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Abstract

Conventional federated learning primarily aims
to secure the privacy of data distributed across
multiple edge devices, with the global model
dispatched to edge devices for parameter up-
dates during the learning process. However, the
development of large language models (LLMs)
requires substantial data and computational re-
sources, rendering them valuable intellectual
properties for their developers and owners. To
establish a mechanism that protects both data
and model privacy in a federated learning con-
text, we introduce a method that only requires
distributing a quantized version of the model’s
parameters during training. This method en-
ables accurate gradient estimations for param-
eter updates while preventing clients from ac-
cessing a model with performance compara-
ble to the centrally hosted one. Moreover, we
combine this quantization strategy with LoRA,
a popular and parameter-efficient fine-tuning
method, to significantly reduce communica-
tion costs in federated learning. The proposed
framework, named FEDLPP, successfully en-
sures both data and model privacy in feder-
ated learning. Additionally, the learned central
model exhibits good generalization and can be
trained in a resource-efficient manner.

1 Introduction

As large language models (LLMs) (Radford et al.,
2019; Brown et al., 2020; Zhang et al., 2022;
Chowdhery et al., 2023; Workshop et al., 2022;
Zeng et al., 2022; Achiam et al., 2023; Touvron
et al., 2023) continue to advance, their applications
are proliferating across various fields, including
healthcare (Ge et al., 2020), finance (Long et al.,
2020), and the mobile keyboard (Ji et al., 2019).
These applications often involve training LLMs on
data that is distributed across multiple clients or
edge devices, with stringent privacy constraints on
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this data. Federated Learning (FL) (Konecnỳ et al.,
2016; McMahan et al., 2017; Yang et al., 2019;
Kairouz et al., 2021) has emerged as a promising
paradigm in these scenarios, allowing models to be
trained on decentralized data without transferring
raw data.

In traditional FL, the main focus has been en-
suring data privacy. The central server sends the
global model to clients, who update the model pa-
rameters locally and then send the updates back
to the server. However, as LLMs become more
sophisticated and valuable, the models themselves
become critical intellectual property (IP) that also
requires protection. This necessity is especially
clear when LLMs are commercialized as paid ser-
vices, where unauthorized access to the models
could significantly undermine the interests of the
developers and owners.

There are two ways to maintain intellectual prop-
erty. One traditional method is to apply for a patent
to protect the unique design from being copied. An-
other method is through secrecy (such as a unique
recipe). In our scenario, where almost all gener-
ative language models currently use transformer
architecture(Vaswani et al., 2017), the network
weights are akin to a unique recipe. We protect
the intellectual property of the owner by safeguard-
ing the model privacy.

This new scenario in FL indicates that clients,
as custodians of private data, are restricted from
accessing the model on the server. Similarly, the
server, as the owner of the FL product, is not au-
thorized to collect data dispersed among different
clients. This raises the question: Is there a frame-
work that can simultaneously protect both data and
model privacy ?

Unfortunately, existing FL frameworks mainly
focus on data privacy, neglecting model privacy,
leaving the model’s intellectual property vulnera-
ble to potential breaches. Take FEDAVG, the most
widely used FL algorithm, as an example, clients
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Figure 1: Visualization of the proposed method. To prevent clients (or edge devices) from fully accessing a global
model, the central server broadcasts only the quantized version of the global LoRA’s parameters during each
communication round. The two bar charts visually demonstrate the quantization process, where eight distinct
parameter values are mapped into four categories (highlighted in red, green, purple and blue).

have access to the global model maintained by the
server, which the server intends to commercial-
ize. It will pose a significant risk to the global
model’s intellectual property and the interests of
this model’s owners. Hence, there is a crucial need
for mechanisms that ensure “LLM Privacy Pro-
tection”, which means preventing clients (or edge
devices) from obtaining a model that performs com-
parably to the final global model during the FL
process.

To the best of our knowledge, only one existing
study, FEDSP (Dong et al., 2023), has attempted to
address LLM privacy protection in FL. The FEDSP
approach involves constructing a proxy model at
the onset of the FL process, which clients down-
load from the server rather than the actual global
LLM, avoiding the need to share the global LLM.
However, FEDSP necessitates the server to have
access to a labeled dataset that is identically and
independently distributed (iid) to the clients’ data,
which is often impractical in real-world FL. There-
fore, we need an algorithm that does not rely on
such a dataset.

Recognizing these limitations, we introduce a
novel approach, FEDLPP (FL with LLM Privacy
Protection) , to address the dual challenges of pro-
tecting both data and model privacy, without requir-
ing any auxiliary dataset for the server. As shown in
Fig 1, our proposed framework leverages quantiza-
tion techniques and parameter-efficient fine-tuning
(PEFT) (Houlsby et al., 2019; Lester et al., 2021;
Li and Liang, 2021; Hu et al., 2021; Zaken et al.,
2021; Wu et al., 2024) strategies to ensure that

clients can access only a quantized version of the
model’s parameters. This prevents clients from ob-
taining a model that performs comparably to the
central one while still allowing accurate gradient
estimations for parameter updates. Additionally,
by combining this quantization strategy with LoRA
(Hu et al., 2021), we significantly reduce commu-
nication costs in FL.

In summary, our framework, FEDLPP, effec-
tively ensures data and model privacy in FL con-
texts. The learned central model exhibits strong
generalization capabilities and can be trained in
a resource-efficient manner, addressing the dual
privacy challenges in FL. Our contributions are as
follows:

• Privacy Protection for Both Models and
Data. The proposed algorithm enables effec-
tive learning without requiring model owners
to open-source their models or data owners to
share their data, achieves mutual confidential-
ity between the server and clients.

• Excellent Performance. Experiments on four
text generation datasets demonstrate the great
performance improvement of our method
compared to the baseline. Our approach
achieves model privacy protection without a
significant drop in performance.

• Low Communication and Computation De-
mands. Our method is also applicable in sce-
narios with limited computational and com-
munication resources, making it suitable for
real-world applications.
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• No Need for Auxiliary Datasets. Our ap-
proach eliminates the requirement for an aux-
iliary dataset to be provided to the server, mak-
ing it more practical for real-world applica-
tions where such datasets are often difficult to
obtain.

2 Related Work

2.1 Federated Learning

Federated learning (FL)(Konecnỳ et al., 2016;
McMahan et al., 2017; Yang et al., 2019; Kairouz
et al., 2021) is a distributed machine learning ap-
proach that enables model training across multiple
devices or clients while keeping data decentralized
and preserving privacy. FL has gained significant
attention for addressing privacy concerns in sensi-
tive data scenario. Research in FL has primarily
focused on challenges (Wen et al., 2023)such as pri-
vacy and security challenges(Bogdanov et al., 2008;
Geyer et al., 2017; Cai et al., 2020), communication
challenges(Shahid et al., 2021) and heterogeneity
challenges(Wang et al., 2020). Notable works in
FL include FEDAVG(McMahan et al., 2017), FED-
PROX(Li et al., 2020), and FEDGAN(Rasouli et al.,
2020), with FEDAVG(McMahan et al., 2017) being
a well-recognized algorithm.

2.2 LLMs-Privacy-Protection in Federated
Learning

The previously mentioned FEDSP(Dong et al.,
2023) is the only notable study that has attempted
to achieve LLM privacy protection in FL. FEDSP
involves the server constructing a proxy model that
is similar enough to the global model before feder-
ated learning starts, which is then deployed to the
clients. In each communication round of FEDSP,
the server broadcasts a soft prompt to the clients,
which can be inserted into either the global model
or the proxy model. Clients train this soft prompt
through prefix-tuning (Li and Liang, 2021) and
upload the updates of the soft prompt back to the
server, which then aggregates these updates for the
next iteration. Therefore, in FEDSP, clients only
have access to the proxy model, thereby protecting
the global model’s privacy.

However, due to significant differences between
the proxy model and the global model, the soft
prompts trained by clients may not align with the
global model. To address this, FEDSP uses distil-
lation techniques during proxy model construction
to ensure it resembles the global model closely.

Additionally, in each training round, the server fine-
tunes the aggregated soft prompt to align it with
the global model. Both steps require an auxiliary
dataset, which is often impractical in real-world FL
contexts.

2.3 Quantization for Federated Learning
Research on quantization techniques in FL has pre-
dominantly focused on reducing communication
bandwidth or computational overheads, without
addressing their potential application for LLM pri-
vacy protection. A milestone in this field, FED-
PAQ (Reisizadeh et al., 2020), introduces a FL
framework with quantization, where clients upload
quantized local updates to the server. In contrast,
we apply the quantization operation to the LoRA
parameters sent by the server to the clients.

2.4 Parameter-Efficient Fine-Tuning for
Federated Learning

Parameter-Efficient Fine-Tuning (PEFT)(Houlsby
et al., 2019; Lester et al., 2021; Li and Liang, 2021;
Hu et al., 2021; Zaken et al., 2021; Wu et al., 2024)
has gained significant attention in recent years, with
techniques such as Prefix Tuning (Li and Liang,
2021) and LoRA (Hu et al., 2021) demonstrating
effective strategies for reducing model parameters
while maintaining performance.

Leveraging these features, the PEFT methods
can reduce communication overhead and allevi-
ate the training burden on individual clients in
FL. In the field of Natural Language Processing
(NLP), FedPETuning (Zhang et al., 2023) provides
a benchmark for a comprehensive evaluation of
PEFT methods for LLMs under FL settings. Our
work also demonstrates how PEFT methods con-
tribute to LLM privacy protection.

3 Methods

3.1 Preliminary
In a cross-device scenario with N clients, where
client i owns a private dataset Di, the standard Fed-
erated Learning (FL) considers training the weight
matrix W by minimizing the loss (empirical risk):

min
W

L(W) =
N∑

i=1

|Di|
M

Li(W) (1)

where Li(·) is the local loss function on Di, ,M =∑N
i=1 |Di|, W ∈ Rd×k.
To reduce the communication overhead in the FL

course, we use Low-Rank Adaptation technology
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Dataset FL Scenario #Train #Validation #Test N C

E2E large-scale cross-device 42,061 4,672 46,93 25 5
E2E cross-silo 42,061 46,72 4,693 5 5
VIGGO cross-silo 5,103 714 1,083 5 5
DART large-scale cross-device 62,659 2,768 5,097 50 5
DIALOGSUM large-scale cross-device 12,460 500 1,500 20 5

Table 1: Statistics for different datasets. The symbol N denotes the total number of clients and C denotes the actual
number of clients participating in each communication round. Different values of C are used to simulate scenarios
like unresponsive clients or synchronization errors in real-world settings.

Method BLEU NIST METEOR ROUGE-L CIDEr Data
Privacy

Model
Privacy

FEDLPP
✓ ✓⌞ Global 34.60 6.06 31.43 51.32 1.70

⌞ Proxy 32.46 5.12 29.72 50.31 1.52

FEDSP 26.42 3.65 25.88 44.42 1.21 ✗ ✓
⌞(w/o Server Train) 0.14 0.20 2.91 8.57 0.00 ✓ ✓
⌞(w/o Client Train) 29.64 4.85 27.51 46.74 1.38 ✗ ✓

FEDAVG + LoRA 36.04 6.58 33.64 53.01 1.90 ✓ ✗

Table 2: Results of the proposed method compared to the baselines. For FEDLPP, we use bold formatting to
highlight the better one between Global model and Proxy model. Our proposed method FEDLPP achieves significant
improvement over the baseline method FEDSP, while simultaneously protecting both the model and the data.

to decompose W into a frozen pre-trained weight
matrix W0 ∈ Rd×k and trainable delta matrices
B ∈ Rd×r and A ∈ Rr×k, where r is the rank of
LoRA:

W = W0 + BA, (2)

Here, W0 is open-source and available online for
both the server and the clients, while B and A con-
tain task-specific parameters enriched with propri-
etary knowledge after the FL course. Therefore,
the privacy of B and A, which are the final prod-
uct of the FL course, is crucial for maintaining
their owners’ commercial interests. This means
the server should not directly share B and A with
clients, while still needing to collect updates of
these matrices from them to enable effective FL.

Xt+1 = Xt +
N∑

i=1

|Di|
M

∆Xt
i (3)

In Equation 3, X can represent either B or A,
depending on the context, and t ∈ {1, 2, ..., T}
denotes the t-th communication round of the FL
course, where T is the total number of communica-
tion rounds.

3.2 Computing Proxy LoRA Matrices by
Quantization

In traditional deep neural networks (DNNs), full-
precision model parameters are typically stored

in 32-bit floating-point format. To preserve the
privacy of the global LoRA matrices X ∈ Ra×b,
FEDLPP no longer sends the exact values of X
to the clients. Instead, the server computes low-
precision versions X = Q(X) as proxy LoRA ma-
trices which are available to clients. The specific
calculation process of Q(·) is as follows.

First, following QLORA(Dettmers et al., 2024),
after selecting the desired bit-width w , we choose
2(w−1) − 2 numbers from the interval (−1, 0) and
2(w−1) − 1 numbers from the interval (0, 1). we
then combine these numbers with −1, 0, and 1,
resulting in a total of 2w numbers. We refer to
these numbers as "standard numbers" and denote
them in sorted order as V = {v0, v1, ..., v2w−1},
where v0 = −1, v2(w−1)−1 = 0, and v2w−1 = 1.

Second, we combine consecutive floating-point
numbers in matrix X into blocks of size s, ensuring
the spatial continuity1 of X. For each block Xl, we
identify the floating-point number with the largest
absolute value, denoted as zl. Thus, the normalized
version of the l-th block Xl can be obtained as
follows:

X
′
l =

Xl

zl
(4)

Thus, the floating-point numbers in X
′
l fall

1Here, ’spatial continuity’ refers to the uninterrupted se-
quence of floating-points numbers in the flattened representa-
tion of matrix X.
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within the interval (−1, 1), which matches the
value range of the ’standard numbers.’ Conse-
quently, we can replace each floating-point number
in X

′
l with the closest ’standard number,’ resulting

in a new block of the same size, denoted as X̃
′
l .

This new block serves as an approximate version
of X

′
l .

Next, we define X̃l = zlX̃
′
l , which is also an

approximate version of X l because X l = zlX
′
l .

Finally, by arranging all ⌊abs ⌋ blocks X̃l in their
original order, we can reconstruct an approximate
version of the original matrix X as X̃.

It is important to note that the computed X̃ in-
curs some information loss compared to X. If we
broadcast X̃ as a proxy LoRA matrix to the clients
instead of X, the clients will not obtain a model
with performance comparable to that of the server’s
model. However, since 0 ∈ V , we can conclude
that the transformation from X to X̃ preserves the
signs of all floating-point numbers in X. As a
result, the proxy gradients computed by clients us-
ing these proxy LoRA matrix will provide a good
estimate of the true gradients. Therefore, our con-
structed proxy LoRA matrix has the potential to
achieve both data privacy protection and LLM pri-
vacy protection simultaneously.

3.3 Client-Side Local Fine-tuning

Upon receiving the trainable proxy LoRA matrix
X̃t

in the t-th round, the selected client i combines
it with the frozen backbone W0 to form a local
model. Subsequently, using Li and local private
data Di, the local model undergoes training to ob-
tain proxy update ∆X̃t

i, which is then sent back
to the server. The central server employs secure
aggregation algorithms(Bonawitz et al., 2016) to
compute Xt+1 for the next round. This process it-
erates continuously until the communication round
t reaches the upper limit T .

4 Experiments

To test if our algorithm maintains good FL perfor-
mance while preserving both model and data pri-
vacy, we conducted extensive experiments in this
section, including performance comparisons (see
Sec 4.4) . Additionally, we conducted an ablation
analysis of FEDLPP , including different FL sce-
narios (see Sec 4.6) , different quantization levels
(see Sec 4.5) and scaling (see Sec 4.6) .

4.1 Models, Datasets and Metrics

We conduct our experiments with two popular
language models, namely GPT2-XL and GPT2-
Medium (Radford et al., 2019), utilizing four
datasets: E2E (Novikova et al., 2017), VIGGO
(Juraska et al., 2019), DART (Nan et al., 2020),
and DIALOGSUM (Chen et al., 2021).

The E2E dataset comprises a collection of table-
to-text generation data for training end-to-end nat-
ural language generation systems in the restaurant
domain. The VIGGO dataset is also a table-to-
text generation dataset, but it is designed for gen-
eralizable and conversational dialogue act types.
DART is another open-domain table-to-text gener-
ation dataset, while DIALOGSUM is specifically
designed for dialogue summarization.

Referring to the original papers for these
datasets, we use five metrics to evaluate the quality
of the text generated by our model: BLEU (Pap-
ineni et al., 2002), NIST (Belz and Reiter, 2006),
METEOR (Banerjee and Lavie, 2005), ROUGE-L
(Lin, 2004), and CIDEr (Vedantam et al., 2015).
More details on how we use these four datasets in
the FL setting are shown in Table 1.

4.2 Baselines

We use the following four methods as baselines to
compare with our proposed FedLPP:

• FEDSP (Dong et al., 2023): This is the only
framework that focuses on addressing the is-
sue of LLM privacy protection in FL.

• FEDSP (w/o Server Train): A variant of
FedSP where the server cannot use a labeled
dataset for supervised fine-tuning in each com-
munication round. In this setting, FedSP
can still utilize the unlabeled dataset for the
knowledge distillation (KD) process to create
a proxy model at the start of its FL process.
This variant helps to verify whether the per-
formance of FEDSP derives from the labeled
information of the auxiliary dataset deployed
on the server.

• FEDSP (w/o Client Train): Another variant
of FedSP where clients do not participate in
the FL, meaning that the server only trains
the model on its labeled dataset. This variant
helps to verify how much of FEDSP’s perfor-
mance is attributed to the labeled information
of the auxiliary dataset deployed on the server.
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Method BLEU NIST METEOR ROUGE-L CIDEr Data
Privacy

Model
Privacy

FEDLPP (w = 1)
✓ ✓⌞ Global 51.81 6.66 0.33 60.30 1.29

⌞ Proxy 51.54 6.15 0.33 59.94 1.24

FEDLPP (w = 2)
✓ ✓⌞ Global 54.93 7.70 0.37 61.65 1.40

⌞ Proxy 52.05 6.23 0.35 60.75 1.22

FEDLPP (w = 3)
✓ ✗⌞ Global 54.62 7.71 0.41 62.33 1.45

⌞ Proxy 54.97 7.74 0.38 61.65 1.42

FEDAVG + LoRA 54.88 7.71 0.41 63.24 1.50 ✓ ✗

Table 3: Results obtained from the proposed method with varying quantization levels.With an appropriate quantiza-
tion level, specifically w=2, FEDLPP achieves both model and data protection while maintaining high performance

FL Scenario Method BLEU NIST METEOR ROUGE-L CIDEr Data
Privacy

Model
Privacy

Cross-Silo

FEDLPP
✓ ✓⌞ Global 54.75 7.68 0.41 62.66 1.47

⌞ Proxy 53.42 7.56 0.38 61.12 1.36

FEDAVG+LoRA 54.99 7.73 0.41 63.32 1.51 ✓ ✗

Large-Scale
Cross-Device

FEDLPP
✓ ✓⌞ Global 54.93 7.70 0.37 61.65 1.40

⌞ Proxy 52.05 6.23 0.35 60.75 1.22

FEDAVG+LoRA 54.88 7.71 0.41 63.24 1.50 ✓ ✗

Table 4: Results obtained from the proposed method in different FL scenarios. After transitioning from a Cross-Silo
to a Large-Scale Cross-Device FL scenario,the performance of FEDLPP has not been significantly affected, and it
continues to effectively protect the model.

• FEDAVG + LoRA: Uses the FEDAVG al-
gorithm to train LoRA adapters while keep-
ing the backbone frozen. This is also a vari-
ant of our method that doesn’t quantify the
LoRA matrices before broadcasting them to
the clients. Since this method does not con-
sider LLM privacy protection (i.e., clients can
have unrestricted access to the server’s LoRA
adapters), we only consider it a potential up-
per bound for comparison with the FEDLPP
algorithm. This variant has also been consid-
ered in FedPETuning (Zhang et al., 2023).

4.3 Implementation Details

For fair and reasonable comparisons, we con-
ducted hyperparameter searches for each dataset
and method. We selected the best model based on
the loss from the validation set and reported metrics
on the test set.

We primarily evaluated the performance of
FEDLPP under three quantization levels, namely
bit-width w ∈ {1, 2, 3}, with a consistent block
size of 256. As for FedSP, the prefix length was

chosen from {40, 80, 160}, and the number of lay-
ers in the proxy model was chosen from {1, 4, 8}.
For all methods, the learning rate was chosen from
{1e−4, 3e−4, 1e−3}, and the batch size was set to
16. The training epochs in each round were chosen
from {1, 3, 5}, and the total number of communi-
cation rounds was set to 100. We implemented the
proposed approach, FedLPP, and baseline methods
based on Hugging Face Transformers (Wolf et al.,
2020). All experiments were conducted on a single
server equipped with four NVIDIA GeForce RTX
3090 GPUs, each with 24 GB of RAM.

4.4 Performance Comparison

In Table 2, we present comparisons between our
method and the baselines. For all methods, we
select the best models among all communication
rounds as the final model for the FL course. For
our approach, we report both the best global model
on the server and the best proxy model available to
clients. We only consider FEDLPP to have effec-
tively protected the global model when the global
model outperforms the proxy model in all metrics.
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Model Method BLEU NIST METEOR ROUGE-L CIDEr Data
Privacy

Model
Privacy

GPT-2
Medium

FEDLPP
✓ ✓⌞ Global 54.93 7.70 0.37 61.65 1.40

⌞ Proxy 52.05 6.23 0.35 60.75 1.22

FEDAVG+LoRA 54.88 7.71 0.41 63.24 1.50 ✓ ✗

GPT-2
XL

FEDLPP
✓ ✓⌞ Global 54.81 7.76 0.39 61.34 1.41

⌞ Proxy 51.58 7.03 0.35 59.51 1.23

FEDAVG+LoRA 55.52 7.77 0.41 63.01 1.50 ✓ ✗

Llama-2
7B

FEDLPP
✓ ✓⌞ Global 55.80 7.37 0.42 63.92 1.55

⌞ Proxy 52.22 7.31 0.39 60.87 1.45

FEDAVG+LoRA 55.86 7.97 0.42 64.33 1.57 ✓ ✗

Table 5: Results obtained from the proposed method using models of varying sizes.

Table 2 shows the average performance across the
four datasets.

Based on Table 2, we can draw the following
conclusions from the table. Our method shows
significant improvements over FEDSP across four
datasets and maintains comparable performance
to FEDAVG+LoRA. As FEDAVG+LoRA can be
regarded as a variant of FEDLPP without model
protection, we can infer from the results that our
additional efforts to protect the model did not lead
to a significant decrease in performance.

Additionally, we compare the global model with
the proxy model in the FEDLPP algorithm. Ana-
lyzing the first two rows in Table 2, we find that
the global model on the server consistently out-
performs the proxy model across all five metrics,
ensuring that FEDLPP indeed achieves the goal
of protecting the commercial interests of the own-
ers of large models. As long as the best model is
not disclosed to any participating client, the model
owned by the server will consistently maintain an
advantage over each client, thereby protecting the
fundamental interests of the model owner.

It is noted that our method is compatible with se-
cure aggregation algorithms (Bonawitz et al., 2016),
and we do not need a labeled dataset on the server
which could compromise client data privacy, unlike
FEDSP. Therefore, our method offers client data
security comparable to FEDAVG in this regard.

However, the analysis of the baseline method,
FEDSP, and its two variants confirms that the per-
formance of FEDSP mainly arises from fine-tuning
on the server’s dataset. Without referencing the
aggregated information from clients, the FEDSP
server can train models with performance even bet-

ter than the original FEDSP, but when FEDSP no
longer fine-tunes on such a dataset on the server,
the algorithm cannot proceed. Thus, the signifi-
cance of this server dataset for FEDSP is clear.

4.5 Impact of Different Quantization Levels

In the FedLPP framework, there exists a trade-off
between LLM privacy protection and performance.
This trade-off depends on the level of quantization:
a higher level of quantization (a smaller w) results
in greater deviation of the proxy LoRA received
by the clients from the global LoRA, resulting in
increased protection but also a greater bias in the
computed proxy gradients, which impacts final per-
formance. In this study, we examine three different
quantization bit widths: {1, 2, 3}, and the results
are presented in Table 3. It is evident that choosing
a bit level of 2 achieves better performance while
ensuring LLM privacy protection.

If the quantization level is excessively low (w
is big), the information loss in the proxy model
received by the client will be insufficient to ensure
model privacy protection. As shown in the table,
when w = 3, the proxy model’s performance even
surpasses that of the global model in some metrics,
which implies that the server fails to guarantee the
model’s privacy. This conclusion is consistent with
the perspectives of (Jin et al., 2024) and (Marchisio
et al., 2024).

4.6 Impact of Different FL Scenarios and
Model Scaling

To evaluate the effectiveness of FEDLPP across dif-
ferent FL scenarios, we primarily considered two
FL scenarios: the cross-silo FL scenario (Kairouz
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et al., 2021) and the large-scale cross-device FL sce-
nario (Lai et al., 2022). In the cross-silo scenario,
the server selects all clients for training in each
communication round, while in large-scale cross-
device scenarios, the data held by local clients is
scarcer; additionally, not every client participates
in each learning round. This scenario more closely
reflects real-world FL situations where, due to com-
munication constraints or synchronization issues,
the server cannot always receive responses from ev-
ery client. Therefore, it is necessary to test whether
the FedLPP algorithm can operate effectively un-
der these more challenging conditions. In this ex-
periment, we used VIGGO to simulate cross-silo
FL scenarios, while DART and DIALOGSUM were
used to simulate large-scale cross-device FL scenar-
ios. Additionally, we used E2E to simultaneously
simulate both scenarios to facilitate a clear compar-
ison and investigate whether the effectiveness of
FEDLPP is influenced by the FL scenario factor.
The performance comparison of FEDLPP under
two different data splits is shown in Table 4.

Furthermore, we extended our model from
GPT2-Medium to larger models, including GPT2-
XL and Llama2-7B (Touvron et al., 2023). To de-
termine whether FedLPP can be effectively utilized
with larger models, the results on the E2E dataset
are shown in Table 5.

5 Conclusion

In this study, we presented FEDLPP, a novel fed-
erated learning framework designed to tackle the
dual challenges of data privacy and model confi-
dentiality. By integrating a quantization strategy
with LoRA, FEDLPP facilitates effective updates
to model parameters while significantly reducing
communication overhead. Our framework ensures
that each client participates in the learning pro-
cess without accessing a full-performance model,
thereby protecting the intellectual property rights
of model developers. The results demonstrate that
FEDLPP not only maintains robust privacy protec-
tions but also enables the creation of a generalized
model with lower resource consumption. More-
over, FEDLPP is especially well-suited for scenar-
ios where data privacy and intellectual property
rights are crucial, offering a practical solution in
the rapidly evolving landscape of federated learn-
ing.

Limitations

While FEDLPP introduces significant advance-
ments in FL, several limitations warrant further
investigation. First, the quantization process, al-
though effective in reducing the model size and pro-
tecting intellectual property, may introduce quan-
tization noise, potentially affecting the learning
accuracy and convergence rate. Future work could
explore adaptive quantization techniques to miti-
gate this issue. Secondly, the integration of LoRA
is primarily tested under controlled conditions; its
efficacy across diverse network architectures and
heterogeneous data distributions remains to be fully
evaluated. Addressing these limitations could en-
hance the applicability of FEDLPP across a broader
range of FL scenarios and contribute to its adoption
in industry-standard practices.

Reproducibility Statement

The authors have diligently worked to guarantee
the reproducibility of the empirical findings pre-
sented in this paper. To facilitate reproducibility,
the source code for the proposed method has been
submitted alongside the paper, and we intend to
make the source code publicly available on GitHub
upon acceptance.
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A Selection of V

Regarding the specific choice of V, please refer
to the appendix. The selection of V directly
determines the quality of quantization. Based on
QLoRA(Dettmers et al., 2024), it is observed that
the model parameters follow a normal distribution.
It is preferable for the standard numbers in V to
be densely distributed in the middle range close to
0, while sparsely distributed towards the ends of
the intervals at 1 and -1. This ensures a relatively
even distribution of model parameters allocated to
different standard numbers, leading to an optimal
estimation of the original parameter matrix under
the constraint of limited standard numbers. Specifi-
cally, when w=2, the selection of V in the FedLPP
algorithm is [−1.00, 0.00, 0.33, 1.00], and V =
[−1.00,−0.47,−0.21, 0.00, 0.16, 0.33, 0.56, 1.00]
for w = 3, In particular, when w = 1, we choose
V as [−1.00, 0.00, 1.00].

B Generalizability to other types of tasks

In addition to conducting experiments on the gen-
eration task, we also performed experiments on
datasets from other task types to validate the effec-
tiveness of our approach. Specifically, we con-
ducted experiments using the GPT-2 (Medium)
model on the SST-2 and RTE (Wang, 2018)
datasets. The hyperparameter settings and experi-
mental results are shown in Table 6 and Table 7

C Future Work

Building upon the foundational success of
FEDLPP, several avenues for future research are
evident to further refine and expand the capabili-
ties of our FL framework. One immediate area of
exploration involves the optimization of the quanti-
zation strategy to balance model performance with
privacy preservation more effectively. Advanced
techniques such as dynamic quantization or mixed-
precision training could be employed to enhance
model accuracy without compromising privacy.

Additionally, expanding the compatibility of
FEDLPP with various neural network architec-
tures, including more complex models like GANs
or transformers, could significantly broaden its ap-
plicability. Investigating the framework’s effective-
ness in these contexts will help in addressing the
diverse needs of practical applications in different
sectors such as healthcare, finance, and telecommu-
nications.

Another promising direction is the exploration
of hybrid approaches that combine FEDLPP with
other privacy-preserving techniques such as dif-
ferential privacy or secure multi-party computa-
tion. Such combinations could offer layered secu-
rity features, thereby providing stronger guarantees
against potential privacy breaches.

Further, the development of resource manage-
ment strategies to efficiently handle the computa-
tional and communication overheads in FEDLPP
would be crucial, especially for deployment in edge
computing scenarios. Optimizing these aspects will
ensure that the benefits of FL can be realized even
in resource-constrained environments.

Lastly, conducting large-scale empirical studies
to validate the framework’s efficacy across differ-
ent real-world datasets and environments would
provide deeper insights into its practical implica-
tions and limitations. This would not only solidify
the theoretical advancements made but also guide
the practical implementations of FL systems.
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RTE SST-2

N 5 5
C 5 5
BATCH-SIZE 64 64
LR 1e-3,1e-4,3e-4 1e-3,1e-4,3e-4
LORA RANK 1,2,4,8 1,2,4,8
BIT-WIDTH 1,2,3 1,2,3
COMMUNICATION ROUND 100 100
LOCAL EPOCH 1 1

Table 6: Hyperparameter settings of different datasets.

Method RTE SST-2

FEDLPP
⌞ Global 75.64 96.53
⌞ Proxy 72.56 95.30

FEDAVG + LoRA 76.53 96.90

Table 7: Experimental results of different methods on the RTE and SST-2 datasets.
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