence of T layers, we employ the Block-wise
KT-Reception Field to identify the best-performing com-
bination within that block (T layers).

ing the low-rank decomposition on the parameters
within each intra-expert.

3.2.1 Expert Importance Analysis
As mentioned in (Chi et al., 2022), each expert
has varying levels of importance. To achieve better
compression performance, instead of applying a
uniform compression ratio, we aim to retain more
parameters in the important experts and fewer in
the less important ones. That leads us to assign
higher ranks to the more important experts and
lower ranks to the less important ones. Therefore,
to calculate the varying ranks, we analyze the rel-
ative importance of each expert. Based upon the
previous analysis in Sec. 3.1.1, we adopt the same
importance metric, Ii,j in Eq. 1, as the expert im-
portance.

To determine the varying ranks of each expert,

we begin by calculating basic uniform rank values.
Given the overall compression ratio in the second
stage, and considering that the structure of all ex-
perts is entirely consistent, we directly calculate
the target average rank for each expert after decom-
position, which is denoted as Ra. By considering
the important score of each expert, we calculate the
rank values for experts ei,j as:

Rij =

 (Iij + ϵ)α

∑M
′
i

j=1(Iij + ϵ)α
· Ra ·M

′
i

 (3)

Here, M
′
i represents the number of experts remain-

ing in layer i of the model obtained after Intra-
Expert Pruning, and α denotes the smooth factor
used to avoid overly linearizing the distribution of
rank values, set as 0.15. ϵ is set to 1 × 10−6 to
avoid the numerical issue.

3.2.2 Intra-Expert Decomposition Strategy
Singular Value Decomposition (SVD) is a general
technique to reduce parameter size by decomposing
a large dense matrix into two smaller low-rank ma-
trices. Compared to the Vanilla SVD, which only
focuses on the initial weight matrix, (Wang et al.,
2024) generates activation by truncation-aware data
whitening and provides hierarchical closed-form
updates for model compression. Inspired by SVD-
LLM (Wang et al., 2024) working on dense models,
we extend SVD-LLM to MoE models by integrat-
ing the non-uniform ranks Ri,j in Sec. 3.2.1.

3.3 Efficient Fine-tuning
To mitigate performance degradation caused by
the two-stage compression, we fine-tune the MoE
by updating the weights. Instead of adjusting all
weights, we integrate LoRA (Hu et al., 2021), a
low-rank approximation technique, into the post-
training of the pruned model. The overall algorithm
is illustrated in Alg. 1.
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Algorithm 1 The Algorithm of MoE-I2

Inputs: Initial ModelM, Target Pruning Ratio PS , Expert
Decomposition Rate D, Calibration Sample Sc, Finetune
Sample Sf .

Outputs: Compressed MoE-I2,Mf

1: for each layer li inM do
2: Ii ← Layer Importance Analysis with Sc via

Sec. 3.1.1;
3: end for
4: Mp ← Inter-Expert Pruning(M, Sc, PS , I) via

Sec. 3.1.2;
5: for each layer li inMp do
6: Ri,j ← Expert Importance Analysis via Sec. 3.2.1;
7: end for
8: Mc← Intra-Expert Decomposition(Mp, Sc, D,R) via

Sec. 3.2.2;
9: Mf ← Low-Rank Finetune(Mc, Sf ) via Sec. 3.3;

4 Experiments

4.1 Experimental Settings

Model Settings. To demonstrate the effective-
ness of our method, we conducted experiments
on three MoE models: Qwen1.5-MoE-A2.7B
(14.3B), DeepSeek-V2-Lite (16B), and Mixtral-
8×7B (47B). Mixtral-8×7B has a larger number
of parameters and relatively fewer experts (8 ex-
perts per layer in total 32 layers). On the other hand,
Qwen1.5-MoE-A2.7B and DeepSeek-V2-Lite have
fewer parameters but a greater number of experts
(60 and 64 experts per layer in a total of 24 and 26
layers, respectively).
Evaluation and Datasets. To evaluate the
performance in a task-agnostic setting, we
mainly adopt LLama-Pruner (Ma et al., 2023)
evaluation methodology, conducting zero-shot
task classification across common sense reason-
ing datasets such as BoolQ (Clark et al., 2019),
HellaSwag (Zellers et al., 2019), WinoGrande (Sak-
aguchi et al., 2021), ARC-easy (Clark et al., 2018),
ARC-challenge (Clark et al., 2018), and Open-
bookQA (Mihaylov et al., 2018). Meanwhile, our
model evaluates results in multiple-choice tasks
or generates answers in open-ended generation
tasks (Gao et al., 2021). Furthermore, we supple-
ment our evaluation with a zero-shot perplexity
(PPL) analysis on WikiText2 (Merity et al., 2016)
and PTB (Marcus et al., 1993).

Implementation Details. During the expert prun-
ing phase, we use the same data as the (Lu et al.,
2024), which is 2048 randomly sampled data from
the C4 (Raffel et al., 2020) dataset as calibra-
tion data. In the expert decomposition phase, we
also use 2048 randomly sampled data from Al-

paca (Taori et al., 2023) as calibration data to con-
duct the importance analysis. For the finetuning
phase, similar to LLM-Pruner (Ma et al., 2023), we
use Alpaca as the finetuning training set, totaling
approximately 50k samples. The batch size is set
as 64 and learning rates are from 3e-4 to 5e-4. The
experiments are conducted on 4 A100-80G GPUs.

4.2 Main Results

MoE-I2 Results. Table 1 presents the zero-shot
performance of the models after applying the MoE-
I2 framework. It is evident that pruning 25% of
the expert parameters results in only a slight per-
formance loss. However, after finetuning the com-
pressed mode with only 2 epochs, the performance
can even surpass that of the original model, es-
pecially with an improvement of over 2% on the
DeepSeek-V2-Lite model. This observation sug-
gests that pruning 25% of the experts in the first
step is lossless. In the second step, we choose to
further compress the pruned model with an approx-
imate 40% compression ratio via low-rank decom-
position. Finally, we perform the finetuning stage.
As a result, we can see that while ensuring a reduc-
tion of more than 50% in expert parameters, the
model’s performance is largely preserved.
Zero-shot Performance Comparisons with Ex-
isting Methods. Table 2 shows the zero-shot
performance of the pruned model by comparing
Wanda (Sun et al., 2023), EEP (Lu et al., 2024),
and our Inter-Expert Pruning method under the
same sparsity rate. Our method demonstrates sig-
nificant advantages over Wanda and EEP.
PPL Comparisons with Existing Methods. Ta-
ble 3 shows the zero-shot perplexity(PPL) of the
pruned model by comparing EEP, and our Inter-
Expert Pruning method under the same sparsity
rate. Our method demonstrates significant advan-
tages over EEP.
Inference Speedup with Existing Methods. Ta-
ble 4 shows the speedup of three models by com-
paring Wanda (Sun et al., 2023), EEP (Lu et al.,
2024), and MoE-I2 method.

4.3 Ablation Studies

Comparison of MoE-I2 and its Components. Ta-
ble 5 demonstrates the necessity of the components
within the MoE-I2 framework. It shows that MoE-
I2 has a significant advantage when compared to
applying only Inter-Expert Pruning or Intra-Expert
Decomposition individually.
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Table 1: Zero-shot performance of three models under our MoE-I2 Framework. The average is calculated among
seven classification datasets. “P” denotes the Inter-Expert Pruning operation, “D” represents the Intra-Expert
Decomposition operation, and “F” indicates the “Fine-tuning” operation based on LoRA. “Params” represents
the percentage reduction in the number of expert parameters. In the Inter-Expert Pruning stage, we prune 25%
of the experts. During the Intra-Expert Decomposition stage, for the Mixtral-8×7B model, we decompose the
remaining experts with an average rank of 2048, further reducing the parameters by approximately 37.5%. For the
Qwen1.5-MoE-A2.7B and DeepSeek-V2-Lite models, we perform decomposition with an average rank of 512,
further reducing the parameters by approximately 38.6%.

Model Method Params↓ ARC-c ARC-e BoolQ HellaSwag OBQA RTE WinoGrande Average
8×7B baseline 0 57.17 84.01 85.35 64.88 35.00 70.40 75.93 67.53
8×7B P 25% 51.79 81.36 84.07 61.99 32.80 71.12 75.85 65.57
8×7B P+F 25% 56.23 82.49 86.42 64.48 36.00 72.92 74.98 67.65
8×7B P+D 51.79% 40.70 71.51 67.83 45.34 26.00 61.37 67.56 54.33
8×7B MoE-I2 51.79% 52.20 78.22 82.62 61.07 34.00 72.20 71.50 64.55
Qwen baseline 0 41.89 73.11 79.76 57.90 30.40 70.04 68.67 60.25
Qwen P 25% 38.57 70.37 73.30 55.84 29.80 64.98 67.25 57.16
Qwen P+F 25% 45.14 75.93 78.01 57.83 32.80 71.12 68.51 61.33
Qwen P+D 53.98% 37.71 65.91 71.41 49.34 29.40 64.26 67.88 55.13
Qwen MoE-I2 53.98% 41.13 71.68 75.08 53.08 30.80 66.43 66.54 57.82

DeepSeek baseline 0 46.93 78.37 79.82 58.70 34.60 60.65 71.35 61.49
DeepSeek P 25% 45.31 74.62 67.95 57.38 33.20 59.93 70.01 58.34
DeepSeek P+F 25% 47.44 78.16 79.79 60.32 35.40 74.56 71.35 63.86
DeepSeek P+D 53.98% 38.48 71.42 70.09 48.15 27.80 60.65 65.98 54.65
DeepSeek MoE-I2 53.98% 42.58 71.80 76.79 55.16 32.60 70.76 67.64 59.62

Table 2: Zero-shot performance comparison with EEP (Lu et al., 2024) and Wanda (Sun et al., 2023)

Model Method Params↓ ARC-c ARC-e BoolQ HellaSwag OBQA RTE WinoGrande Average
8×7B EEP 25% 51.62 81.94 83.64 61.60 33.00 67.87 75.37 65.01
8×7B P 25% 51.79 81.36 84.07 61.99 32.80 71.12 75.85 65.57
8×7B Wanda 50% 42.06 74.16 76.64 53.16 27.00 63.90 70.96 58.27
8×7B EEP 50% 48.89 78.16 81.35 57.66 29.00 61.37 72.85 61.33
8×7B P 50% 48.38 78.66 81.41 58.35 27.00 64.62 74.19 61.80

Table 3: Zero-shot performance of experiment results
of comparison with EEP and Wanda. “↓” indicates that
lower values are better.

Model Method Params↓ WikiText2 ↓ PTB ↓
8×7B baseline 0% 6.24 107.24
8×7B EEP 25% 8.16 141.1
8×7B P 25% 8.01 133.38
8×7B EEP 50% 11.02 207.4
8×7B P 50% 10.1 185.2

Impact of Genetic Search. For Qwen1.5-MoE-
A2.7B and DeepSeek-V2-Lite models, which have
60 and 64 experts per layer respectively, we only
iterate 50 times for Genetic Search. As shown in
Figure 4, the loss has converged in the majority of
layers. Using EEP (Lu et al., 2024) for combinato-
rial search would result in unimaginable time com-
plexity. For instance, if pruning 25% of the experts,
EEP would require searching C60

15 and C64
16 times

for each layer respectively. Table 6 presents the per-
formance of the pruned models obtained through
our Inter-Expert Pruning compared to Random and
TopLoss methods in terms of zero-shot performance
of average(among seven classification datasets) and
perplexity tasks. The TopLoss denotes that we indi-
vidually select the Pi least important experts in the

Table 4: Inference speedup performance comparison
with EEP (Lu et al., 2024) and Wanda (Sun et al., 2023)
at a compression rate of 50% . “↓” indicates that lower
values are better.

Model Method Mem (GB) ↓ Speedup Average
8×7B baseline 87.7 1.0× 67.53
8×7B EEP 45.78 1.20× 61.33
8×7B Wanda 50.01 0.91× 58.27
8×7B MoE-I² 43.49 1.28× 64.55
Qwen baseline 26.67 1.0× 60.25
Qwen MoE-I² 14.14 1.12× 57.82

DeepSeek baseline 29.26 1.0× 61.49
DeepSeek MoE-I² 15.03 1.13× 59.62

current layer to prune instead of considering the
expert combination used in Genetic Search. As ob-
served, Genetic Search has a significant advantage
over other methods with similar low time costs on
seven classification tasks and PPL.

Impact of KT-Receptive Field. As shown in Fig-
ure 5, we also observe that a large KT-Receptive
Field is not always the best during calibration. This
is partially because we only use a small amount of
data for calibration (2048 samples selected from
the C4 dataset). Additionally, there is a significant
difference between the C4 dataset and the seven
datasets used for zero-shot validation. Simply in-
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Table 5: Comparison of zero-shot performance of the MoE-I2 framework and its components. To ensure the same
compression ratio and ease of computation as much as possible, when performing the “D+F”, we set the average
rank value of the experts as 1

4 of expert dimension, which is 352.

Model Method Params ↓ ARC-c ARC-e BoolQ HellaSwag OBQA RTE WinoGrande Average
8x7B P+F 50% 50.43 78.79 82.42 59.12 32.00 70.40 74.03 63.88
8x7B D+F 51.35% 46.08 75.34 81.41 54.02 27.80 72.20 68.27 60.73
8×7B MoE-I2 51.79% 52.20 78.22 82.62 61.07 34.00 72.20 71.50 64.55
Qwen P+F 50% 41.89 69.15 75.20 53.97 30.20 64.98 62.43 56.83
Qwen D+F 57.81% 36.69 69.01 74.56 47.29 29.40 72.92 68.27 56.88
Qwen MoE-I2 53.98% 41.13 71.68 75.08 53.08 30.80 66.43 66.54 57.82

DeepSeek P+F 50% 39.51 70.16 68.17 53.37 26.40 64.98 63.14 55.11
DeepSeek D+F 57.81% 69.68 70.33 74.19 51.98 29.20 71.12 67.01 57.64
DeepSeek MoE-I2 53.98% 42.58 71.80 76.79 55.16 32.60 70.76 67.64 59.62

Figure 4: The left and right figures represent the loss convergence for each layer of Qwen1.5-MoE-A2.7B and
DeepSeek-V2-Lite during the Genetic Search process, respectively. As shown in the figures, after 50 iterations,
nearly all layers have converged.

Table 6: Zero-shot performance of average and perplex-
ity of comparison with “Inter-Expert Pruning”, Random,
and TopLoss.

Model Method Params↓ Average WikiText2↓ PTB↓
Qwen baseline 0% 60.25 7.06 13.51
Qwen Random 25% 55.34 9.38 16.73
Qwen TopLoss 25% 56.51 8.06 15.39
Qwen P 25% 57.16 8.01 15.17

DeepSeek baseline 0% 61.49 10.22 46.43
DeepSeek Random 25% 43.93 48.05 628.97
DeepSeek TopLoss 25% 57.00 11.34 67.67
DeepSeek P 25% 58.34 11.49 65.80

creasing the values of K and T can lead to overfit-
ting on the calibration dataset. Empirically, K = 3
and T = 3 can achieve the best performance.

Impact of Non-uniform Pruning Ratio. We can
observe in Figure 2 that the importance of differ-
ent layers in the DeepSeek-V2-Lite model varies
significantly. Table 7 demonstrates that this distinc-
tion in layer importance is effective. Compared to
the balanced pruning ratio used by Mixtral-8×7B
and Qwen1.5-MoE-A2.7B, the imbalance pruning
ratio applied to DeepSeek-V2-Lite results in better
model performance.

Impact of Different Ranks. Table 8 shows that
selecting an imbalanced rank approach yields better
performance for all experts within the same layer.
This phenomenon highlights the differences among
experts and indicates that different ranks should be

Figure 5: The impact of K and T on the perfor-
mance of models Mixtral-8×7B, Qwen1.5-MoE-A2.7B,
DeepSeek-V2-Lite.

assigned to different experts.

Impact of Experts Pruning, Layers, and Blocks
Pruning. Table 9 shows our expert pruning method
(Genetic Search) demonstrates significant advan-
tages over concurrent approaches, such as Layer
Pruning and Block Pruning (He et al., 2024).
Our Genetic Search can retain more performance
(1.32% vs. 3.19% performance drop) while main-
taining a higher pruning rate (23.95% vs. 15.51%
pruning ratio). Note that since (He et al., 2024)
presents normalized zero-shot accuracy results, we
have also normalized our results for fairness.
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Table 7: Zero-shot performance of experiment results produced by Inter-Expert Pruning of comparison with
Imbalance (Imba.) and Balance (Ba.) pruning ratio in DeepSeek-V2-Lite.

Model Method Params↓ ARC-c ARC-e BoolQ HellaSwag OBQA RTE WinoGrande Average
DeepSeek Ba. 25% 44.20 73.91 68.26 57.07 32.00 57.76 69.93 57.59
DeepSeek Imba. 25% 45.31 74.62 67.95 57.38 33.20 59.93 70.01 58.34
DeepSeek Ba. 50% 31.74 60.19 61.28 45.34 22.40 50.90 60.62 47.50
DeepSeek Imba. 50% 31.74 61.87 61.74 44.79 23.60 54.87 56.67 47.90

Table 8: Zero-shot performance of experiment results produced by Intra-Expert Decomposition of comparison with
Imbalance (Imba.) and Balance (Ba.) rank in same layer in three models.

Model Rank(avg) Type ARC-c ARC-e BoolQ HellaSwag OBQA RTE WinoGrande Average
8x7B 2048 Ba. 43.66 73.45 74.03 54.31 27.40 67.92 69.55 58.62
8x7B 2048 Imba. 43.94 73.95 74.56 55.91 27.80 68.23 69.85 59.18
8x7B 1550 Ba. 33.70 63.43 62.57 47.29 22.00 62.45 62.98 50.63
8x7B 1550 Imba. 34.59 63.67 62.59 47.68 22.00 63.05 63.15 50.96
Qwen 704 Ba. 40.19 72.94 77.95 54.50 30.40 68.95 69.06 59.14
Qwen 704 Imba. 40.44 73.40 77.74 54.54 31.60 68.95 69.30 59.43
Qwen 352 Ba. 35.92 67.55 73.64 44.09 26.40 70.04 67.17 54.97
Qwen 352 Imba. 36.26 67.89 73.15 44.34 27.20 72.20 66.69 55.39

DeepSeek 704 Ba. 43.60 76.94 77.77 53.98 30.40 62.82 69.22 59.25
DeepSeek 704 Imba. 44.11 77.19 78.50 54.20 30.40 63.54 69.30 59.61
DeepSeek 352 Ba. 33.45 65.11 63.05 39.07 25.20 61.75 64.88 50.35
DeepSeek 352 Imba. 34.04 65.95 63.76 39.53 25.80 60.29 65.19 50.65

Table 9: Performance of Pruning on Mixtral-8×7B between our Genetic Search and C-MoE (He et al., 2024). “P”
denotes ours Inter-Expert Pruning operation (Genetic Search). “E[n/m]” denotes dropping n out of m of experts per
MoE layer on average. “L[n/m]”, “B[n/m]” represents dropping n out of m corresponding modules with Layer
Drop and Block Drop respectively. These three methods are described in (He et al., 2024).

Model Method Mem(GB) ARC-c BoolQ HellaSwag OBQA RTE WinoGrande Average ∆↓
8×7B baseline(Ours/EEP) 87.7 59.81 84.92 83.97 47.00 71.12 76.32 70.52 -
8×7B P 66.7 56.66 83.46 81.72 46.40 71.12 75.85 69.02 ↓ 1.32
8×7B baseline (He et al., 2024) 87.7 59.4 84.2 84.00 46.80 70.40 75.60 70.07 -
8×7B E2/8 66.7 53.20 77.70 80.50 46.20 55.60 76.80 65.00 ↓ 5.07
8×7B L8/32 66.6 47.70 85.30 75.20 40.40 69.70 74.60 65.42 ↓ 4.65
8×7B B5/32 74.1 51.30 85.30 78.70 42.00 69.70 74.30 66.88 ↓ 3.19

5 Conclusion

In this paper, we explore the efficiency of current
large-scale MoE models and propose a general end-
to-end compression framework, MoE-I2, that ad-
dresses the issue of parameter redundancy in MoE
models. In our approach, we first conduct the layer
importance analysis and Inter-Expert Pruning for
different MoE models. Subsequently, we perform
the expert important analysis based on the pruned
model, ensuring appropriate target ranks of each
expert when performing the Intra-Expert Decom-
position. Our MoE-I2 framework significantly re-
duces the parameters of MoE models maintaining
high performance. In the future, we aim to sup-
port a wider variety of MoE models with larger
parameters, enhancing their deployability.

Limitations

Our proposed framework, MoE-I2, can perform
end-to-end compression on any MoE model and
adaptively find suitable pruning and decomposition
strategies for the target MoE model. By compress-

ing the model at multiple fine-grants, we ensure
optimal compression while maintaining model per-
formance, making it more suitable for deployment.
Despite these advantages, due to computational lim-
itations, we have not yet tested our framework on
larger MoE models such as Mixtral-8×22B (141B),
and DeepSeek-V2 (236B). We aim to gradually test
these larger MoE models in future work.

Ethics Statement

Our research focuses on developing an end-to-
end framework for the compression of Mixture-of-
Experts (MoE) large language models (LLMs). By
enhancing model compression techniques, we aim
to significantly reduce the model size and improve
inference efficiency, ensuring these improvements
do not come at the cost of performance. While
our work contributes to the advancement of de-
ploying sophisticated LLMs more effectively, we
recognize the ethical considerations inherent in this
field. These include the need to address potential
biases in the models, ensure the responsible and
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fair use of LLMs, and safeguard privacy. We are
committed to transparency by making our com-
pression framework publicly available. We urge
the community to apply our work ethically, with
careful attention to the broader societal impacts of
deploying compressed LLMs.
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