
Findings of the Association for Computational Linguistics: EACL 2024, pages 10642–10657
November 12-16, 2024 ©2024 Association for Computational Linguistics

Learning to Use Tools via Cooperative and Interactive Agents
with Large Language Models

Zhengliang Shi1 Shen Gao2 Xiuyi Chen3 Yue Feng4 Lingyong Yan3

Haibo Shi3 Dawei Yin3 Pengjie Ren1 Suzan Verberne5 Zhaochun Ren5∗
1Shandong University 2University of Electronic Science and Technology of China

3Baidu Inc., Beijing, China 4University of Birmingham, Birmingham, UK
5Leiden University, Leiden, The Netherlands

shizhl@mail.sdu.edu.cn z.ren@liacs.leidenuniv.nl

Abstract

Tool learning empowers large language models
(LLMs) as agents to use external tools
and extend their utility. Existing methods
employ one single LLM-based agent to
iteratively select and execute tools, thereafter
incorporating execution results into the next
action prediction. Despite their progress,
these methods suffer from performance
degradation when addressing practical tasks
due to: (1) the pre-defined pipeline with
restricted flexibility to calibrate incorrect
actions, and (2) the struggle to adapt a
general LLM-based agent to perform a
variety of specialized actions. To mitigate
these problems, we propose CONAGENTS, a
Cooperative and interactive Agents framework,
which coordinates three specialized agents
for tool selection, tool execution, and action
calibration separately. CONAGENTS introduces
two communication protocols to enable the
flexible cooperation of agents. To effectively
generalize the CONAGENTS into open-source
models, we also propose specialized action
distillation, enhancing their ability to perform
specialized actions in our framework. Our
extensive experiments on three datasets show
that the LLMs, when equipped with the
CONAGENTS, outperform baselines with
substantial improvement (i.e., up to 14% higher
success rate).

1 Introduction

Although large language models (LLMs) have
achieved remarkable performance in a broad
range of natural language processing tasks (Wang
et al., 2023c; Chang et al., 2023), they still
encounter inherent limitations such as out-of-date
information (Qin et al., 2023b; Mallen et al.,
2023). Tool learning is proposed to equip LLMs
with various auxiliary resources, e.g., a search
engine (Shi et al., 2024b; Nakano et al., 2021)

∗Corresponding author

(a) Previous works

Tool
server

Question: Can you tell me what is the latest movie in December 24, 2023 directed

by Lilly Wachowski?

Executed
results

(2)
Execution

(3) Result
Incorporation

❌

Tool name
(1) Selection

Failure

Success

(b) Our method
Automatic interaction

Skip

Execution
agent

Review
agent

Tool-use
planning

tool
code

Action review

reflection

results
execute

Adaptive interaction

review

error

review

review

action

(1)

(2)

action

agent

agent

Grounding
agent

Figure 1: Comparison between (a) existing single-
agent tool learning method and (b) our cooperative
agent framework CONAGENTS. The CONAGENTS
coordinates three agents through two proposed
communication protocols, e.g., automatic and adaptive
interaction.

or a calculator (Schick et al., 2023; Gao et al.,
2023), which empower them as tool-use agents
and improve their proficiency in tackling concrete
complex tasks. As shown in Figure 1(a), most
previous studies allow the LLM-based agent to
interleave multiple actions in a pre-defined order
to interact with tools (Yao et al., 2023; Yang et al.,
2023b; Zhuang et al., 2023). The agent first breaks
down the task and plans a series of tools in a step-
by-step manner. For each step, the agent executes
the tools by passing arguments and continuously
incorporates useful intermediates into the next
action prediction.

Despite the advancement of existing methods,
they face two challenges in practice. First, most of
them alternate the planning and execution with a
pre-defined pipeline (Yang et al., 2023b; Song et al.,
2023), which inevitably constrains their flexibility
in handling exceptional errors that frequently occur
during a tool-use workflow (Shi et al., 2024a; Wang
et al., 2023b; Prasad et al., 2023). When failing
to invoke tools, it is crucial to enable agents to
revise their incorrect actions instead of directly

10642

shifting to the next step with the error response of
previous steps. Second, it is struggling to adapt
a single LLM-based agent to learn a variety of
specialized actions in solving a task (Dziri et al.,
2023; Yin et al., 2023). Solving a practical task
involves varied actions with substantial differences,
e.g., planning, execution, and reflection, drawing
upon different facets of the LLMs (Shen et al.,
2024; Qiao et al., 2024). Therefore, developing
effective agent flow and organizing tool-use models
to solve practical tasks remains a challenging
research topic.

In this work, we propose CONAGENTS, a
Cooperative and interative Agents framework
for tool learning tasks. As shown in Figure 1,
our CONAGENTS decomposes the overall tool-
use workflow using three specialized agents:
Grounding, Execution, and Review agents. The
grounding agent reasons the task description and
grounds it into planning by specifying which tool
to use. The execution agent follows the planning to
execute the selected tool by generating executable
code. The review agent reviews the incorrectness
in planning or execution, providing feedback for
revision. To enable the dynamic cooperation
of these specialized agents, we propose two
communication protocols, including automatic and
adaptive interaction. In the process of automatic
interaction, the review agent provides real-time
reviews to calibrate incorrect actions. Thus, the
agent flow alternates between the planning-review
and execution-review phases as shown in Figure 1.
In the process of adaptive interaction, the review
agent only provides feedback when exceptional
errors are captured while executing the tools.

For a comprehensive evaluation, we conduct
experiments on two benchmarks, i.e., ToolBench
and RestBench, using various LLMs as backbones.
We find that CONAGENTS outperforms the state-of-
the-art baseline with both communication protocols
(6% improvement in Success Rate on average).

Despite closed-source LLMs performing well
with our framework, we find the open-source
models may struggle with the modulized agent
flow. Thus, we propose an approach called
specialized action distillation (SPAN), enhancing
the performance of open-source models in
CONAGENTS. We heuristically sample 2,919
high-quality tasks from the ToolBench (Qin et al.,
2024) training set, and cluster them based on their
similarity, retaining only one task in each cluster
to avoid duplication. For each task, we guide the

GPT-4 to generate solutions using CONAGENTS,
and reorganize them into actions tailored to
specialized agent functionalities in CONAGENTS.
These actions are separately distilled into different
student models through instruction tuning. We
employ parameter-efficient tuning techniques, i.e.,
LoRA (Hu et al., 2021), further extending our
distillation method into low-resource scenarios.
Experiment results show that our distillation
method empowers open-source models with strong
performance with only 500 training examples.

Our contributions are summarized as follows:
(1) We propose CONAGENTS, a cooperative and
interactive agents framework, for tool learning
tasks. CONAGENTS coordinates three specialized
agents with two communication protocols to solve
a complex task. (2) We propose specialized
action distillation (SPAN), which more effectively
enables open-source models to work with the
CONAGENTS; (3) Both automatic and human
evaluation conducted on two benchmarks validate
the superiority of CONAGENTS.

2 Related Work

LLMs for tool learning. Enhancing LLMs with
external tools has been proven a promising method
for solving practical tasks (Bran et al., 2023;
Qu et al., 2024; Wang et al., 2024b). Previous
works empower a tool-learning agent typically
by supervised fine-tuning (Patil et al., 2023;
Yang et al., 2023a; Gao et al., 2024) or prompt
learning (Lu et al., 2023; Shen et al., 2023).
Specifically, the former trains LLMs on tool-use
dataset, teaching LLMs how to use tools from the
data (Wang et al., 2023c; Hao et al., 2023). The
latter directly demonstrates tool usages to LLM
using in-context examples (Paranjape et al., 2023;
Kim et al., 2023). However, solving complex
tasks with tools involves various actions, e.g.,
deciding which tools to use, what arguments
to pass, and how to utilize the results (Schick
et al., 2023; Qiao et al., 2024). Compelling
one single agent to learn all abilities places
even greater pressure on it (Yin et al., 2023;
Prasad et al., 2023). In addition, as the tasks
become complex, LLMs-based agents struggle
to incorporate lengthy task-solving contexts to
predict the next actions correctly due to their
limited working memory (Shi et al., 2023). In
contrast, our proposed CONAGENTS coordinates
three specialized agents, generating a solution

10643

through agent cooperation.

Multi-agent cooperation. Synergizing multiple
agents has demonstrated strong performance on a
variety of tasks (Liu et al., 2023; Sun et al., 2023;
Zhang et al., 2023), enhancing the capabilities
of individual agents (Talebirad and Nadiri, 2023;
Mohtashami et al., 2023; Qian et al., 2023). Recent
studies take multiple agents into a debate for a
fixed number of rounds (Wang et al., 2023a; Liang
et al., 2023), boosting their factuality (Cohen et al.,
2023) and reasoning abilities (Du et al., 2023; Fu
et al., 2023). In the tool learning tasks, recent
work separately implements the task planning and
execution with different agents, thereby reducing
the workload of a single agent (Shen et al., 2024;
Song et al., 2023; Qiao et al., 2024). Despite their
progress, their agent flow is simplified into a pre-
defined pipeline (Prasad et al., 2023), struggling
to handle exceptional errors that frequently occur
during the tool-use workflows (Zhuang et al., 2023;
Wang et al., 2023b). In our work, we propose two
communication protocols, which enable the action
calibrations and dynamic cooperation of agents.

3 Methodology

3.1 Overall Framework

Our cooperative framework, CONAGENTS, is
proposed to enable the dynamic cooperation
of agents to solve complex tasks. As shown
in Figure 2, CONAGENTS streamlines and
modularizes the workflow of tool learning tasks
into a grounding agent MG, execution agent
ME , and review agent MR. These agents are
implemented with different system prompt or
learnable parameters. Given a complex task x,
the MG first decomposes x into simpler sub-tasks
and generates tool-use planning t in a step-by-
step manner. For each step, the ME executes the
selected tool by writing executable code following
the planning t. The execution result r is then
incorporated into the context of the grounding
agent MG to predict planning in the next iteration.
The MR is employed to simulate an expert to
provide feedback to agent MG and ME , guiding
them to revise their incorrect planning or execution.
To coordinate these three specialized agents, we
explore and analyze two communication protocols,
including the automatic and adaptive interactions.

3.2 Specialized Agents
Grounding Agent. The grounding agent is
designed to break down an input task and generate
a series of tool-use planing. At ith iteration,
the grounding agent generates planning ti on the
condition of the task x and current trajectory Hi =
{(tj , rj)|j < i}, consisting of the accumulation of
previous planning t<i and results r<i. It can be
formulated as:

ti = MG(x,S,Hi), (1)

where ti contains a tool selected from the provided
toolset S and necessary arguments to invoke the
tool, such as “Use the Bing search to find a
movie shown on Dec 24, 2023”.

Execution Agent. Following the generated
planning ti, the execution agent ME executes the
selected tool by generating executable code c with
the assistance of the tool documentation d. This
process can be formulated as:

ci = ME(d, ti).

The execution result ri is obtained by running
the generated code ci to request the data from
the backend servers of tools, denoted as ri =
Execute(ci). When the tool fails to execute, the
ri indicates an error message as a failure signal.
When the tool executes successfully, the result ri
contains the targeted information in response to the
planning ti.

Review Agent. Incorrect planning and execution
are frequently observed during the tool-use
workflow. The review agent MR is employed as an
expert, providing feedback to agent MG and ME

for revision. Specifically, if the planning generated
by MG is vague or selects a non-existing tool, the
agent MR generates verbal feedback to instruct the
MG to reformulate planning. It can be formulated
as:

fR→G = MR(x,S, ti) (2)

Similarly, if ME hallucinates generating a wrong
program to execute the tool, the agent MR reviews
execution results (or errors) and re-checks the
tool documentation, providing instructions for
calibration:

fR→E = MR (x, d, ci, ri) (3)

We denote the maximum turns of interaction
between agent MR and agent MG (or ME) is
denoted as α (or β). Their communication protocol
and action flow are explained in § 3.3.

10644

Question: Can you recommend the latest TV series released on December 24, 2023, directed by

Lilly Wachowski?

Grounding
Agent

Review
Agent

Toolset

Search TV

Execution
Agent

Planning

(2) ExecutionExecution

review

review

(1) Planning

If error

If execution
error

If planning
error

review

review

(2) Execution

(1) Planning

Planning

Search TV

Execution
Result

planning & execution

feedback ...

Specialized agents

(a) Automatic agent interaction

(b) Adaptive agent interaction

AgentGrounding Review Execution

Grounding Execution Review

Figure 2: Our proposed cooperative and interactive agent framework. The left shows the three specialized agents in
our framework (§ 3.1). The right illustrates two proposed communication protocols to coordinate these specialized
agents, including the automatic and adaptive communication (§ 3.3).

3.3 Agent communication protocols
We propose two agent communication protocols,
including automatic and adaptive interaction.

Automatic interaction. As illustrated in
Figure 2, our automatic interaction alternates
between planning-review and execution-review
phases. For the ith step, it starts with the interaction
between the agent MG and MR until a correct
planning ti is determined or up to the maximum
turns α. Formally, it can be formulated as:

tji = MG(x,S,Hi, {t<j
i , f<j

R→G}︸ ︷︷ ︸
planning calibration

)
(4)

Here, j indicates jth interaction of two agents.
Following the planning t, the agent ME generates
executable programs to execute the selected tool
and calibrates the incorrect result r with the
feedback of agent MR for up to β turns. This
process can be formulated as:

cji = ME(ti, d, {c<j
i , f<j

R→E}︸ ︷︷ ︸
execution calibration

)
(5)

The calibrated result is then incorporated into the
context of MG for the next planning generation.

Adaptive interaction. In our adaptive interaction
strategy, the agent flow primarily alternates from
(1) generating tool-use planning by agent MG and

(2) generating execution code by agent ME , in
a step-by-step manner. The review agent MR

is adaptively triggered to provide feedback only
when the generated code fails to execute correctly.
Specifically, a runtime error can be caused by either
unfeasible planning or coding faulty. Thus, the
agent MR first reviews the generated planning
and code, routines the errors to agent MG or ME

accordingly, and provides feedback for revision.

4 Specialization by Agent Distillation

Our initial experiment shows that powerful LLMs
such as GPT-4, achieve promising results when
equipped with our framework. However, these
model are often considered black boxes (Qin et al.,
2023a; Gao et al., 2024) with potential privacy
issues. Thus, we aim to adapt our framework
to open-source models. We propose specialized
action distillation (SPAN), which distills the task-
solving trajectory of powerful commercial LLMs
into different open-source LLM agents tailored to
specific functionalities in CONAGENTS.

4.1 Synthesize the Training Dataset

Our distillation method collects the task-solving
trajectory of specialized agents simulated by GPT-
4, in CONAGENTS (§ 3.1). To achieve this, we
first sample tasks from ToolBench (Qin et al.,
2024), which contains nearly 200k practical tasks

10645

Statistic

The data scale 500
The average tokens of input task 52.48
The average number of candidate tools 20
The average number of ground truth tools per task 3.39
The average turns of planning-review interaction 4.62
The average turns of execution-review interaction 5.21

Table 1: The statistics of our synthetic dataset in our
specialized action distillation method.

across 3,451 tools. We select 2,919 tasks using
various heuristic strategies (see Appendix A.2 for
more details). Each task x is paired with a list
of relevant tools. Since we find that some tasks in
ToolBench are very similar to each other, we cluster
them based on the semantic similarities between
task descriptions and retain one instance for each
cluster. Next, we supplement each of these selected
tasks with a detailed solution. Specifically, we
separately implement our grounding, execution,
and review agent with GPT-4, and coordinate
them using the proposed automatic communication
protocol (§ 3.3) to generate solutions. Finally, we
synthesize a dataset with 500 diverse examples.
Each example contains a task x, a candidate toolset
S, and the task-solving trajectory of three agents.
The statistics of our synthetic dataset are provided
in Table 1.

4.2 Agent Training

Due to the large number of parameters of the
LLM, we employ a parameter-efficient tuning
technique (i.e., LoRa (Hu et al., 2021)) to train
each specialized agent separately. The objective is
to optimize the delta parameters ∆θ of the LLM θ
to minimize the loss function.

We reorganize the dataset according to the
agents’ functionality (§ 3.1), thereby distilling
specific abilities into different student models.
Formally, given a task x, in the ith step, the
Hi contains historical planning and execution
results. We train the agent MG to generate the
ith tool-use planning ti on the condition of Hi

and revise its incorrect planning following the
review from agent MR (Eq. 4). We train the agent
ME to generate programs c for tool execution
following the generated planning t and feedback
of agent MR (Eq. 5). Similarly, the agent MR

are trained to provide feedback as Eq. 2 and Eq. 3.
We apply the standard language modeling loss for
the optimization. More details and formulations

can be found in Appendix A.1.

5 Experimental Setup

5.1 Datasets and Evaluation Metrics

Datasets. We conduct experiments on two well
established benchmarks, i.e., RestBench (Song
et al., 2023) and Toolbench (Qin et al., 2024). The
RestBench consists of two subsets, including: (1)
TMDB, a high-quality human annotated dataset
consisting of 54 movie-related tools; and (2)
Spotify, a dataset with 40 music-related tools. The
Toolbench contains various practical tasks across
diverse scenarios. We provide more details for
these datasets in Appendix A.3.
Evaluation metrics. Following Yang et al.
(2023a); Gao et al. (2024), we use two evaluation
metrics: (1) Success Rate (Success%) measuring
the proportion of successful query completions,
and (2) Correct Path Rate (Path%) calculating the
F1 score between the generated tool sequence and
ground-truth tool sequence. We also conduct a
human evaluation, in which three well-educated
volunteers are invited to evaluate 30 randomly
sampled cases with a three-scale rating in two
aspects: (1) Executability (Exec): whether multiple
tools are invoked in a correct logical order; and (2)
Utility: whether the execution results of tools can
be used to generate an answer.

5.2 Baselines

We compare our method with agent-based tool
learning methods, including: (1) Chameleon (Lu
et al., 2023), an LLM-based agent that directly
generates multi-step plans for tool use and then
sequentially executes the plan; (2) ReAct (Yao et al.,
2023), which prompts LLM to generate the chain-
of-thought and actions in an interleaved manner.;
(3) CodeAct (Wang et al., 2024a), which allows
the LLM to generate executable code snippets
as actions to use tools; (4) ToolLLM (DFSDT,
Qin et al., 2024), which enhances LLMs with the
Depth First Search-based Decision Tree (DFSDT)
to select tools to solve a task. For further
comparison, Since our CONAGENTS coordinates
three specialized agents, we also establish two
baselines, i.e., ReAct@N and ToolLLM@N, which
are up to N times runs of their vanilla method
(ReAct or ToolLLM) until an input task is
completed.

We also consider baselines with multi-agent
architecture, including (1) RestGPT (Song et al.,

10646

Method RestBench-TMDB RestBench-Spotify ToolBench

Success Rate Path% Success Rate Path% Success Rate Path%
gpt-3.5-turbo
 ReAct (Yao et al., 2023) 40.00 71.19 51.28 60.35 39.39 65.04
 Chameleon (Lu et al., 2023) 63.00 66.10 56.20 64.55 37.44 67.55
 CodeAct (Wang et al., 2024a) 63.00 80.91 54.30 76.64 – –
 ToolLLM (DFSDT, Qin et al., 2024) 68.00 76.77 61.40 74.77 66.39 86.43
² Reflexion (Shinn et al., 2023) 53.00 55.00 49.10 50.90 – –
² α-UMi (Shen et al., 2024) 62.00 70.23 66.74 70.27 67.55 78.37
² RestGPT (Song et al., 2023) 65.00 69.21 67.10 70.75 63.88 77.40
² CONAGENTS w/ Ada 78.00 79.57 69.43 77.54 69.84 81.58
² CONAGENTS w/ Auto 79.00 81.97 71.21 79.17 72.15 83.33

 ReAct@N → N = 2 54.00 67.90 56.71 59.47 41.41 63.67
 ReAct@N → N = 3 62.00 65.40 58.13 63.26 42.67 66.12
 ToolLLM@N → N = 2 70.00 76.54 63.16 75.27 68.37 86.43
 ToolLLM@N → N = 3 71.00 78.11 63.16 76.30 68.77 87.54

Table 2: The results on three datasets. The metrics Success% and Path% indicate the Success Rate and Correct
Path Rate, respectively. The icon denotes the single-agent method and ² symbolizes multi-agent architecture.

Method TMDB Spotify

Success% Path% Success% Path%
² CONAGENTS (Mixtral-8x7B)
w/ Auto (Distilled) 53.00 79.32 36.09 73.92
w/ Auto (Vanilla) 49.00 76.22 34.21 68.14
w/ Ada (Distilled) 51.00 78.74 35.47 69.86
w/ Ada (Vanilla) 47.00 74.05 33.33 66.41

Baselines (Mixtral-8x7B)
 ReAct 26.00 61.21 21.35 47.21
 ReAct@3 33.00 63.27 26.93 50.31
 ToolLLM 37.00 64.32 28.07 52.31
 ToolLLM@3 45.00 74.40 31.58 57.68
² RestGPT 34.00 72.20 31.58 67.82

Table 3: We employ the Mixtral-8x7B as the backbone
LLM of for our method and baselines. The Vanilla and
Distilled indicate enable our framework by prompting
and our action distillation, respectively.

2023): which consists of a planning module, a
tool selector, an executor, and a response parsing
module; (2) Reflexion (Shinn et al., 2023), which
employs an LLM for task execution and uses
another LLM to verbally reflect on task feedback
signals; and (3) α-UMi (Shen et al., 2024), which
consists of a planner, an executor, and an answer
generator.

5.3 Implementation Details

We use gpt-3.5-turbo1 from OpenAI as the LLM
backbone for each agent in our method and all
baselines. We instruct the three agents to perform
specific actions with different system prompts.

1https://openai.com/chatgpt

The decoding temperature is set to 0 for the
most deterministic generation. We also repeat the
experiment with an open-source model Mistral-
8x7B2 for further comparison. In our agent
communication (§ 3.3), we set the maximum
iteration of interactions α = 3 and β = 3,
respectively. For each sample in the test set, we
provide all the baselines with the same candidate
toolset for a fair comparison, which contains the
required tools and ten randomly sampled tools.

Our action distillation separately trains three
Mistral-8x7B using the corresponding optimization
objectives in § 4.2 with the learning rate of 5×10−5.
The training of our model can be done within 4
hours with 3 NVIDIA A800-PCIE-80GB GPUs
using LoRA (Hu et al., 2021).

6 Results and Analysis

6.1 Experimental Results

Overall performance. Table 2 demonstrates the
experimental performances of all methods. We find
that our proposed CONAGENTS outperforms all the
baselines in three datasets in terms of all metrics.
A reason here is that our cooperative framework
design enables each agent to perform specialized
actions instead of grasping all required capabilities,
thereby reducing the workload encountered by
a single agent. The significant improvement
over ReAct@N and ToolLLM@N baselines
can further validate the effectiveness of our
framework. Compared with baselines with multi-

2https://huggingface.co/mistralai

10647

https://openai.com/chatgpt
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1

Method TMDB Spotify

Success% Path% Success% Path%

Ours w/ Auto 79.00 81.97 71.43 77.54
w/o MR →MG 77.00↓2.0 78.10↓3.9 68.42↓3.0 75.33↓2.2
w/o MR →ME 75.00↓4.0 74.23↓7.7 64.91↓6.5 72.41↓5.1
w/ static coop. 75.00↓4.00 75.74↓6.2 67.12↓4.3 75.07 ↓2.5

Table 4: The ablation study on two datasets with gpt-
3.5-turbo as backbone. See § 6.3 for details

agent architecture like RestGPT, CONAGENTS

achieves about 12% higher Success Rate. The
potential reason for our improvement is that the
proposed two communication protocols enable
the dynamic interaction of agents, which is more
flexible to handle exception errors.

Performance with the open-source LLM. We
further evaluate our CONAGENTS by swapping the
backbone LLM with Mistral-8x7B and repeating
the experiment under the same conditions. As
shown in Table 3, we implement our framework
in two ways with Mistral-8x7B: (1) directly
prompting (w/ Auto and w/ Ada); (2) tuning with
our proposed action distillation (w/ Auto† and w/
Ada†). We observe that directly prompting Mistral-
8x7B with CONAGENTS yields better performance
than baselines. The action distillation further
improves overall performance substantially, such
as pushing the Success Rate from 47.00 to 51.00 in
the TMDB dataset. These results further prove the
effectiveness of our cooperative framework.

6.2 Human Evaluation
Table 5 shows the results of the human evaluation.
We find that CONAGENTS achieves the best
results in the Executability aspect with 0.08~0.12
improvement. These results further validate the
necessity of agent specialization and cooperation.
The overall Kappa statistics for Executability and
Utility are 0.75 and 0.71, illustrating substantial
agreement (Landis and Koch, 1977) among the
annotators.

6.3 Ablation Study
To better understand the impact of different
components of our method, we make the following
modifications to the architecture and measure the
effect.
- w/o MR → MG. We remove the interaction
between agent MR and MG in our framework. As
shown in Table 4, the Success Rate has a average
2.50 decline, while the Correct Path Rate has a

Method TMDB Spotify

Exec Utility Exec Utility
gpt-3.5-turbo
 ReAct 1.89 1.93 1.77 2.10
 ToolLLM 2.26 1.87 2.26 2.30
² RestGPT 2.35 2.45 2.30 2.40
² Ours w/ Auto 2.47 2.56 2.43 2.50
² Ours w/ Ada 2.43 2.50 2.38 2.45

Table 5: Human evaluation on Executability (Exec) and
Correct Rate of Parsing (Parsing).

3.05 average decline on two datasets. This results
validate the necessity of feedback of MR which
can instruct the MG to revise incorrect planning.
- w/o MR → ME . We remove the interaction
between agent MR and ME in our framework
when programming to execute tools. As shown in
Table 4, the Success Rate suffers from obvious
decrease in both two datasets. These results
indicate that the agent MR can review the
generated programs of agent ME and provide
useful instruction for calibrating errors.
- w/ static cooperation. We implement the MR

with a code compiler, which is triggered to provide
static feedback only when runtime errors are
raised during executing tools by agent ME . This
allows us to compare our framework with a static
algorithm for agent cooperation. Table 4 present
the results, where we observe a 4.12 average
decrease in the Success Rate, e.g., dropping from
79.00 to 75.00 on the TMDB dataset. The same
trend is also observed in the Correct Path Rate,
e.g., a 2.5 decrease on the Spotify dataset. These
results indicate the superiority of our dynamic
agent cooperation framework.

6.4 Case Study
We conduct the case studies and find that our
cooperative agent framework is more effective at
executing various tools and handle exceptional
errors in solving tasks. We also provide examples
to explain the detailed process of agent cooperation.
The details can be found in Appendix A.5.

7 Discussion

Qualitative analysis for the maximum number
of interactions. In our automatic agent
interaction, agents MG and ME revise their
actions following the feedback of agent MR

for up to α and β turns, respectively. To further

10648

1 2 3 4 5
Iteration number

50

58

66

74

82

Su
cc

es
s R

at
e

: 1 5, =3

1 2 3 4 5
Iteration number

50

56

62

68

75

Su
cc

es
s R

at
e

: 1 5, = 3
Ours Ours w/o Iteration

Figure 3: The qualitative analysis for the maximum
interaction turns α and β in our agent communication
protocols (Section 3.3) on the TMDB dataset.

explore the impact of the interaction times on
overall performance, we conduct a quantitative
and qualitative analysis by varying α and β from 1
to 5. Then we evaluate our framework using the
RestBench-TMDB dataset with the same settings
as in Table 2. As illustrated in Figure 3, we find
an increasing Success Rate when the maximum
iteration turns shifts from 1 to 3. In addition, a
relatively stable trend is observed when the α and
β keep increasing (from 3 to 5), which indicates
the agents can correct most errors within 3 turns.
We also look at the poorly performing cases where
we find that since the planning from agent MG

is typically open-ended, the MR struggles to
detect all the incorrect planning. For example, the
planning may be plausible and clear but lacks the
required arguments to execute tools, thus resulting
in a failure of ME in subsequent steps.

Qualitative analysis for the efficiency of
inference. Due to the intensive inference cost
of LLMs-based agents, we further explore the
efficiency of our CONAGENTS. To explain more
intuitively, we compare the token consumption
for the CONAGENTS and baselines using the
RestBench-TMDB dataset with the same settings
as in Table 2. As illustrated in Figure 4, we
find that although our framework achieves better
performance, we spend fewer tokens compared
with strong baselines such as RestGPT and
ToolLLM@3. The reason is that the cooperative
framework CONAGENTS enables each agent to
perform specific tasks more efficiently, reducing
the length exploration trajectory by the single
agent.

The quality of generated review. We further
analyze the quality of reviews given by review
agent MR. Specifically, we randomly sample
50 task-solving trajectories in Table 2 (w/ Auto)

21248 19875

12066

21883
28231 30145 28675

4000

12000

20000

28000

36000

Ours
(A

uto)

Ours
(A

da)

ReA
ct

ReA
ct@

3

Too
lL

LM

Too
lL

LM@
3

Rest
GPT

Average token consumption

Figure 4: The efficiency analysis for different methods,
where we count the average consumed tokens.

manually analyze the review of review agent. For
most tasks, we find that the agent MR can assist
agent ME to revise its generated code or provides
useful reviews for the planning generated by agent
MG, such as only select tools from given
list. In addition, we find that in less than 5%
of tasks, the agent MR hallucinates giving an
incorrect review, indicating its reliability.

Runtime consistency. Considering the non-
deterministic nature of LLM generation, we
analyze the consistency of our framework. We
repeat our method multiple times with the same
settings as in Table 2. The statistical significance
of differences observed between the performance
of two runs is tested using a two-tailed paired t-
test. We find no significant difference between the
results of two randomly conducted experiments
(significance level α = 0.05).

8 Conclusions

We present a cooperative and interactive agents
framework (CONAGENTS) for tool learning, which
diverges from previous work by allowing the
cooperation of agents to solve complex tasks.
The CONAGENTS first modularizes the overall
workflow with three specialized agents for tool
planning, tool execution, and action calibration,
respectively. Then, two communication protocols
are introduced to enable the dynamic cooperation
of these agents. To generalize our framework to
open-source models, we propose specialized action
distillation, enhancing the models’ capability to
perform specific actions. Extensive experiments
conducted on three datasets demonstrate the
superiority of our CONAGENTS, e.g., pushing
the success rate to 77.00 with 13.2% point
improvement. Our future work includes: (1)
extending our method to agents empowered by

10649

multi-modal foundation models, incorporating
image and sound; (2) coordinating the cooperation
between strong and weak agents.

Limitations

The main limitation is that our LLM-based agent is
limited when perceiving multi-modal tasks. When
executing the tools, we represent the image and
speech input with url, following previous works.
In the future, we plan to extend our method
to agents empowered by multi-modal foundation
models.

Ethics Statement

The paper proposes a cooperative agent framework,
synergizing specialized agents to solve complex
tasks. The modularized design enables the agents
to utilize feedback from the tool environment
to calibrate themselves adaptively. In addition
to the use of state-of-the-art commercial LLMs,
we have experimented with an open-source LLM,
for reproducibility reasons and to allow the use
of our method in lower-resource contexts. All
the tools used in our experiment are provided by
open-source platforms, including TMDB, Spotify,
and Rapid API, thus ensuring a high level of
transparency and reproducibility.

We have made every effort to ensure that our
research does not harm individuals or groups, nor
does it involve any form of deception or potential
misuse of information.

References
Andres M Bran, Sam Cox, Andrew D White, and

Philippe Schwaller. 2023. Chemcrow: Augmenting
large-language models with chemistry tools. arXiv
preprint arXiv:2304.05376.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu,
Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi,
Cunxiang Wang, Yidong Wang, et al. 2023. A
survey on evaluation of large language models. ACM
Transactions on Intelligent Systems and Technology.

Roi Cohen, May Hamri, Mor Geva, and Amir
Globerson. 2023. Lm vs lm: Detecting factual
errors via cross examination. arXiv preprint
arXiv:2305.13281.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B
Tenenbaum, and Igor Mordatch. 2023. Improving
factuality and reasoning in language models through
multiagent debate. arXiv preprint arXiv:2305.14325.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine
Li, Liwei Jian, Bill Yuchen Lin, Peter West, Chandra
Bhagavatula, Ronan Le Bras, Jena D Hwang, et al.
2023. Faith and fate: Limits of transformers on
compositionality. arXiv preprint arXiv:2305.18654.

Yao Fu, Hao Peng, Tushar Khot, and Mirella Lapata.
2023. Improving language model negotiation with
self-play and in-context learning from ai feedback.
arXiv preprint arXiv:2305.10142.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. 2023. PAL: Program-aided
language models. In PMLR, pages 10764–10799.

Shen Gao, Zhengliang Shi, Minghang Zhu, Bowen
Fang, Xin Xin, Pengjie Ren, Zhumin Chen, and
Jun Ma. 2024. Confucius: Iterative tool learning
from introspection feedback by easy-to-difficult
curriculum. In Proceedings of the AAAI Conference
on Artificial Intelligence.

Zhicheng Guo, Sijie Cheng, Hao Wang, Shihao Liang,
Yujia Qin, Peng Li, Zhiyuan Liu, Maosong Sun, and
Yang Liu. 2024. StableToolBench: Towards stable
large-scale benchmarking on tool learning of large
language models. In Findings of the Association for
Computational Linguistics ACL 2024.

Shibo Hao, Tianyang Liu, Zhen Wang, and Zhiting Hu.
2023. Toolkengpt: Augmenting frozen language
models with massive tools via tool embeddings.
ArXiv, abs/2305.11554.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank
adaptation of large language models. arXiv preprint
arXiv:2106.09685.

Geunwoo Kim, Pierre Baldi, and Stephen McAleer.
2023. Language models can solve computer tasks.
ArXiv, abs/2303.17491.

J Richard Landis and Gary G Koch. 1977. The
measurement of observer agreement for categorical
data. biometrics, pages 159–174.

Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang,
Yan Wang, Rui Wang, Yujiu Yang, Zhaopeng Tu, and
Shuming Shi. 2023. Encouraging divergent thinking
in large language models through multi-agent debate.
arXiv preprint arXiv:2305.19118.

Zijun Liu, Yanzhe Zhang, Peng Li, Yang Liu, and
Diyi Yang. 2023. Dynamic llm-agent network: An
llm-agent collaboration framework with agent team
optimization. arXiv preprint arXiv:2310.02170.

Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-
Wei Chang, Ying Nian Wu, Song-Chun Zhu, and
Jianfeng Gao. 2023. Chameleon: Plug-and-play
compositional reasoning with large language models.
ArXiv, abs/2304.09842.

10650

Alex Mallen, Akari Asai, Victor Zhong, Rajarshi
Das, Daniel Khashabi, and Hannaneh Hajishirzi.
2023. When not to trust language models:
Investigating effectiveness of parametric and non-
parametric memories. In Proceedings of the 61st
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 9802–
9822.

Amirkeivan Mohtashami, Florian Hartmann, Sian
Gooding, Lukas Zilka, Matt Sharifi, et al. 2023.
Social learning: Towards collaborative learning
with large language models. arXiv preprint
arXiv:2312.11441.

Reiichiro Nakano, Jacob Hilton, S. Arun Balaji, Jeff Wu,
Long Ouyang, Christina Kim, Christopher Hesse,
Shantanu Jain, Vineet Kosaraju, William Saunders,
Xu Jiang, Karl Cobbe, Tyna Eloundou, Gretchen
Krueger, Kevin Button, Matthew Knight, Benjamin
Chess, and John Schulman. 2021. Webgpt: Browser-
assisted question-answering with human feedback.
ArXiv, abs/2112.09332.

Bhargavi Paranjape, Scott M. Lundberg, Sameer
Singh, Hanna Hajishirzi, Luke Zettlemoyer, and
Marco Tulio Ribeiro. 2023. Art: Automatic multi-
step reasoning and tool-use for large language
models. ArXiv, abs/2303.09014.

Shishir G Patil, Tianjun Zhang, Xin Wang, and
Joseph E Gonzalez. 2023. Gorilla: Large language
model connected with massive apis. arXiv preprint
arXiv:2305.15334.

Archiki Prasad, Alexander Koller, Mareike Hartmann,
Peter Clark, Ashish Sabharwal, Mohit Bansal,
and Tushar Khot. 2023. Adapt: As-needed
decomposition and planning with language models.
arXiv preprint arXiv:2311.05772.

Chen Qian, Xin Cong, Cheng Yang, Weize Chen,
Yusheng Su, Juyuan Xu, Zhiyuan Liu, and Maosong
Sun. 2023. Communicative agents for software
development. arXiv preprint arXiv:2307.07924.

Shuofei Qiao, Ningyu Zhang, Runnan Fang, Yujie Luo,
Wangchunshu Zhou, Yuchen Eleanor Jiang, Chengfei
Lv, and Huajun Chen. 2024. Autoact: Automatic
agent learning from scratch via self-planning. arXiv
preprint arXiv:2401.05268.

Yujia Qin, Zihan Cai, Dian Jin, Lan Yan, Shihao
Liang, Kunlun Zhu, Yankai Lin, Xu Han, Ning
Ding, Huadong Wang, Ruobing Xie, Fanchao Qi,
Zhiyuan Liu, Maosong Sun, and Jie Zhou. 2023a.
WebCPM: Interactive web search for Chinese long-
form question answering. In ACL, pages 8968–8988.

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen,
Ning Ding, Ganqu Cui, Zheni Zeng, Yufei Huang,
Chaojun Xiao, Chi Han, Yi Ren Fung, Yusheng Su,
Huadong Wang, Cheng Qian, Runchu Tian, Kunlun
Zhu, Shi Liang, Xingyu Shen, Bokai Xu, Zhen Zhang,
Yining Ye, Bo Li, Ziwei Tang, Jing Yi, Yu Zhu,
Zhenning Dai, Lan Yan, Xin Cong, Ya-Ting Lu,

Weilin Zhao, Yuxiang Huang, Jun-Han Yan, Xu Han,
Xian Sun, Dahai Li, Jason Phang, Cheng Yang,
Tongshuang Wu, Heng Ji, Zhiyuan Liu, and Maosong
Sun. 2023b. Tool learning with foundation models.
ArXiv, abs/2304.08354.

Yujia Qin, Shi Liang, Yining Ye, Kunlun Zhu, Lan Yan,
Ya-Ting Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, Sihan Zhao, Runchu Tian, Ruobing Xie,
Jie Zhou, Marc H. Gerstein, Dahai Li, Zhiyuan Liu,
and Maosong Sun. 2024. Toolllm: Facilitating large
language models to master 16000+ real-world apis.
In ICLR.

Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai,
Shuaiqiang Wang, Dawei Yin, Jun Xu, and Ji-Rong
Wen. 2024. Tool learning with large language
models: A survey. arXiv preprint arXiv:2405.17935.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola
Cancedda, and Thomas Scialom. 2023. Toolformer:
Language models can teach themselves to use tools.
ArXiv, abs/2302.04761.

Weizhou Shen, Chenliang Li, Hongzhan Chen, Ming
Yan, Xiaojun Quan, Hehong Chen, Ji Zhang, and Fei
Huang. 2024. Small llms are weak tool learners: A
multi-llm agent. arXiv preprint arXiv:2401.07324.

Yongliang Shen, Kaitao Song, Xu Tan, Dong Sheng
Li, Weiming Lu, and Yue Ting Zhuang. 2023.
Hugginggpt: Solving ai tasks with chatgpt and its
friends in huggingface. ArXiv, abs/2303.17580.

Freda Shi, Xinyun Chen, Kanishka Misra, Nathan
Scales, David Dohan, Ed H. Chi, Nathanael Schärli,
and Denny Zhou. 2023. Large language models
can be easily distracted by irrelevant context. In
Proceedings of the 40th International Conference on
Machine Learning, Proceedings of Machine Learning
Research. PMLR.

Zhengliang Shi, Shen Gao, Xiuyi Chen, Yue Feng,
Lingyong Yan, Haibo Shi, Dawei Yin, Zhumin Chen,
Suzan Verberne, and Zhaochun Ren. 2024a. Chain
of tools: Large language model is an automatic multi-
tool learner. arXiv preprint arXiv:2405.16533.

Zhengliang Shi, Shuo Zhang, Weiwei Sun, Shen Gao,
Pengjie Ren, Zhumin Chen, and Zhaochun Ren.
2024b. Generate-then-ground in retrieval-augmented
generation for multi-hop question answering. In
Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers).

Noah Shinn, Federico Cassano, Beck Labash, Ashwin
Gopinath, Karthik Narasimhan, and Shunyu Yao.
2023. Reflexion: Language agents with verbal
reinforcement learning.(2023). arXiv preprint
cs.AI/2303.11366.

Yifan Song, Weimin Xiong, Dawei Zhu, Chengzu Li,
Ke Wang, Ye Tian, and Sujian Li. 2023. Restgpt:
Connecting large language models with real-world
applications via restful apis. ArXiv, abs/2306.06624.

10651

Qiushi Sun, Zhangyue Yin, Xiang Li, Zhiyong Wu,
Xipeng Qiu, and Lingpeng Kong. 2023. Corex:
Pushing the boundaries of complex reasoning
through multi-model collaboration. arXiv preprint
arXiv:2310.00280.

Yashar Talebirad and Amirhossein Nadiri. 2023.
Multi-agent collaboration: Harnessing the power
of intelligent llm agents. arXiv preprint
arXiv:2306.03314.

Bing Wang, Changyu Ren, Jian Yang, Xinnian Liang,
Jiaqi Bai, Qian-Wen Zhang, Zhao Yan, and Zhoujun
Li. 2023a. Mac-sql: Multi-agent collaboration for
text-to-sql. arXiv preprint arXiv:2312.11242.

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe
Zhang, Yunzhu Li, Hao Peng, and Heng Ji. 2024a.
Executable code actions elicit better llm agents. In
ICML.

Xingyao Wang, Zihan Wang, Jiateng Liu, Yangyi
Chen, Lifan Yuan, Hao Peng, and Heng Ji. 2023b.
Mint: Evaluating llms in multi-turn interaction
with tools and language feedback. arXiv preprint
arXiv:2309.10691.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh
Hajishirzi. 2023c. Self-instruct: Aligning language
models with self-generated instructions. In ACL.

Zhiruo Wang, Zhoujun Cheng, Hao Zhu, Daniel Fried,
and Graham Neubig. 2024b. What are tools anyway?
a survey from the language model perspective. arXiv
preprint arXiv:2403.15452.

Rui Yang, Lin Song, Yanwei Li, Sijie Zhao, Yixiao Ge,
Xiu Li, and Ying Shan. 2023a. Gpt4tools: Teaching
large language model to use tools via self-instruction.
ArXiv, abs/2305.18752.

Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin
Lin, Ehsan Azarnasab, Faisal Ahmed, Zicheng
Liu, Ce Liu, Michael Zeng, and Lijuan Wang.
2023b. Mm-react: Prompting chatgpt for multimodal
reasoning and action. ArXiv, abs/2303.11381.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik R Narasimhan, and Yuan Cao. 2023.
React: Synergizing reasoning and acting in language
models. In ICLR.

Da Yin, Faeze Brahman, Abhilasha Ravichander,
Khyathi Chandu, Kai-Wei Chang, Yejin Choi, and
Bill Yuchen Lin. 2023. Lumos: Learning agents with
unified data, modular design, and open-source llms.
arXiv preprint arXiv:2311.05657.

Junjie Zhang, Yupeng Hou, Ruobing Xie, Wenqi Sun,
Julian McAuley, Wayne Xin Zhao, Leyu Lin, and
Ji-Rong Wen. 2023. Agentcf: Collaborative learning
with autonomous language agents for recommender
systems. arXiv preprint arXiv:2310.09233.

Yuchen Zhuang, Yue Yu, Kuan Wang, Haotian Sun,
and Chao Zhang. 2023. Toolqa: A dataset for
llm question answering with external tools. arXiv
preprint arXiv:2306.13304.

A Appendix

A.1 Details of Action Distillation
Our specialized action distillation (SPAN) trains
three student models separately using the task-
solving trajectory of a powerful model, i.e., GPT-
4 in our implementation. These three student
models are trained to conduct specific actions of the
grounding agent, execution agent, and review agent,
respectively. Their initial parameters weights θ are
initialized from the same open-source model Mθ.
Since we use LoRa (Hu et al., 2021) for parameter-
efficient tuning, the optimization objective of our
distillation is to search for the delta parameter ∆θ
to minimize the loss function. Here, we introduce
their detailed optimization objectives.

Notations. As mentioned in § 3, we denote
an input task as x, which is solved in a step-
by-step manner while the task-solving context is
denoted as H. In ith step, the context Hi contains
historical planning t<i and execution results r<i.
The planning t specifies a tool to use in a current
step which is selected from a candidate toolset S.

Training of grounding agent. Given a task x,
we train the grounding agent MG to decompose
x into simpler sub-tasks and ground each sub-task
into tool-use planning t on the condition of the
current context H and revise incorrect planning
following the feedback fR→G of the review agent
MR. For each step ti, we use the standard
language modeling loss for optimization, which
can be formulated as:

LG =− logPθ+∆θG

(
tji |x,Hi,S, {t<j

i , f<j
R→G}

)

Here, the j indicate the jth interaction between the
agent MG and MR. The {t<j

i , f<j
R→G} indicates

the planning-review alternated from agent MG to
MR. The LoRa parameter of agent MG is denoted
as ∆θG.

Training of execution agent. Similarly, in the ith
step, we train the execution agent ME to execute
a tool following the planning ti by generating an

10652

http://arxiv.org/abs/2402.01030

executable program, and then calibrate incorrect
code following the review of agent MR. Formally,
the optimization objective can be formulated as:

LE =− logPθ+∆θE

(
cji |x, t, d, {c

<j
i , f<j

R→E}
)

Here, d indicates the tool documentation. The
LoRa parameter of agent ME is denoted as ∆θE .

Training of review agent. The review agent
agent is trained to provide reviews for agent ME

and MR, calibrating their incorrect actions, i.e.,
planning or execution. Thus, the optimization
objective can be formulated as:

LR =−
α∑

j=1

logPθ+∆θR

(
f j
R→G|x, S, t

j−1
i

)
−

β∑

j=1

logPθ+∆θR

(
f j
R→E |x, d, c

j−1
i , rj−1

i

)

Here, the LoRa parameter of agent MR is denoted
as ∆θR.

A.2 Heuristic Strategies for Data Selection
We employ the following heuristic methods to filter
low-quality tasks in the original ToolBench:

• Each task in ToolBench is paired with a
list of candidate tools. Generally, the more
candidate tools there are, the more complex
the task. Thus, we filter out tasks with fewer
than 10 candidate tools to ensure the overall
complexity of the sampled tasks.

• To improve the quality of our training dataset,
we remove tasks if their tools are not callable
or deprecated.

• We remove tasks if their tools lack
the required documentation or if the
documentation is less than 100 words in
length.

A.3 Datasets
Experiment dataset We conduct experiments on
three commonly-used datasets with tool learning
tasks, including:

• RestBench (Song et al., 2023): a high-quality
human annotated dataset consisting of 54
tools about movie scenarios.

• RestBench-Spotify (Song et al., 2023): a
dataset with 40 tools for music scenarios.

• ToolBench (Qin et al., 2024): a dataset
containing diverse real-world tools across
various applications, which contains the
simple tasks, i.e., solving a task with one
single tool, and complex tasks, i.e., executing
multiple tools in a logic order to solve a task.

We conducted experiments on the full datasets
of TMDB and Spotify. Regarding ToolBench, we
found that some tools in the official dataset have
become outdated and are no longer maintained,
leading to the discontinuation of their services (as
also noted by Guo et al.). Additionally, evaluating
LLM-based agents on the entire ToolBench dataset
is cost-intensive. Therefore, we first filtered
out cases involving outdated tools and randomly
sampled 117 complex test cases from the remaining
I2 and I3 categories of the ToolBench test set. We
will release the sampled task for the transparency
consideration.

Extend existing datasets. The original
ToolBench benchmark only provides a step-by-
step task-solving trajectory of GPT-3.5, which
consists of both valid ground truth tools and
irrelevant tools. However, our evaluation involves
computing the overlap between model-selected
tools with ground truth tools. Therefore, we
repurpose the ToolBench to support our evaluation
methods. Specifically, for each task, we extract
the tools in the original solution provided by
ToolBench and only retain the relevant tools that
are required for solving the task. We invite three
well-educated masters with relevant research
backgrounds to implement this process. To
guarantee annotation quality, we ask at least two
annotators to annotate the same task repeatedly. If
there is a discrepancy between the two annotators
(i.e., two annotators give different answers), we
ask a third annotator to recheck it. We hold
regular meetings and pre-annotation tests to ensure
that each expert undergoes detailed training to
familiarize themselves with our annotation task.
We will release these repurposed tasks to facilitate
future research.

A.4 Evaluation Metrics Details
Automatic evaluation. We mainly employ
Success Rate and Correct Path Rate as two
automatic evaluation metrics, following previous
works (Yang et al., 2023a; Gao et al., 2024). The
Success Rate (Success%) computes the proportion
of successful query completions. Specifically,

10653

when all the ground-truth tools are executed
correctly, the Success Rate is set to 1; otherwise,
it is set to 0. The Correct Path Rate (Path%)
computes the F1 score between the generated tool
sequence and the ground-truth tool sequence.

Human evaluation We conduct a human
evaluation on two metrics, including: (1)
Executability (Exec): whether the multiple
tools are invoked in a correct logical order to
complete the task; and (2) Utility: whether
the execution results of tools can be used to
generate an answer. We invite three well-educated
volunteers to evaluate 30 cases randomly sampled
from RestBench-TMDB and RestBench-Spotify
datasets, respectively, with a three-scale rating.
Using a 3-point scale over a binary scale provides
an option for the annotators to factor in their
subjective interpretation of the extent of success
or failure of a system’s response to satisfy a
user’s request. The instructions used in our
human evaluation are summarized as follows.

The evaluation guideline for our human evaluation.

In this evaluation task , you are
provided with some question -solution
pairs. The question can be only solved
by using real -world tools (or APIs). The
solution is a sequential tool -use

process , involving multi -step tool
callings.

Your task is to rate the quality of the
solution on a three scale based on the
following two metrics:
1. Executability: Whether multiple tools
are invoked in a correct logical order

to complete the task.
2. Utility: Whether the model can
observe the relevant values from lengthy
execution results , incorporate them to

predict the next action , and finally
output a correct answer.

We also provide scoring criteria for
your reference. Please adhere to our
criteria since we will re-check the
score you provide.
Now , read the following criteria and
rate the provided question -solution
pairs. Note that , you are encouraged to
give us feedback and share any confusion
you may have.

== Scoring Criteria ==

1. For the Executability metric:
- Three points: Call all necessary tools
correctly and solve the task. Allow for
redundant tools or inference steps.

- Two points: Not fully calling all

necessary tools correctly , partially
solving the task.
- One point: Only some sub -steps are
solved and the entire task is not
completed. And there is a lot of
redundancy or incorrect reasoning.

2. For the Utility metric:
- Three points: A majority of the
execution results of the tools are
correctly used to address the question (
minor mistakes are allowed).
- Two points: Only part of the execution
results of the tools are used. For

example , in a question requiring finding
an actor ’s highest -grossing film , the

correct solution is to sequentially look
at all the films the actor has appeared
in, instead of just counting the top -k

like top -5 or top -10.
- One point: Only a small part of the
execution results of the tools are used ,
while other useful intermediates are

ignored.

A.5 Case Study

We conduct several case studies and find that our
method is effective at executing various tools and
incorporating execution results to solve the input
tasks. Figure 5 presents a concrete example of the
workflow of our proposed cooperative framework.

Case for our automatic agent communication.
Figure 5 shows an example of our proposed
automatic communication protocol. For each turn,
the communication starts with the planning-and-
review between the grounding agent and review
agent. Following the planning , the execution agent
generates programs to execute tools and calibrates
the incorrect result with the review of review agent.
For example, in the first turn, the agent MG re-
generate a planning following the review from
agent MR, and finally output a clear planning.
This example also illustrate the interaction between
grounding agent MG and review agent MR, where
the agent MG calibrates its execution programs
following the feedback of MR, and finally generate

Case for our adaptive agent communication
Figure 6 shows an example of our proposed
adaptive communication protocol. The agent
flow mainly alternates between (1) generating
tool-use planning by grounding agent and (2)
generating execution code by execution agent,
in a step-by-step manner. The review agent is
adaptively triggered to provide feedback only when
the generated code fails to execute correctly. For
example, in the second turn, agent ME initially

10654

generates a wrong program due to the lack of
necessary arguments. Then, agent MR reviews
the current context, routes this error to agent MG,
and instructs MG to supplement this argument,
instead of directly shifting to the next state with an
error response. This example intuitively illustrates
the process of our adaptive interaction.

10655

Who directed the top-1 rated movie

Decision: wrong
Review: The code correctly makes a
request. However, it does not parse
the response to extract the target
values as specified in the instruction.

Input: ```python
url = base_url+"/movie/top_rated"
params = {'page': 1, 'region': 'US'}
response = requests.get(url, headers=headers,
params=params)
data = response.json()
print(top_rated_movie_id)```
Output: {'id': 278, 'genreids': [18, 80], ori...

First, use "GET_movie_top_rated" to search
for the **movie id** of the top-1 rated
movie

Decision: correct
Review: The code is correct ...

Input: ```python
url = base_url+"/movie/top_rated"
params = {'page': 1, 'region': 'US'}
response = requests.get(url, headers=headers,
params=params)
data = response.json()
print(top_rated_movie_id)```
Output: 278

Continue, based on the **movie id** 278, use
"GET_movie_movie_id_credits" to search for the
person of its director

Input: ```python
url = base_url+"/movie/278/credits"
data = requests.get(url, headers=headers).json()
= responsefor crew_member in data['crew’]:

if crew_member['job'] == 'Director’:
print(crew_member['name’])

```
Output: Frank Darabont

Decision: correct
Review: The code is correct ...

Last, I am finished executing a plan.
The answer is [The top-1 rated movie was directed by Frank Darabont]

Decision: correct
Review: Your planning is clear...

Decision: correct
Review: Your planning is clear ...

Figure 5: An example to illustrate the proposed automatic agent communication of our framework CONAGENTS.
For each turn, the communication starts with the planning-and-review between the grounding agent and
review agent. Following the planning , the execution agent generates programs to execute tools and
calibrates the incorrect result with the review of review agent . In this figure, we highlight the useful review of
review agent with red.

10656



Can you give me a photo belong to the second episode of the first season of the 
Witcher?

Decision: planning

Review: Your planning lack the required 

**person id**

First, use "GET_search_tv" to search for the TV show id of \"The 
Witcher

Last, the task is solved and the answer is [the second episode of the first season of The 

Witcher: https://image.tmdb.org/t/p/original/7KWyZgiSXSAuagbtzjTZLrkOtNk.jpg

Input: ```python
season = 1
episode = 2
url = base_url+f"/tv/<YOUR_TV_ID>}/{season}/{episode}/images"
response = requests.get(url, headers=headers)
print(response.json())
```
Output: {'success': False, 'status_message': 'Invalid id: The pre-
requisite id is invalid or not found.’}

Continue, use season_episode_images
to get the images that belong to the second episode
of the first season of The Witcher

Input: ```python
tv_id = 71912
season_number = 1
episode_number = 2
url = base_url+f"/{tv_id}/season/{season_number}/episode/{episode_number}/images”
print(response.json())
```
Output: {'id': 1954612, 'stills': [{'aspect_ratio': 1.778, 'heig

Use season_episode_images to obtain images 
from the second episode of the first season of 
The Witcher. The TV show ID is 71912, the 
season number is 1, and the episode number is 2."

Input: ```python
import requests
url = base_url+"/search/tv"
params = {'query': 'The Witcher', 'include_adult': 'false'}
response = requests.get(url, headers=headers, params=params)
data = response.json()
print(data['results'][0]['id’])
```

Output:

71912 ✅

❌

✅

(No triggered to provide review)

(No triggered to provide review)

Figure 6: An example to illustrate the proposed adaptive agent communication in our framework CONAGENTS.
The agent flow mainly alternates from (1) generating tool-use planning by grounding agent and (2) generating
execution code by execution agent, in a step-by-step manner. The review agent is adaptively triggered to provide
feedback only when the generated code fails to execute correctly . In this figure, we highlight the review of review
agent with red.

10657

