
Findings of the Association for Computational Linguistics: EACL 2024, pages 10528–10548
November 12-16, 2024 ©2024 Association for Computational Linguistics

Fine-tuning Smaller Language Models for Question Answering over
Financial Documents

Karmvir Singh Phogat, Sai Akhil Puranam, Sridhar Dasaratha,
Chetan Harsha, Shashishekar Ramakrishna

EY Global Delivery Services India LLP
{Karmvir.Phogat,Sai.Puranam,Sridhar.Dasaratha}@gds.ey.com,

{Chetan.Harsha,Shashishekar.R}@gds.ey.com

Abstract
Recent research has shown that smaller lan-
guage models can acquire substantial reasoning
abilities when fine-tuned with reasoning exem-
plars crafted by a significantly larger teacher
model. We explore this paradigm for the fi-
nancial domain, focusing on the challenge of
answering questions that require multi-hop nu-
merical reasoning over financial texts. We as-
sess the performance of several smaller models
that have been fine-tuned to generate programs
that encode the required financial reasoning
and calculations. Our findings demonstrate that
these fine-tuned smaller models approach the
performance of the teacher model.

To provide a granular analysis of model perfor-
mance, we propose an approach to investigate
the specific student model capabilities that are
enhanced by fine-tuning. Our empirical analy-
sis indicates that fine-tuning refines the student
models ability to express and apply the required
financial concepts along with adapting the en-
tity extraction for the specific data format. In
addition, we hypothesize and demonstrate that
comparable financial reasoning capability can
be induced using relatively smaller datasets.

1 Introduction

In recent years, the development of large language
models (LLMs) has achieved significant advances
in natural language processing (NLP). Scaling up
the size of these models has not only improved sam-
pling efficiency and performance, (Kaplan et al.,
2020) but also introduced reasoning capabilities
(Wei et al., 2022b; Kojima et al., 2022). LLMs
have been shown to perform well on tasks requir-
ing reasoning capabilities in various domains, in-
cluding code writing (Chen et al., 2021a), math
problem solving (Lewkowycz et al., 2022; Polu
et al., 2023), dialogue (Glaese et al., 2022; Thoppi-
lan et al., 2022), common sense reasoning (Shwartz
et al., 2020; Chowdhery et al., 2022) and symbolic
reasoning (Wei et al., 2022a; Wang et al., 2023b).

A major drawback of these methods is their re-
liance on extremely large models with hundreds
of billions of parameters. These models can be
costly to deploy at scale due to high computational
requirements and inference costs. To overcome
these limitations, recent research has focused on
inducing reasoning in smaller models. A common
approach is to use large models to generate training
samples with demonstrations of reasoning on one
or more tasks that are then used to fine tune smaller
models (Magister et al., 2023; Ho et al., 2023).
While these methods have shown promising results
on various tasks including arithmetic, symbolic and
common-sense reasoning, the applicability, and ef-
fectiveness of these methods in specific domains
such as finance need further exploration. Question
answering in the finance domain poses a unique
set of challenges, requiring the understanding of
financial concepts along with the ability to perform
numerical reasoning. This complexity introduces a
significant challenge that is distinct from classical
question answering problems (Yang et al., 2018;
Rajpurkar et al., 2018)

In this paper, we present an empirical study that
provides experimental evidence supporting the ef-
fectiveness of fine-tuning small language models
for financial question answering. Our research is
guided by several critical questions:

RQ1: To what degree does fine-tuning small
language models improve their performance on
financial question answering tasks?

RQ2: What are the intrinsic characteristics of
the base language model that contribute to its per-
formance prior to fine-tuning?

RQ3: Which aspects of question answering ben-
efit directly from the pre-trained knowledge, and
what specific improvements are enabled by fine-
tuning?

RQ4: What are the fine-tuning data requirements
to achieve these improvements?

To address these questions, we adapt previous ap-

10528

proaches on inducing reasoning in smaller models
for the financial question answering task. In our ex-
perimental setup, we employ GPT-4 as the teacher
model, building upon its documented success in
the realm of financial question answering (Chen
et al., 2023; Phogat et al., 2023). For the student
models, we explore a suite of state-of-the-art, yet
relatively smaller, language models including PHI-
3 variants (3.5B and 14B parameters) (Abdin et al.,
2024), MISTRAL 7B, and ORCA-2 configurations
(7B and 13B parameters) (Mitra et al., 2023). Our
methodology involves training the student model
using Python programs generated by the teacher
model. The teacher generated code systematically
delineates the steps for financial reasoning, includ-
ing question comprehension, formula identification
and entity extraction. At inference time, the lan-
guage models are tasked with producing Python
code, which is then executed by an external inter-
preter. This code generation and external execution
strategy has been demonstrated to be more effec-
tive than methods that rely on the language model
to internally perform the calculations. (Gao et al.,
2023; Chen et al., 2023; Phogat et al., 2023).

Our main contributions are summarized as fol-
lows:

1. We refine the process of fine-tuning smaller lan-
guage models by introducing an approach de-
signed for question answering over financial re-
ports.

2. Our experimental study on three financial
datasets provides insights on the performance of
the small models

3. We propose an evaluation method that utilizes
GPT-4 to assess the Python code outputs from
the student models, pre- and post-fine-tuning.
Combining GPT-4’s automated assessment with
manual evaluation yields new insights into the
distinct competencies that are enhanced in the
student model during fine-tuning.

4. Motivated by these insights we explore the use
of smaller datasets for fine-tuning and provide
empirical evidence demonstrating their effec-
tiveness.

Our experimental findings reveal that smaller
language models fine-tuned for financial reason-
ing, can achieve performance that rivals that of
the larger teacher model. Moreover, our empirical
analysis suggests that the fine-tuning helps refine

concept understanding and enables consistent rea-
soning with those concepts. In addition, the entity
extraction abilities get honed on the specific format
of the financial dataset.

2 Background

Pre-trained large language models are shown to
perform well on tasks requiring reasoning when
used with certain techniques. (Wei et al., 2022b)
proposed prompting the LLMs to solve the problem
step-by-step by providing a few exemplars. (Chen
et al., 2023) proposed a few-shot prompt to pro-
duce a program which is then executed externally.
However, methods relying on pre-trained LLMs
can be costly to deploy at scale.

Recent efforts attempt to replicate these reason-
ing capabilities in small language models. One
of the common approaches is following a teacher-
student setup where a pre-trained LLM acts as a
teacher, generating training data which is used
to teach a small language model, the student.
(Mukherjee et al., 2023; Mitra et al., 2023) aim
to train models to exhibit generic reasoning abil-
ities. They utilize GPT-3.5 TURBO and GPT-4
as teacher models to generate training data with
carefully crafted prompts. On the other hand, (Fu
et al., 2023; Magister et al., 2023; Ho et al., 2023)
train task specific small language models with CoT
based explanation from pre-trained LLMs. Specifi-
cally for problems involving mathematical reason-
ing, (Wang et al., 2023a; Gou et al., 2023; Tosh-
niwal et al., 2024; Wang et al., 2023c) propose
to generate programs from the pre-trained LLMs
and train the small language models. In contrast,
we focus on fine-tuning small language models
for financial question answering problems (Chen
et al., 2021b, 2022; Zhu et al., 2021). Solving these
problems requires financial domain knowledge and
complex reasoning compared to the math word
problems addressed in previous studies.

Prior works have studied the use of pre-trained
LLMs for financial question answering. (Srivas-
tava et al., 2024) perform a detailed comparison
of the performance of pre-trained LLMs on finan-
cial datasets with various prompting techniques.
They also introduce a novel prompting technique
optimized for semi-structured documents. (Phogat
et al., 2023) developed zero-shot prompt templates
for question answering over financial documents
that guide the LLMs to encode reasoning into a
python program. These efforts do not consider fine-

10529

tuning to specialize language models for the finan-
cial domain. (Theuma and Shareghi, 2024) explore
task-wise integration of external tools, calculator
and SQL engine, with fine-tuned small language
models for tabular data analysis in finance. How-
ever, their approach utilizes predetermined prompt
templates for data generation rather than a teacher-
student approach for fine-tuning. In our approach,
we generate structured python programs using pre-
trained LLMs and train small language models with
supervised fine-tuning. Furthermore, we examine
in detail the nature of the alignment achieved by the
fine-tuning for the financial question answering, an
area that is largely unexplored in previous research.

3 Fine-tuning for Financial Question
Answering

We adopt the approach of using very large-scale
models as reasoning teachers, and fine-tuning rela-
tively small-scale student models from the prompt-
completion pairs generated using the teacher model
(Hsieh et al., 2023; Ho et al., 2023). Specifically,
the large model is used to generate python code
with comments that encapsulates the reasoning re-
quired to answer the financial question. Further-
more, the programs are generated with a specific
structure that facilitates subsequent performance
analysis of the fine-tuned model, as discussed in
detail in Sec. 5. The fine-tuning task is performed
in three steps as shown in Figure 1.

3.1 Code Generation

In the code generation step, we employ the teacher
model to generate a Python code for a specified
question-answering task. Financial question an-
swering consists of three distinct steps: understand-
ing the concept and writing the formula required to
answer the question, finding the relevant entities,
and then executing and storing the calculations. A
sample of the desired code structure encapsulat-
ing this reasoning process is show in in Figure 2.
We guide the teacher model to consistently gener-
ate the desired code structure through program of
thought (PoT) prompting (Chen et al., 2023). In
few-shot PoT prompting, as shown in Figure 1, few
shot exemplars are prefixed as demonstrations for
the teacher model to generate codes in the desired
format.

In the financial question answering training
dataset, each sample contains the final answer to
the question and additionally it may contain a pro-

gram which demonstrate step-wise arithmetic cal-
culations that are required to be performed to arrive
at the answer. We incorporate these programs as
answer hints in the few-shot PoT prompt to guide
the teacher model towards accurate code gener-
ation. This strategy can potentially improve the
question-answering accuracy of the teacher model.

3.2 Data Curation

During data curation, we filter out the samples with
incorrect teacher codes and format the filtered sam-
ples to prompt-completion pairs for the student
model. At the filtering stage, the samples with in-
correct teacher-generated codes are identified by
executing the codes and comparing the resulting
answer with the ground truth answer. The filtered
samples are then formatted to prompt-completion
pairs as per student model requirements. For in-
stance, the prompt instructions for the MISTRAL

7B (instruction tuned) model should begin with the
token [INST] and ends with the token [/INST]. In
addition, special characters like ‘#’ can be used to
symbolize the prompt structure.

3.3 Fine-tuning

The fine-tuning task for question answering is rep-
resented by the prompt-completion pairs: D =
{xi, yi}Ni=1 where xi is a token sequence for the
fine-tuning prompt and yi is a token sequence for
the corresponding code completion, as shown in
Figure 1. We use low rank adaptation (LoRA) (Hu
et al., 2022), a special class of parameter efficient
fine-tuning that takes advantage of the low “intrin-
sic dimension” of pre-trained LLMs, when adapt-
ing to a specific task (Aghajanyan et al., 2021).
The student model’s LoRA adapter is fine-tuned to
adapt to the financial question answering task.

4 Experiments

4.1 Experimental Design

Datasets: We conduct our experiments on three
English language financial question answering
datasets FinQA (Chen et al., 2021b), ConvFinQA
(Chen et al., 2022) and TATQA (Zhu et al., 2021).
The question answering task, in FinQA and TATQA
datasets, is to answer the questions using the pas-
sage containing text and table content. The ex-
periments for TATQA are restricted to questions
of arithmetic type. In ConvFinQA, the task is to
answer the last question from a conversation con-
taining a series of interrelated questions, based on

10530

Few shots . . .
Read the following passage and then write Python code to an-
swer the question:
Passage: The firm gains $ 210 millions . . .
year | credit spread (in millions)
2010 | $ 35
2009 | $ 39
Question: Find average credit spread (in millions) from 2009 to
2010?
Answer Hint: Strictly perform the following calculations to
arrive at the answer:: SUM(35, 39), DIVIDE(#1, 2)
#Python

Prompt (Few-shot PoT)

Passage: The firm gains $ 210 millions . . .
year | credit spread (in millions)
2010 | $ 35
2009 | $ 39
Question: Find average credit spread (in millions) from 2009 to
2010?
Program: SUM(35, 39), DIVIDE(#1, 2)
Answer: 37

Demo Sample

Read the following passage and then write Python code to an-
swer the question:
###Passage: The firm gains $ 210 millions . . .
year | credit spread (in millions)
2010 | $ 35
2009 | $ 39
###Question: Find average credit spread (in millions) from
2009 to 2010?
###Python

Fine-tuning Prompt

#Calculate: avg_crdt_spr = (crdt_spr_2010 + crdt_spr_2009) / 2
crdt_spr_2009 = 39
crdt_spr_2010 = 35
avg_crdt_spr = (crdt_spr_2010 + crdt_spr_2009) / 2
ans = avg_crdt_spr
###EndPython

Completions (Python code)

#Calculate: avg_crdt_spr = (crdt_spr_2010 + crdt_spr_2009) / 2
crdt_spr_2009 = 39
crdt_spr_2010 = 35
avg_crdt_spr = (crdt_spr_2010 + crdt_spr_2009) / 2
ans = avg_crdt_spr

Generated Python code

Small Student Model

Teacher Model (GPT-4)

Step 1: Code GenerationQuestion Answering Dataset

Step 3: Fine-tuning

Step 2: Data Curation

Figure 1: Fine-tuning for financial question answering.

#Calculate: avg_crdt_spr = (crdt_spr_2010 + crdt_spr_2009) / 2
crdt_spr_2009 = 39
crdt_spr_2010 = 35
avg_crdt_spr = (crdt_spr_2010 + crdt_spr_2009) / 2
ans = avg_crdt_spr

Concept Extracted Entities Remaining Code

Figure 2: GPT-4 generated sample Python code

a given text and table content. The table content is
represented in a textual format using the strategy
adopted in (Chen, 2022).

Fine-tuning: In our experiments, for the teacher
model we use the GPT-4 model provided by Azure
OpenAI1. For student models, we consider the fol-
lowing open source family of models: PHI-3, MIS-
TRAL and ORCA-2. We provide further details on
the models in Table 7 in the Appendix. In the code
generation step, we use GPT-4 as a teacher, and
prompt it with 4-shot exemplars for all datasets.
These exemplars are derived from few-shot PoT
prompts as discussed in (Chen et al., 2023). The
few-shot teacher’s prompt for FinQA, ConvFinQA

1https://oai.azure.com/

and TATQA dataset is given in Figure 18, Figure
19 and Figure 20 in the Appendix E respectively.
In each of the datasets, an expression encoding the
required calculations, is provided for each training
sample. We include the expression as a hint in the
prompt for the GPT-4 model. In the data curation
step, any data that contains incorrect GPT-4 code
is eliminated. The filtered data is then converted
into prompt-completion pairs to meet the require-
ments of the student model. Finally, during the
fine-tuning stage, the student model is trained us-
ing these prompt-completion pairs. For fine-tuning
the student models, we use LoRA (Hu et al., 2022)
method of HuggingFace PEFT library2 that back-
propagates gradients to low rank adapters.

In our fine-tuning experiments, the datasets are
divided into train, dev, and test splits. The FinQA
dataset includes predefined splits with their ground
truths. As the test splits for ConvFinQA and
TATQA datasets don’t include ground truths, we
use the predefined dev splits of these datasets as
the test splits. The dev splits for ConvFinQA and

2https://huggingface.co/docs/peft/en/index

10531

TATQA are created by randomly picking 10% sam-
ples of their predefined train splits and the remain-
ing samples are used for the training. The datasets
with their splits are summarized in Table 1. The

Dataset Train Dev Test
FinQA 6251 883 1147
ConvFinQA 2737 300 421
TATQA† 4992 550 718
† Only arithmetic questions are considered.

Table 1: Datasets for fine-tuning

train and dev splits are used for the student model’s
fine-tuning and validation respectively. We select
the model and the hyperparameters3 that give the
highest performance on the dev split, and report the
fine-tuned model’s performance on the test split.
We employ the vLLM4 framework for conducting
inference on fine-tuned models. The experiments
are performed on a compute instance with 24 cores,
220GB RAM and a A100 GPU (80GB).

Evaluation Metrics: The fine-tuned LLMs are
trained to generate Python codes that are executed
using the Python exec function to determine the
resulting answer. The resulting answer is then com-
pared against the ground truth, using the method
described in (Phogat et al., 2023).

Baselines: We evaluate the base version of
the student models using zero-shot and few-shot
prompting.

Zero-shot prompting: We performed prompt en-
gineering experiments for synthesizing the zero-
shot prompt that directs the LLMs to generate
Python code to answer the question. For the FinQA
dataset, the optimized zero-shot prompt for the
PHI-3, ORCA-2 and MISTRAL models is given in
Figure 3 in the Appendix.

Few-shot prompting: The few-shot prompt in-
cludes a few example demonstrations for LLMs to
learn in-context. For the FinQA dataset, the few-
shot prompt for PHI-3, ORCA-2 and MISTRAL

models is given in Figure 4 in the Appendix.

4.2 Fine-tuning Results

The performance of the fine-tuned LLMs is re-
ported in Table 2. For comparison, we report the
performance of zero-shot and few-shot prompts us-
ing GPT-3.5 TURBO and GPT-4. These results

3The set of explored and optimal hyperparameters are pro-
vided in Table 6 in the Appendix A.

4https://github.com/vllm-project/vllm

are taken from (Phogat et al., 2023). The zero-
shot prompt methods are defined as ZS-FinPYT
(GPT-3.5 TURBO) and ZS-FinPYT (GPT-4) while
the few-shot methods are defined as Few-shot PoT
(GPT-3.5 TURBO) and Few-shot PoT (GPT-4).
In the results discussed below, the comparison
of the fine-tuned models is done against the best-
performing prompting method for a given dataset
and GPT model. For conciseness we refer to only
the model’s name instead of the full method.

FinQA dataset: The zero-shot and few-shot per-
formance of the models is highly varying with some
models having low zero-shot accuracy while other
achieve excellent zero shot performance, with one
of the models surpassing GPT-3.5 TURBO. For
some models, the few-shot results show significant
improvement as compared to their zero-shot per-
formance while for others the few-shot prompting
results in a lower accuracy. The fine-tuned models
show large improvements over their respective zero-
shot and few-shot results. Despite major differ-
ences in performance of the base models, the fine-
tuned versions achieve a similar accuracy within
a 6% range. The results thus demonstrate that the
proposed fine-tuning approach was effective across
models with a wide range of performance for the
base models. For fine-tuned models, the model size
has a small effect with the larger ORCA-2 model
being 2% more accurate than the smaller one while
PHI-3-MEDIUM has 4% higher accuracy as com-
pared to PHI-3-MINI. All the fine-tuned models
outperform GPT-3.5 TURBO by 4%-10%, with the
PHI-3-MEDIUM achieving an accuracy within 1%
of the GPT-4. Overall, the results indicate that
relatively small language models can be fine-tuned
to be competitive with much larger models, for the
financial question answering task.

ConvFinQA dataset: The results broadly fol-
low a similar pattern to the results of FinQA
but there are some differences. The differences
between the fine-tuned models are slightly pro-
nounced as compared to the FinQA dataset. The
models are within 10% of each other with the ef-
fect of model size being more significant. For both
ORCA-2 and PHI-3, the larger models achieve ∼5%
higher accuracy than their respective smaller vari-
ants.

TATQA dataset: The results for TATQA closely
mirror those observed for the FinQA dataset with
all the models achieving excellent performance,
their accuracies falling within a 5% range. The
fine-tuned PHI-3-MEDIUM model excels for this

10532

dataset, marginally surpassing GPT-4. Model size
has minimal effect for ORCA-2 while for PHI-3
a small effect is observed, with PHI-3-MEDIUM

achieving 3% higher accuracy than PHI-3-MINI.

5 Performance Analysis

We examine the evolution of model capabilities dur-
ing fine-tuning, seeking to identify specific model
enhancements. To this end, we define, and measure
three key capabilities (1) concept understanding
measured by the ability to correctly identify the
required calculation (2) entity extraction measured
by the ability to extract all required entities and
(3) generation of executable code. Our method re-
lies on comparing the output of the student models
with that of the teacher generated codes. There-
fore, we remove all samples with incorrect teacher
generated codes from further analysis.

5.1 Concept accuracy

Due to significant model output variation, it is hard
to define a simple metric to measure concept ac-
curacy. Motivated by the promising results shown
by others (Zheng et al., 2023) in using LLM for
evaluation in challenging scenarios, we propose
the use of GPT-4 to rate the concept understanding
demonstrated in the model output, using a 5-point
scale defined as follows: 1: no understanding 2:
limited understanding 3: partial understanding 4:
mostly demonstrates understanding 5: perfect un-
derstanding. After some prompt engineering using
25 random student code samples, we found this
method to provide reasonable assessment of con-
cept accuracy. The key instructions needed were
to guide the evaluator to focus on the presence of
relevant entities, and not their values or the out-
put format. The final prompt which includes the
instructions, the output of the student model, the
gold code and the question are shown in Figure 6
in the Appendix.

We define the concept accuracy as the percent-
age of cases where the student model output re-
ceives a rating of 5. For all models, we measure
the concept accuracy for the base model as well
as checkpoint after one epoch (see Figure 8–12 in
the Appendix for rating distributions). The concept
accuracy shown in Table 3, indicates the ORCA-2
family models have significantly lower concept ac-
curacy initially as compared to other models. How-
ever, the fine-tuning leads to substantial improve-
ments in these models, leading to a small gap in

concept accuracy as compared to other models post
fine-tuning. To better understand these results, we
manually examined fifty random sample outputs
from each of the base models, that were assessed
as lacking concept accuracy. We then examined
the output of the models for the same samples after
one epoch. While the analysis was performed on
all models, in the following sections we present
the detailed analysis of PHI-3-MINI and ORCA-2-
7B models (See Appendix D for many illustrative
examples). The analysis of the remaining models
reveals similar patterns.

PHI-3-MINI concept accuracy: For the base
PHI-3-MINI model, the overall concept accuracy
was around 70% with about 16% samples receiv-
ing a rating of 1 or 2 by GPT-4. The PHI-3-MINI

model responses don’t follow a standard structure
while answering the question. In a significant
number of samples with low concept rating, the
base model’s response does not provide the formu-
las/arithmetic steps that are required to answer the
question, thus failing to demonstrate concept under-
standing. About 7% of the samples received a rat-
ing of 4, with many of these responses containing
minor arithmetic errors, providing formulas with
closely related but not correct entities, and other
small issues. Most of the base model responses
with missing formulas are corrected by training the
model for one epoch. Approximately 80% of cases,
initially rated 4, are also corrected after one epoch.
Several cases where the formula was properly but
incorrectly written by the base model remained
incorrect even after 1 epoch.

ORCA-2-7B concept accuracy: The initial
ORCA-2 model provides a long explanation of the
required reasoning, often failing to produce exe-
cutable code. Sometimes the formulae are written
descriptively without use of mathematical repre-
sentations. In a significant number of cases, the
model includes the input passage leading to an in-
complete output that does not contain the required
formula. As a result, 43% of the samples received
a rating of 1 or 2 and the model has a low concept
accuracy of 28%. Occasionally, the long explana-
tions do provide the correct formula which is not
identified by the GPT-4. These results are likely
due to the ORCA-2 being a model that is special-
ized to solve reasoning problems using elaborate
reasoning traces and not being explicitly trained in
generating code that encodes the reasoning. Hence
the ORCA-2 model tends to produce output that is
significantly different from that expected for the

10533

Methods MSTL-7B⋆ ORCA-7B⋆ ORCA-13B⋆ PHI-3.8B⋆ PHI-14B⋆ GPT-3.5T GPT-4
FinQA Accuracy
zero-shot 41.58 2.78 37.49 57.62 70.35 66.52 77.51
few-shot† 50.82 15.34 4.36 42.45 66.95 67.39 78.46
fine-tuned 76.63 71.57 73.75 73.49 77.59 - -
ConvFinQA Accuracy
zero-shot 31.82 2.61 28.03 48.21 59.38 67.45 76.95
few-shot† 18.52 10.68 11.88 41.33 60.09 65.79 82.42
fine-tuned 76.48 70.30 75.77 76.00 81.94 - -
TATQA Accuracy
zero-shot 66.01 4.59 44.29 78.27 85.37 85.00 93.00
few-shot† 66.85 26.88 17.83 59.33 76.32 74.75 91.89
fine-tuned 88.71 88.57 88.86 90.94 93.03 - -
⋆ MSTL-7B, ORCA-{x}B, PHI-3.8B, PHI-14B and GPT-3.5T represent MISTRAL 7B, ORCA-2-{x}B, PHI-3-MINI,

PHI-3-MEDIUM, and GPT-3.5 TURBO respectively.
† Few-shot PoT prompting is used with 4-shots selected from the few-shots used in (Chen et al., 2023).

Table 2: Accuracy of the fine-tuned models on financial datasets.

Fine-tuned Models Concept Entity Extraction Executable Code
Base model Epoch-1 Base model Epoch-1 Base model Epoch-1

MISTRAL 7B 53.09 84.18 66.99 90.72 56.73 99.54
ORCA-2-7B 27.94 76.89 57.54 90.71 10.87 91.95
ORCA-2-13B 46.48 79.6 71.78 92.69 29.67 91.95
PHI-3-MINI 69.22 82.94 82.81 90.23 94.33 96.82
PHI-3-MEDIUM 79.23 84.55 65.26 90.48 98.18 96.94

Table 3: Evaluation of concept, entity extraction and executable code accuracy by GPT-4 for the FinQA dataset

specific problem formulation considered in this
study.

Upon fine-tuning, the model quickly learns to
produce executable code with the formula written
out in the desired format, while suppressing un-
necessary output. We observe that the model does
correct some of the formula mistakes that it made
initially. Similar to PHI-3-MINI, we observed that
many cases (12% of the samples) initially had a
4 rating, triggered by minor errors. A vast major-
ity of these cases get corrected during fine-tuning.
These improvements are reflected in the fine-tuned
ORCA-2 model achieving a significantly improved
concept accuracy of 77% after one epoch.

5.2 Entity extraction

To measure the entity extraction capability of the
student models, we incorporate the first line of the
teacher model’s code into the fine-tuning prompt
and perform inference on the fine-tuned model to
complete the Python code. Since the provided
line is a comment with the formula required to

answer the question, the main task is to extract
the required entities. We then use GPT-4 with
the prompt shown in Figure 7 in the Appendix, to
assess the student code and determine if all the
required entities have been correctly extracted.

The results shown in Table 3 indicate significant
improvement in entity extraction capability of all
the student models during the fine- tuning, with all
of them showing similar accuracy after fine-tuning.
The results suggest that the fine-tuning helps the
base model adapt to the specific table structures
and data format present in the financial dataset,
improving the entity extraction performance and
contributing to overall model accuracy.

5.3 Code generation

As the required code for this problem is simple, we
only use the ability to generate executable code as
a measure of accuracy. The results are shown in
Table 3. As compared to other models, the base
PHI-3 models have very high percentage of cases
where they generate executable code. After epoch

10534

Fine-tuned Models
Training dataset (samples from train split)

FinQA:5698 FinQA:1500
FinQA:1000

ConvFinQA:2550
ConvFinQA: 500

FinQA accuracy
MISTRAL 7B 76.63 70.35 68.78 64.95
ORCA-2-7B 71.57 63.56 67.13 55.01
ORCA-2-13B 73.75 70.53 70.09 65.13
PHI-3-MINI 73.49 69.83 71.14 68.87
PHI-3-MEDIUM 77.59 74.71 75.06 74.80
ConvFinQA accuracy
MISTRAL 7B 36.34 33.01 72.20 76.48
ORCA-2-7B 41.09 32.3 69.12 70.30
ORCA-2-13B 36.82 41.81 72.92 75.77
PHI-3-MINI 44.89 49.40 72.20 76.00
PHI-3-MEDIUM 53.44 51.54 79.57 81.94

Table 4: Effect of training data size on fine-tuning: FinQA and ConvFinQA datasets.

Fine-tuned Models
Training dataset (samples from train split)

FinQA:5698 FinQA:1500
FinQA:1000

TATQA:4878
TATQA: 500

FinQA accuracy
MISTRAL 7B 76.63 70.35 70.01 56.06
ORCA-2-7B 71.57 63.56 67.48 57.11
ORCA-2-13B 73.75 70.53 68.70 63.55
PHI-3-MINI 73.49 69.83 70.70 63.81
PHI-3-MEDIUM 77.59 74.71 72.44 70.96
TATQA accuracy
MISTRAL 7B 84.26 78.41 83.98 88.71
ORCA-2-7B 79.38 72.56 80.64 88.57
ORCA-2-13B 80.78 79.94 85.93 88.86
PHI-3-MINI 81.19 74.51 86.07 90.94
PHI-3-MEDIUM 88.30 85.79 88.16 93.03

Table 5: Effect of training data size on fine-tuning: FinQA and TATQA datasets.

1, all models have more than 90% success rate
of producing executable code, indicating that the
models initially lacking the ability to generate the
required code, have significantly improved.

Overall, the detailed assessment revealed two
main reasons that leads to improved model perfor-
mance post fine-tuning: (1) Training with a stan-
dard reasoning chain induces the models to express
and apply the required concept and (2) Adapting to
the specific data format improves the entity extrac-
tion performance.

5.4 Effect of training data size

Given the observed effects of fine-tuning, it natu-
rally leads us to inquire whether a smaller dataset

might be adequate for achieving similar enhance-
ments. Another related and interesting question is
the volume of data necessary to adapt the FinQA
model for proficiency with ConvFinQA, which,
while originating from the same domain as FinQA,
introduces the additional complexity of processing
conversational-style questions.

We perform fine-tuning experiments with the fol-
lowing settings to understand the data requirements
(a) 1500 data points randomly sampled from the
original FinQA dataset and (b) 1000 samples ran-
domly sampled from the FinQA dataset combined
with 500 samples randomly sampled from Con-
vFinQA dataset. The models fine-tuned on these
datasets is compared with the corresponding mod-

10535

els trained on the entire FinQA and ConvFinQA
training datasets, respectively. Evaluation on the
test data of both datasets is shown in Table 4.

The model trained on 1500 data points from
FinQA is within 3%-8% of the model trained with
the entire data, suggesting that effective fine-tuning
can be achieved with a significantly smaller dataset.
The models trained on the entire FinQA dataset per-
form poorly when directly used on the ConvFinQA
test data. However, when the models are trained
with a smaller dataset consisting of 1000 FinQA
samples and 500 samples from ConvFinQA data,
there is improvement of more than 25% across mod-
els, with all models achieving an accuracy within
5% of the model trained with the entire ConvFinQA
training data. These findings suggest that the finan-
cial concept understanding along with fine-tuning
provides most of the key learning that can address
ConvFinQA questions as well. However, the model
needs a small sample from the ConvFinQA dataset
to adapt to the conversational style of questions
used in that dataset.

We perform a similar experiment to examine
the performance of models trained on FinQA on
TATQA dataset. Unlike the ConvFinQA data which
is derived from the FinQA dataset, the TATQA is
an independent financial question answering data
set. The results of the evaluation are shown in Ta-
ble 5. The models trained on the complete FinQA
train data set perform reasonably on the TATQA
test data as compared to the corresponding models
trained on the full TATQA training data. The MIS-
TRAL 7B and the PHI-3-MEDIUM are within 5%
of the accuracy achieved by the model trained on
TATQA data. Some of the models trained on the
1500 FinQA data points show significant and vary-
ing decline in performance as compared to those
trained on the entire FinQA data set. However,
when trained on a combination of 1000 FinQA
data points and 500 TATQA data points, all mod-
els show excellent performance achieving accuracy
within 8% of the model trained on the full TATQA
data set. These results demonstrate the potential
to efficiently adapt a financial question answering
model to a different financial data set.

6 Conclusion

We explored the performance of small language
models fine-tuned for financial question answering,
using exemplars generated by a very large teacher
model. The small models achieved accuracy com-

parable to that of the teacher model, driven primar-
ily by improved ability to apply financial concepts
as well as entity extraction. We showed that smaller
datasets can yield similar results, suggesting that
small language models can be efficiently fine-tuned
for complex financial domain problems.

Limitations

The use of GPT-4 to assess concept understand-
ing using the base and fine-tuned student models’
output, can sometimes produce erroneous determi-
nations of concept error. While we instruct GPT-4
to not assess based on the output format, we found
that elaborate responses could sometimes lead to
a false assessment. Despite this limitation, the
method is still effective in achieving our primary
goal of understanding the effect of fine-tuning for
financial question answering.

While we perform hyperparameter optimization
for fine-tuning the student models, the small differ-
ences between the performance of the fine-tuned
models could be simply due the hyperparameters
not being fully optimal. Since we focus more on
the improvements achieved in the fine-tuned model
over their corresponding base model, this doesn’t
have a major impact on the findings reported in the
paper.

Our experiments are limited to only on the sin-
gle task of financial question answering. The per-
formance and behaviour of the small models in a
multi-task setup needs to be explored in the future.

While we demonstrate that small language mod-
els can achieve performance approaching that of
much larger models, they also inherit some of the
associated risks. For cases where the reasoning
was incorrect, the current system will provide an
explanation with a high level of confidence, which
can be misleading. Our models currently do not
address or control for such behavior and we have
not studied the nature or extent of this problem. In
practice, this can pose challenges for practical use
in real world systems. Future research to under-
stand this potential risk in more detail and provide
indications of when the model is not sure of its
response would be valuable.

Disclaimer

The views reflected in this article are the views of
the authors and do not necessarily reflect the views
of the global EY organization or its member firms.

10536

References
Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan,

Jyoti Aneja, Ahmed Awadallah, Hany Awadalla,
Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harki-
rat Behl, et al. 2024. Phi-3 Technical Report: A
Highly Capable Language Model Locally on Your
Phone. arXiv preprint arXiv:2404.14219.

Armen Aghajanyan, Sonal Gupta, and Luke Zettle-
moyer. 2021. Intrinsic Dimensionality Explains the
Effectiveness of Language Model Fine-Tuning. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 7319–
7328.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde, Jared Kaplan, Harrison Edwards,
Yura Burda, et al. 2021a. Evaluating Large Lan-
guage Models Trained on Code. arXiv preprint
arXiv:2107.03374.

Wenhu Chen. 2022. Large Language Models are
few (1)-shot Table Reasoners. arXiv preprint
arXiv:2210.06710.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W. Cohen. 2023. Program of Thoughts
Prompting: Disentangling Computation from Rea-
soning for Numerical Reasoning Tasks. Transactions
on Machine Learning Research.

Zhiyu Chen, Wenhu Chen, Charese Smiley, Sameena
Shah, Iana Borova, Dylan Langdon, Reema Moussa,
Matt Beane, Ting Hao Huang, Bryan Routledge, et al.
2021b. FINQA: A Dataset of Numerical Reason-
ing over Financial Data. In 2021 Conference on
Empirical Methods in Natural Language Process-
ing, EMNLP 2021, pages 3697–3711. Association
for Computational Linguistics (ACL).

Zhiyu Chen, Shiyang Li, Charese Smiley, Zhiqiang Ma,
Sameena Shah, and William Yang Wang. 2022. Con-
vFinQA: Exploring the Chain of Numerical Reason-
ing in Conversational Finance Question Answering.
In Proceedings of the 2022 Conference on Empiri-
cal Methods in Natural Language Processing, pages
6279–6292.

Aakanksha Chowdhery, Sharan Narang, Jacob De-
vlin, Maarten Bosma, Gaurav Mishra, et al. 2022.
PaLM: Scaling Language Modeling with Pathways.
arxiv:2204.02311.

Yao Fu, Hao Peng, Litu Ou, Ashish Sabharwal, and
Tushar Khot. 2023. Specializing Smaller Language
Models towards Multi-Step Reasoning. In Proceed-
ings of the 40th International Conference on Machine
Learning, volume 202 of Proceedings of Machine
Learning Research, pages 10421–10430. PMLR.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2023. PAL: Program-aided Language

Models. In Proceedings of the 40th International
Conference on Machine Learning, volume 202 of
Proceedings of Machine Learning Research, pages
10764–10799. PMLR.

Amelia Glaese, Nat McAleese, Maja Trębacz, John
Aslanides, Vlad Firoiu, Timo Ewalds, Maribeth Rauh,
Laura Weidinger, Martin Chadwick, Phoebe Thacker,
et al. 2022. Improving alignment of dialogue agents
via targeted human judgements. arXiv preprint
arXiv:2209.14375.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yujiu Yang,
Minlie Huang, Nan Duan, Weizhu Chen, et al.
2023. ToRA: A Tool-Integrated Reasoning Agent
for Mathematical Problem Solving. arXiv preprint
arXiv:2309.17452.

Namgyu Ho, Laura Schmid, and Se-Young Yun. 2023.
Large Language Models Are Reasoning Teachers.
In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics, volume 1,
pages 14852–14882.

Cheng-Yu Hsieh, Chun-Liang Li, Chih-Kuan Yeh,
Hootan Nakhost, Yasuhisa Fujii, Alexander Rat-
ner, Ranjay Krishna, Chen-Yu Lee, and Tomas Pfis-
ter. 2023. Distilling Step-by-Step! Outperform-
ing Larger Language Models with Less Training
Data and Smaller Model Sizes. arXiv preprint
arXiv:2305.02301.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. 2022. LoRA: Low-Rank Adaptation of Large
Language Models. In International Conference on
Learning Representations.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling Laws for Neural Language Models. arXiv
preprint arXiv:2001.08361.

Takeshi Kojima, Shixiang (Shane) Gu, Machel Reid,
Yutaka Matsuo, and Yusuke Iwasawa. 2022. Large
Language Models are Zero-Shot Reasoners. In Ad-
vances in Neural Information Processing Systems,
volume 35, pages 22199–22213. Curran Associates,
Inc.

Aitor Lewkowycz, Anders Andreassen, David Dohan,
Ethan Dyer, et al. 2022. Solving Quantitative Reason-
ing Problems with Language Models. In Advances in
Neural Information Processing Systems, volume 35,
pages 3843–3857. Curran Associates, Inc.

Lucie Charlotte Magister, Jonathan Mallinson, Jakub
Adamek, Eric Malmi, and Aliaksei Severyn. 2023.
Teaching small language models to reason. In Pro-
ceedings of the 61st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers), pages 1773–1781, Toronto, Canada. Associ-
ation for Computational Linguistics.

10537

https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9

Arindam Mitra, Luciano Del Corro, Shweti Mahajan,
Andres Codas, Clarisse Simoes, Sahaj Agarwal, Xuxi
Chen, Anastasia Razdaibiedina, Erik Jones, Kriti
Aggarwal, et al. 2023. Orca 2: Teaching Small
Language Models How to Reason. arXiv preprint
arXiv:2311.11045.

Subhabrata Mukherjee, Arindam Mitra, Ganesh Jawa-
har, Sahaj Agarwal, Hamid Palangi, and Ahmed
Awadallah. 2023. Orca: Progressive Learning from
Complex Explanation Traces of GPT-4. arXiv
preprint arXiv:2306.02707.

Karmvir Singh Phogat, Chetan Harsha, Sridhar
Dasaratha, Shashishekar Ramakrishna, and Sai Akhil
Puranam. 2023. Zero-Shot Question Answering over
Financial Documents using Large Language Models.
arXiv preprint arXiv:2311.14722.

Stanislas Polu, Jesse Michael Han, Kunhao Zheng, Man-
tas Baksys, Igor Babuschkin, and Ilya Sutskever.
2023. Formal Mathematics Statement Curriculum
Learning. In The Eleventh International Conference
on Learning Representations 2023. OpenReview.net.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know What You Don’t Know: Unanswerable Ques-
tions for SQuAD. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 784–789.

Vered Shwartz, Peter West, Ronan Le Bras, Chandra
Bhagavatula, and Yejin Choi. 2020. Unsupervised
Commonsense Question Answering with Self-Talk.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 4615–4629.

Pragya Srivastava, Manuj Malik, and Tanuja Ganu.
2024. Assessing LLMs’ Mathematical Reasoning
in Financial Document Question Answering. arXiv
preprint arXiv:2402.11194.

Adrian Theuma and Ehsan Shareghi. 2024. Equip-
ping Language Models with Tool Use Capability for
Tabular Data Analysis in Finance. arXiv preprint
arXiv:2401.15328.

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam
Shazeer, Apoorv Kulshreshtha, Heng-Tze Cheng,
Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al.
2022. LaMDA: Language Models for Dialog Appli-
cations. arXiv preprint arXiv:2201.08239.

Shubham Toshniwal, Ivan Moshkov, Sean Narenthi-
ran, Daria Gitman, Fei Jia, and Igor Gitman. 2024.
OpenMathInstruct-1: A 1.8 Million Math Instruction
Tuning Dataset. arXiv preprint arXiv:2402.10176.

Ke Wang, Houxing Ren, Aojun Zhou, Zimu Lu, Sichun
Luo, Weikang Shi, Renrui Zhang, Linqi Song,
Mingjie Zhan, and Hongsheng Li. 2023a. Math-
Coder: Seamless Code Integration in LLMs for En-
hanced Mathematical Reasoning. arXiv preprint
arXiv:2310.03731.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, and Denny Zhou. 2023b. Self-Consistency
Improves Chain of Thought Reasoning in Language
Models. In The Eleventh International Conference
on Learning Representations 2023. OpenReview.net.

Yue Wang, Hung Le, Akhilesh Deepak Gotmare,
Nghi DQ Bui, Junnan Li, and Steven CH Hoi. 2023c.
CodeT5+: Open Code Large Language Models for
Code Understanding and Generation. arXiv preprint
arXiv:2305.07922.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, et al.
2022a. Emergent Abilities of Large Language Mod-
els. Transactions on Machine Learning Research.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le, and
Denny Zhou. 2022b. Chain-of-Thought Prompting
Elicits Reasoning in Large Language Models. In
Advances in Neural Information Processing Systems,
volume 35, pages 24824–24837. Curran Associates,
Inc.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,
William Cohen, Ruslan Salakhutdinov, and Christo-
pher D Manning. 2018. HotpotQA: A Dataset for
Diverse, Explainable Multi-hop Question Answering.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2369–2380.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023. Judging
LLM-as-a-Judge with MT-Bench and Chatbot Arena.
arXiv preprint arXiv:2306.05685.

Fengbin Zhu, Wenqiang Lei, Youcheng Huang, Chao
Wang, Shuo Zhang, Jiancheng Lv, Fuli Feng, and Tat-
Seng Chua. 2021. TAT-QA: A Question Answering
Benchmark on a Hybrid of Tabular and Textual Con-
tent in Finance. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 3277–3287.

A Fine-tuning: Experimental Details

The student models are fine-tuned using LoRA
module of HuggingFace’s PEFT library. We ex-
perimented with learning rates of 2.5e−5, 5e−5,
1e−4 and LoRA r parameters 64, 256, 512, 1024
for all the models. The optimal hyperparameters
used for fine-tuning are outlined in Table 6 and are
categorized into three parts:

1. LoRA parameters, which comprise of LoRA
config parameters of the HuggingFace’s PEFT

10538

LoRA parameters
LoRA_r 512
LoRA_α 1024
LoRA_dropout 0.1
LoRA_bias none
PEFT task_type CAUSAL_LM
target_modules all linear
Training parameters
epoch 6
batch size 1
gradient accum steps 1
learning rate (MISTRAL) 2.5e−5

learning rate (ORCA-2) 5e−5

learning rate (PHI-3) 1e−4

bf16 True
Inference parameters (vLLM)
temperature 0
top_p 0.9
max_tokens 1000

Table 6: Hyperparameters used for fine-tuning

library5.

2. Training parameters include config settings of
SFTTrainer of the HuggingFace’s TRL library6.

3. Inference parameters are associated with the
vLLM7 settings needed for the inference of fine-
tuned models.

The additional details on the student models in-
cluding license and terms of use is provided in
Table 7. We use the ORCA-2 models in a manner
consistent with their intended use:

As described in the website: https://www.mi
crosoft.com/en-us/research/publication
/orca-2-teaching-small-language-model
s-how-to-reason/, ORCA-2 models were de-
signed for research settings and should be used
only for research purposes, and its testing has only
been carried out in such environments. It should
not be used in downstream applications.

We further fine-tune ORCA-2 and use it only
for research purposes, and will not use it for any
commercial purposes.

B Fine-tuning and Baseline Prompts

The zero-shot, few-shot and fine-tuning prompts
for all datasets are given in Figure 3, Figure 4 and

5https://github.com/huggingface/peft
6https://huggingface.co/docs/trl/v0.7.2/en/sft_trainer
7https://github.com/vllm-project/vllm

Figure 5 respectively. We use the chat template that
comes with the model’s tokenizer for formatting
prompt and completion into model specific formats.
The formatted prompts and completions are then
used during supervised fine-tuning of models and
their evaluations.

C GPT-4 for Student Model Assessment

We use GPT-4 to quantify the LLMs conceptual
understanding and entity extraction capabilities. In
performing this analysis, GPT-4 is prompted to
identify if the student code’s concept or extracted
entities are correct or not. The zero-shot prompt
for evaluating these capabilities is given in Figure
6 and Figure 7.

D Examples

We illustrate with examples how the student models
PHI-3-MINI and ORCA-2-7B improve in various
areas through training. These examples display the
student models’ responses at the base checkpoint,
i.e., checkpoint-0, and after training for epoch 1,
i.e., checkpoint-6000. The example shown in Fig-
ure 13 demonstrates that the code generation ca-
pabilities of the ORCA-2-7B model improve sig-
nificantly after training for epoch 1. The example
provided in Figure 14 illustrates that the ORCA-2-
7B model’s entity extraction capabilities improve
with training.

In some instances, the base PHI-3-MINI model
fails to generate a structured response and misses
concept generation, as shown in Figure 15. How-
ever, this is corrected by training the model for an
epoch. The example in Figure 16 demonstrates a
case where the entity names are not descriptive at
the base checkpoint, but this improves with model
training. In general, the improvement in complex
concepts does not occur with training the model
for an epoch, and this observation is true for the
PHI-3-MINI model as well, as seen in Figure 17.

E Few-shots for datasets: FinQA,
ConvFinQA and TATQA

We use few-shot prompting for code generation by
the teacher model (GPT-4). For all datasets, we
use 4-shots in our experiments and these 4-shots for
FinQA, ConvFinQA and TATQA datasets are listed
in Figure 18, Figure 19 and Figure 20 respectively.

10539

https://www.microsoft.com/en-us/research/publication/orca-2-teaching-small-language-models-how-to-reason/
https://www.microsoft.com/en-us/research/publication/orca-2-teaching-small-language-models-how-to-reason/
https://www.microsoft.com/en-us/research/publication/orca-2-teaching-small-language-models-how-to-reason/
https://www.microsoft.com/en-us/research/publication/orca-2-teaching-small-language-models-how-to-reason/

Model Name Parameters HuggingFace API License
MISTRAL 7B 7B mistralai/Mistral-7B-Instruct-v0.2 apache-2.0
ORCA-2-7B 7B microsoft/Orca-2-7b msr-lic⋆

ORCA-2-13B 13B microsoft/Orca-2-13b msr-lic⋆

PHI-3-MINI 3.8B microsoft/Phi-3-mini-128k-instruct mit
PHI-3-MEDIUM 14B microsoft/Phi-3-medium-128k-instruct mit
⋆ msr-lic stands for microsoft-research-license

Table 7: Description of student LLMs used for fine-tuning

Read the following passage and then write Python code to an-
swer the question:
###Passage: text + table
###Question: ask question?
###Instructions: First, identify entities required to answer the
question. Extract the identified entities and store in python vari-
ables. Then perform calculations with the entities and strictly
store the answer to the python variable "ans". Python code must
end after the variable "ans" is defined. Comments must begin
with character "#".
###Python

Zero-shot prompt: FinQA and TATQA

Read the following text and table, and then answer the last
question by writing a python code:
###Passage: text + table
###Questions: A series of questions of a conversation?
###Last Question: Last question of the conversation?
###Instructions: First, identify entities required to answer the
question. Extract the identified entities and store in python vari-
ables. Then perform calculations with the entities and strictly
store the answer to the python variable "ans". Python code must
end after the variable "ans" is defined. Comments must begin
with character "#".
###Python

Zero-shot prompt: ConvFinQA

Figure 3: Zero-shot prompts.

Few-shots
Read the following passage and then write a python code to
answer the question:
###Passage: text + table
###Question: ask question?
###Python

Few-shot prompt: FinQA and TATQA

Few-shots
Read the following text and table, and then answer the last
question by writing a python code:
###Passage: text + table
###Questions: A series of questions of a conversation?
###Last Question: Last question of the conversation?
###Python

Few-shot prompt: ConvFinQA

Figure 4: Few-shot prompts.

Read the following passage and then write a python code to
answer the question:
###Passage: text + table
###Question: ask question?
###Instructions: The final answer must be stored in the Python
variable "ans" and comments must begin with character "#".
###Python

GPT-4 code
###EndPython

Fine-tuning prompt-completion pairs: FinQA and TATQA

Read the following text and table, and then answer the last
question by writing a Python code:
###Passage: text + table
###Questions: A series of questions of a conversation?
###Last Question: Last question of the conversation?
###Instructions: The final answer must be stored in the Python
variable "ans" and comments must begin with character "#".
###Python

GPT-4 code
###EndPython

Fine-tuning prompt-completion pairs: ConvFinQA

Figure 5: Fine-tuning prompt-completion pairs.

10540

You are an AI assistant. You will be given the definition of an
evaluation metric for assessing the financial concept understand-
ing demonstrated by the provided student code. The assessment
is based on the provided question and the gold code that pro-
vides the true concept. Please note that the student code can be
in a very different format and the format difference should be
ignored. Please ignore the values of the required entities in your
assessment. Entity extraction is a different skill that is not rele-
vant to assess concept understanding. Your job is to compute an
accurate evaluation score using the provided evaluation metric.
Make sure to explain your answer.
Concept understanding measures how well the student model
code demonstrates an understanding of the financial concept
illustrated by the gold code. Consider whether the student code
is trying to compute the required entity and is it talking about
entities relevant to the required computation. Given the student
code, the gold code and the question, score the concept under-
standing demonstrated by the student code between one to five
stars using the following rating scale:
One star: the student code demonstrates no understanding of
the concept to be calculated
Two stars: the student code demonstrates limited understand-
ing of the required concept
Three stars: the student code demonstrates partial understand-
ing of the required concept
Four stars: the student code mostly demonstrates the under-
standing of the concept illustrated by the gold code but there are
minor issues
Five stars: the student code demonstrates perfect understand-
ing of the concept illustrated by the gold code.
This rating value should always be an integer between 1 and
5. So the rating produced should be 1 or 2 or 3 or 4 or 5. The
result should strictly be written in the following format: {’Ex-
planation’: [Think step by step and explain the reason in detail
for the rating. Step 1: Analyse the gold code, Step 2: Analyse
the student code, Step 3: Evaluate the student code by compar-
ing with the gold code. Step 4: Provide the final rating with a
detailed justification.], ’Star rating’: [int]}"
Question: question?
Gold code: Teacher’s generated code
Student generated code: Student’s generated code

Concept evaluation prompt

Figure 6: Zero-shot prompt for concept assessment us-
ing GPT-4.

Based on the question and the gold answer, determine if the
student has correctly extracted all the relevant entities. Strictly
ensure that the entity values are exactly matching.
Question: question?
Gold code: Teacher’s generated code
Student generated code: Student’s generated code

Entity extraction evaluation prompt

Figure 7: Zero-shot prompt for entity extraction assess-
ment using GPT-4.

Base model Fine-tuned model (epoch-1)
0

20

40

60

80

100

28.6

6.6
15

6.1
16.2

6.3
12.3

4.1

28

77

Pe
rc

en
ta

ge

rating-1 rating-2 rating-3 rating-4 rating-5

Figure 8: Concept rating for ORCA-2-7B by GPT-4.

Base model Fine-tuned model (epoch-1)
0

20

40

60

80

100

7.7 4.2
14.9

4.6
15

5.4
16

6.1

46.5

79.7

Pe
rc

en
ta

ge

rating-1 rating-2 rating-3 rating-4 rating-5

Figure 9: Concept rating for ORCA-2-13B by GPT-4.

Base model Fine-tuned model (epoch-1)
0

20

40

60

80

100

6.4 2.8
12.1

4
13.7

5.4
14.7

3.6

53

84.2

Pe
rc

en
ta

ge

rating-1 rating-2 rating-3 rating-4 rating-5

Figure 10: Concept rating for MISTRAL 7B by GPT-4.

Base model Fine-tuned model (epoch-1)
0

20

40

60

80

100

7.2 3.7
9.1 5.26.8 5.37.7

2.8

69.2

82.9

Pe
rc

en
ta

ge

rating-1 rating-2 rating-3 rating-4 rating-5

Figure 11: Concept rating for PHI-3-MINI by GPT-4.

Base model Fine-tuned model (epoch-1)
0

20

40

60

80

100

4.7 26.6 3.66.2 4.83.3 5.1

79.2
84.5

Pe
rc

en
ta

ge

rating-1 rating-2 rating-3 rating-4 rating-5

Figure 12: Concept rating for PHI-3-MEDIUM by GPT-
4.

10541

IP/2005/page_19.pdf-1

Passage: item 7 . management 2019s discussion and analysis of financial condition and results of operations executive summary international
paper 2019s operating results in 2005 were strongly impacted by significantly higher costs for energy . . .
in millions | 2005 | 2004 | 2003
industry segment operating profits | $ 1923 | $ 2040 | $ 1734
corporate items | -597 (597) | -469 (469) | -466 (466)
corporate special items* | -147 (147) | -142 (142) | -281 (281)
interest expense net | -593 (593) | -710 (710) | -705 (705)
accounting changes | 2013 | 2013 | -13 (13)
net earnings (loss) | $ 1100 | $ -35 (35) | $ 302
Question: what was the change in industry segment operating profits between 2004 and 2005?

Gold Program: subtract(1923, 2040)
Gold Answer: -117.0

ORCA-2-7B Checkpoint-0 Code:
To answer the question, we need to find the industry segment operating profits for both 2004 and 2005 and then calculate the change between
the two years.
First, let’s find the industry segment operating profits for 2004 and 2005:
2004:
Industry segment operating profits = $2040 million
2005:
Industry segment operating profits = $1923 million
Now, let’s calculate the change in industry segment operating profits between 2004 and 2005:
Change = Industry segment operating profits in 2005 - Industry segment operating profits in 2004
Change = $1923 million - $2040 million
Change = -$117 million
So, the change in industry segment operating profits between 2004 and 2005 was -$117 million.
Final answer: -$117 million
ORCA-2-7B Checkpoint-0 Executed Answer: Null

ORCA-2-7B Checkpoint-6000 Code:
Calculate: change_in_industry_segment_operating_profits = industry_segment_operating_profits_2005 - indus-
try_segment_operating_profits_2004
industry_segment_operating_profits_2004 = 2040
industry_segment_operating_profits_2005 = 1923
change_in_industry_segment_operating_profits = industry_segment_operating_profits_2005 - industry_segment_operating_profits_2004
ans = change_in_industry_segment_operating_profits
###Final Answer: change_in_industry_segment_operating_profits = 117
ORCA-2-7B Checkpoint-6000 Executed Answer: -117.0

Figure 13: An example illustrating the code generation capabilities of the fine-tuned ORCA-2-7B model.

10542

IP/2005/page_35.pdf-4

Passage: contractual obligations for future payments under existing debt and lease commitments and purchase obli- gations at december 31 ,
2005 , were as follows : in millions 2006 2007 2008 2009 2010 thereafter . (a) the 2006 amount includes $ 2.4 billion for contracts made in
the ordinary course of business to purchase pulpwood , logs and wood chips . the majority of our other purchase
in millions | 2006 | 2007 | 2008 | 2009 | 2010 | thereafter
total debt | $ 1181 | $ 570 | $ 308 | $ 2330 | $ 1534 | $ 6281
lease obligations | 172 | 144 | 119 | 76 | 63 | 138
purchase obligations (a) | 3264 | 393 | 280 | 240 | 204 | 1238
total | $ 4617 | $ 1107 | $ 707 | $ 2646 | $ 1801 | $ 7657
Question: what was the percent of the total contractual obligations for future payments for total debt in 2005?

Gold Program: divide(1181, 4617)
Gold Answer:0.25579

ORCA-2-7B Checkpoint-0 Code:
To answer the question, we need to find the total contractual obligations for future payments for total debt in 2005 and then calculate the
percentage of that amount.
From the passage, we can see that the total debt in 2005 was $1181 million.
Now, let’s calculate the percentage:
Percentage = (Total debt in 2005 / Total contractual obligations for future payments for total debt in 2005) * 100
Percentage = ($1181 million / Total contractual obligations for future payments for total debt in 2005) * 100
Percentage = ($1181 / ?) * 100
We don’t have the total contractual obligations for future payments for total debt in 2005, so we cannot calculate the percentage.
ORCA-2-7B Checkpoint-0 Executed Answer: Null

ORCA-2-7B Checkpoint-6000 Code:
Calculate: percent_of_total_contractual_obligations_for_future_payments_for_total_debt_2005 = (total_debt_2005 / to-
tal_contractual_obligations_2005) * 100
total_debt_2005 = 1181
total_contractual_obligations_2005 = 4617
percent_of_total_contractual_obligations_for_future_payments_for_total_debt_2005 = (total_debt_2005 / total_contractual_obligations_2005) *
100
ans = percent_of_total_contractual_obligations_for_future_payments_for_total_debt_2005
###Final Answer: 23.6%
ORCA-2-7B Checkpoint-6000 Executed Answer: 25.57938

Figure 14: An example illustrating enhanced entity extraction capability with training ORCA-2-7B model.

IP/2007/page_31.pdf-4

Passage: tissue pulp due to strong market demand, particularly from asia. average sales price realizations improved significantly in 2007 . . .
in millions | 2007 | 2006 | 2005
sales | $ 5245 | $ 4925 | $ 4625
operating profit | $ 501 | $ 399 | $ 219
Question: in 2005 what was industrial packaging the profit margin?

Gold Program: divide(219, 4625)
Gold Answer: 0.04735

PHI-3-MINI Checkpoint-0 Code:
Read the relevant data from the passage
profit_margin_2005 = 219 # The profit margin for industrial packaging in 2005 is given as $219 million

Store the answer in the variable "ans"
ans = profit_margin_2005
PHI-3-MINI Checkpoint-0 Executed Answer: 219.0

PHI-3-MINI Checkpoint-6000 Code:
Calculate: profit_margin_2005 = operating_profit_2005 / sales_2005
operating_profit_2005 = 219
sales_2005 = 4625
profit_margin_2005 = operating_profit_2005 / sales_2005
ans = profit_margin_2005
###End Python
PHI-3-MINI Checkpoint-6000 Executed Answer: 0.04735

Figure 15: An example where the concept is not clearly stated (GPT-4 concept rating 1) at checkpoint-0 that
improves to GPT-4 concept rating 5 after training PHI-3-MINI for 1 epoch.

10543

SPGI/2018/page_74.pdf-1

Passage: 72 s&p global 2018 annual report. for securities that are quoted in active markets, the trustee/ custodian determines fair value by
applying . . .
(in millions) | level 3
balance as of december 31 2017 | $ 39
purchases | 2014
distributions | -2 (2)
gain (loss) | 2
balance as of december 31 2018 | $ 39
Question: what was the ratio of the pension trust assets for 2017 to 2018?

Gold Program: divide(480, 415)
Gold Answer: 1.15663

PHI-3-MINI Checkpoint-0 Code:
First, we extract the pension trust assets for 2017 and 2018 from the passage.

Pension trust assets for 2017
assets_2017 = 480 # in millions

Pension trust assets for 2018
assets_2018 = 1739 # in millions

Now, we calculate the ratio of the pension trust assets for 2017 to 2018.

Calculate the ratio
ratio = assets_2017 / assets_2018

Store the result in the variable "ans"
ans = ratio
PHI-3-MINI Checkpoint-0 Executed Answer: 0.27602

PHI-3-MINI Checkpoint-6000 Code:
Calculate: ratio_of_pension_trust_assets = pension_trust_assets_2017 / pension_trust_assets_2018
pension_trust_assets_2017 = 1739
pension_trust_assets_2018 = 1572
ratio_of_pension_trust_assets = pension_trust_assets_2017 / pension_trust_assets_2018
ans = ratio_of_pension_trust_assets
###End Python
PHI-3-MINI Checkpoint-6000 Executed Answer: 1.10623

Figure 16: An example where the descriptive response (GPT-4 concept rating 5) at checkpoint-0 follows the
structured format after training PHI-3-MINI for 1 epoch.

10544

APD/2019/page_31.pdf-2

Passage: part ii item 5 . market for registrant 2019s common equity , related stockholder matters , and issuer purchases of equity securities
our common stock . . .
- | 2019 | 2018
first quarter | $ 1.10 | $.95
second quarter | 1.16 | 1.10
third quarter | 1.16 | 1.10
fourth quarter | 1.16 | 1.10
total | $ 4.58 | $ 4.25
Question: what is the increase observed in the first quarter dividend percentage concerning the total value , during 2018 and 2019?

Gold Program: divide(1.10, 4.58), divide(.95, 4.25), subtract(#0, #1)
Gold Answer: 0.01665

PHI-3-MINI Checkpoint-0 Code:
First, we need to extract the dividend percentages for the first quarter of both 2018 and 2019 from the given data.

Extracting the first quarter dividend percentage for 2018
first_quarter_2018_dividend_percentage = 1.10 # Given in the passage

Extracting the first quarter dividend percentage for 2019
first_quarter_2019_dividend_percentage = 1.16 # Given in the passage

Calculating the increase in the first quarter dividend percentage from 2018 to 2019
increase_in_dividend_percentage = first_quarter_2019_dividend_percentage - first_quarter_2018_dividend_percentage

Storing the final answer in the variable "ans"
ans = increase_in_dividend_percentage
PHI-3-MINI Checkpoint-0 Executed Answer: 0.05999

PHI-3-MINI Checkpoint-6000 Code:
Calculate: increase_in_first_quarter_dividend_percentage = (first_quarter_dividend_2019 - first_quarter_dividend_2018) /
first_quarter_dividend_2018
first_quarter_dividend_2018 = 0.95
first_quarter_dividend_2019 = 1.10
increase_in_first_quarter_dividend_percentage = (first_quarter_dividend_2019 - first_quarter_dividend_2018) / first_quarter_dividend_2018
ans = increase_in_first_quarter_dividend_percentage
###End Python
PHI-3-MINI Checkpoint-6000 Executed Answer: 0.15789

Figure 17: An example where the complex concept with GPT-4 concept rating 2 remains unchanged after training
PHI-3-MINI for 1 epoch.

10545

Read the following passage and then write python code to answer the question
###Passage: (in millions) | dec 282013 | dec 292012
available-for-sale investments | $ 18086 | $ 14001
cash | 854 | 593
equity method investments | 1038 | 992
loans receivable | 1072 | 979
non-marketable cost method investments | 1270 | 1202
reverse repurchase agreements | 800 | 2850
trading assets | 8441 | 5685
total cash and investments | $ 31561 | $ 26302
###Question: what percentage of total cash and investments as of dec . 29 2012 was comprised of available-for-sale investments?
###Python
#Calculate: percent_available_for_sale_investments_dec_29_2012 = available_for_sale_investments_dec_29_2012 / to-
tal_cash_and_investments_dec_29_2012
available_for_sale_investments_dec_29_2012 = 14001
total_cash_and_investments_dec_29_2012 = 26302
percent_available_for_sale_investments_dec_29_2012 = available_for_sale_investments_dec_29_2012 / total_cash_and_investments_dec_29_2012
ans = percent_available_for_sale_investments_dec_29_2012
###End Python</s>

Read the following passage and then write python code to answer the question
###Passage: the chart shows that the firm posted market risk 2013 related gains on 248 out of 261 days in this period , with 12 days exceed-
ing $ 210 million . december 31 (in millions) | 1 basis point increase in jpmorgan chase 2019s credit spread
2010 | $ 35
2009 | $ 39
###Question: on what percent of trading days were there market gains above $ 210 million?
###Python
#Calculate: percent_days_with_market_gains_above_210_million = days_with_market_gains_above_210_million / total_trading_days
days_with_market_gains_above_210_million = 12
total_trading_days = 261
percent_days_with_market_gains_above_210_million = days_with_market_gains_above_210_million / total_trading_days
ans = percent_days_with_market_gains_above_210_million
###End Python</s>

Read the following passage and then write python code to answer the question
###Passage: american tower corporation and subsidiaries notes to consolidated financial statements (3) consists of customer-related intangi-
bles of approximately $ 75.0 million and network location intangibles of approximately $ 72.7 million . the customer-related intangibles and
network location intangibles are being amortized on a straight-line basis over periods of up to 20 years.
- | preliminary purchase price allocation
current assets | $ 8763
. . .
fair value of net assets acquired | $ 57536
goodwill (2) | 5998
###Question: for acquired customer-related and network location intangibles , what is the expected annual amortization expenses , in mil-
lions?
###Python
#Calculate: amortization_expenses = (customer_related_intangibles + network_location_intangibles) / straight_line_basis
customer_related_intangibles = 75
network_location_intangibles = 72.7
straight_line_basis = 20
amortization_expenses = (customer_related_intangibles + network_location_intangibles) / straight_line_basis
ans = amortization_expenses
###End Python</s>

Read the following passage and then write python code to answer the question
###Passage: the aggregate commitment under the liquidity asset purchase agreements was approximately $ 23.59 billion and $ 28.37 billion at
december 31 , 2008 and 2007 , respectively .
(dollars in billions) | 2008 amount | 2008 percent of total conduit assets | 2008 amount | percent of total conduit assets
united states | $ 11.09 | 46% (46 %) | $ 12.14 | 42% (42 %)
australia | 4.30 | 17 | 6.10 | 21
. . .
greece | 0.27 | 1 | 0.31 | 1
other | 1.01 | 5 | 1.26 | 5
total conduit assets | $ 23.89 | 100% (100%) | $ 28.76 | 100% (100%)
###Question: what is percentage change in total conduit asset from 2007 to 2008?
###Python
#Calculate: percent_change_in_total_conduit_assets = (total_conduit_assets_2008 - total_conduit_assets_2007) / total_conduit_assets_2007
total_conduit_assets_2007 = 28.76
total_conduit_assets_2008 = 23.89
net_change_in_total_conduit_assets = total_conduit_assets_2008 - total_conduit_assets_2007
percent_change_in_total_conduit_assets = net_change_in_total_conduit_assets / total_conduit_assets_2007
ans = percent_change_in_total_conduit_assets
###End Python</s>

Figure 18: Few shots for FinQA.

10546

Read the following text and table, and then answer the last question in a series of questions:
###Passage:
- | shares available for awards | shares subject to outstanding awards
2009 global incentive plan | 2322450 | 2530454
2004 stock incentive plan | - | 5923147
###Questions: how many shares are subject to outstanding awards is under the 2009 global incentive plan? what about under the 2004 stock
incentive plan? how many total shares are subject to outstanding awards? what about under the 2004 stock incentive plan?
###Last Question: what proportion does this represent?
###Python
Calculate: shares_outstanding_awards_2009_global_incentive_plan / (shares_outstanding_awards_2009_global_incentive_plan +
shares_outstanding_awards_2004_stock_incentive_plan)
shares_outstanding_awards_2009_global_incentive_plan = 2530454
shares_outstanding_awards_2004_stock_incentive_plan = 5923147
total_shares_outstanding_awards = shares_outstanding_awards_2009_global_incentive_plan +
shares_outstanding_awards_2004_stock_incentive_plan
proportion = shares_outstanding_awards_2009_global_incentive_plan / total_shares_outstanding_awards
ans = proportion
###End Python</s>

Read the following text and table, and then answer the last question in a series of questions:
###Passage: compensation expense the company recorded $ 43 million , $ 34 million , and $ 44 million of expense related to stock awards
for the years ended december 31 , 2015 , 2014 , and 2013 , respectively .
###Questions: what is the compensation expense the company recorded in 2015? what about in 2014? what is the total compensation ex-
pense the company recorded in 2015 and 2014? what is the total expenses including 2013?
###Last Question: what is the average for three years?
###Python
Calculate: average_for_three_years = (compensation_expense_2015 + compensation_expense_2014 + compensation_expense_2013) / 3
compensation_expense_2015 = 43
compensation_expense_2014 = 34
compensation_expense_2013 = 44
total_compensation_expense = compensation_expense_2015 + compensation_expense_2014 + compensation_expense_2013
average_for_three_years = total_compensation_expense / 3
ans = average_for_three_years
###End Python</s>

Read the following text and table, and then answer the last question in a series of questions:
###Passage: the net loss on disposal of those assets was $ 344000 for 2005 and $ 43000 for 2004 .
###Questions: what was the net loss on disposal of assets in 2005? what was the value in 2004? what was the change in value?
###Last Question: what was the percent change?
###Python
Calculate: percent_change = (net_loss_on_disposal_of_assets_2005 - net_loss_on_disposal_of_assets_2004) /
net_loss_on_disposal_of_assets_2004
net_loss_on_disposal_of_assets_2005 = 344000
net_loss_on_disposal_of_assets_2004 = 43000
net_change_in_value = net_loss_on_disposal_of_assets_2005 - net_loss_on_disposal_of_assets_2004
percent_change = net_change_in_value / net_loss_on_disposal_of_assets_2004
ans = percent_change
###End Python</s>

Read the following text and table, and then answer the last question in a series of questions:
###Passage: location | operations conducted | approximatesquare feet | leaseexpirationdates
dublin ireland | global supply chain distribution and administration offices | 160000 | owned
athlone ireland | commercial research and development manufacturing | 80000 | owned
bogart georgia | commercial research and development manufacturing | 70000 | owned
smithfield rhode island | commercial research and development manufacturing | 67000 | owned
###Questions: what is the square feet of the owned global supply chain distribution and administration offices? what is the square feet of the
owned commercial research and development manufacturing? what is the sum of those values? what is the total sum including square feet of
commercial research and development manufacturing in bogart, georgia? what is the total sum including square feet of commercial research
and development manufacturing in smithfield, rhode island?
###Last Question: what is the total sum of square feet owned?
###Python
Calculate: owned_global_supply_chain_distribution_dublin + commercial_research_and_development_manufacturing_athlone + commer-
cial_research_and_development_manufacturing_bogart + commercial_research_and_development_manufacturing_smithfield
owned_global_supply_chain_distribution_dublin = 160000
commercial_research_and_development_manufacturing_athlone = 80000
commercial_research_and_development_manufacturing_bogart = 70000
commercial_research_and_development_manufacturing_smithfield = 67000
total_square_feet_owned = owned_global_supply_chain_distribution_dublin + commercial_research_and_development_manufacturing_athlone +
commercial_research_and_development_manufacturing_bogart + commercial_research_and_development_manufacturing_smithfield
ans = total_square_feet_owned
###End Python</s>

Figure 19: Few shots for ConvFinQA.

10547

Read the following passage and then write python code to answer the question
###Passage: 17. Income Taxes
Income before income taxes for the Company’s domestic and foreign operations was as follows:
— | — | Years Ended June 30, | —
($ in millions) | 2019 | 2018 | 2017
Domestic | $204.2 | $140.3 | $56.0
Foreign | 11.8 | 19.9 | 14.2
Income before income taxes | $216.0 | $160.2 | $70.2
###Question: What was the change in Foreign in 2019 from 2018?
###Python
Calculate: change_in_foreign = foreign_in_2019 - foreign_in_2018
foreign_in_2018 = 19.9
foreign_in_2019 = 11.8
ans = foreign_in_2019 - foreign_in_2018
###End Python</s>

Read the following passage and then write python code to answer the question
###Passage: 11 Intangible assets (continued) (a) Intangible assets RIGHTS AND LICENCES Certain licences that NEXTDC possesses have
an indefinite useful life and are carried at cost less impairment losses and are subject to impairment review at least annually and whenever
there is an indication that it may be impaired.
. . .
— | Rights and licenses | Internally generated software | Software under development | Total
At 30 June 2019 | — | — | — | —
Cost | 13 | 12,961 | 16,284 | 29,259
Accumulated amortisation | - | -5,580 | - | -5,580
At 30 June 2018 | — | — | — | —
Cost | 104 | 9,555 | 6,509 | 16,168
Accumulated amortisation | -91 | -3,170 | - | -3,261
Net book amount | 13 | 6,385 | 6,509 | 12,907
###Question: Which year have greater total accumulated amortisation?
###Python
Calculate: find total accumulated amortization and choose year with maximum accumulated amortisation
total_accumulated_amortisation = {’2019’: 5580, ’2018’: 3261}
ans = sorted(total_accumulated_amortisation.items(), key=lambda tup: tup[1], reverse=True)[0][0]
###End Python</s>

Read the following passage and then write python code to answer the question
###Passage: The following table sets forth the breakdown of revenues by category and segment.
. . .
Year Ended December 31, | — | —
— | 2019 | 2018
Total Asia Pacific revenues | 6,490 | 7,859
Total Europe revenues | 36,898 | 36,149
Total North America revenues | 68,024 | 67,314
Total revenues | $111,412 | 111,322
###Question: In 2019, how many geographic regions have total revenues of more than $20,000 thousand?
###Python
Calculate: find locations with revenue more than $20,000 in a list and count
total_revenues_in_all_regions = {’Asia Pacific’: 6490, ’Europe’: 36898, ’North America’: 68024}
regions_have_more_than_20000_thousand_total_revenues = [k for k, v in total_revenues_in_all_regions.items() if v > 20000]
ans = len(regions_have_more_than_20000_thousand_total_revenues)
###End Python</s>

Read the following passage and then write python code to answer the question
###Passage: Effective Income Tax Rate A reconciliation of the United States federal statutory income tax rate to our effective income tax rate
is as follows: In 2019 and 2018 we had pre-tax losses of $19,573 and $25,403, respectively, which are available for carry forward to offset
future taxable income.
— | Year Ended | Year Ended
— | December 31, 2018 | December 31, 2019
United States federal statutory rate | 21.00% | 21.00%
State taxes, net of federal benefit | 1.99% | -0.01%
###Question: What was the 2019 percentage change in pre-tax losses?
###Python
Calculate: percentage_change_in_pre_tax_losses = (pre_tax_losses_2019 - pre_tax_losses_2018) / pre_tax_losses_2018 * 100
pre_tax_losses_2018 = 25403
pre_tax_losses_2019 = 19573
net_change = pre_tax_losses_2019 - pre_tax_losses_2018
ans = net_change / pre_tax_losses_2018 * 100
###End Python</s>

Figure 20: Few shots for TATQA.

10548

