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Abstract

This paper presents a way of enhancing the re-
liability of Large Multi-modal Models (LMMs)
in addressing hallucination, where the models
generate cross-modal inconsistent responses.
Without additional training, we propose Coun-
terfactual Inception, a novel method that im-
plants counterfactual thinking into LMMs us-
ing self-generated counterfactual keywords.
Our method is grounded in the concept of coun-
terfactual thinking, a cognitive process where
human considers alternative realities, enabling
more extensive context exploration. Bridging
the human cognition mechanism into LMMs,
we aim for the models to engage with and gen-
erate responses that span a wider contextual
scene understanding, mitigating hallucinatory
outputs. We further introduce Plausibility Veri-
fication Process (PVP), a simple yet robust key-
word constraint that effectively filters out sub-
optimal keywords to enable the consistent trig-
gering of counterfactual thinking in the model
responses. Comprehensive analyses across var-
ious LMMs, including both open-source and
proprietary models, corroborate that counterfac-
tual thinking significantly reduces hallucination
and helps to broaden contextual understanding
based on true visual clues.

1 Introduction

After witnessing the great success of Large Lan-
guage Models (LLMs) products, such as Chat-
GPT [OpenAI, 2023a] and Gemini [Google, 2023],
the emergence of Large Multi-modal Models
(LMMs) naturally followed as the next step towards
a unified, general-purpose AI system [OpenAI,
2024; xAI, 2024; Reid et al., 2024]. In the vision
research area, various works [Li et al., 2022, 2023;
Zhu et al., 2023] have actively resorted LLMs into
the vision models due to their remarkable capability
of off-the-shelf text generation. Especially when it
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𝓞𝓞bject

Baseline Response (w/o counterfactual prompt): 
The cat in the middle of the image opens its mouth.

Counterfactual Inception (w/ counterfactual prompt): 
The cat on the right in the image opens its mouth.

Question: 
Which cat (left, right or middle) in the image opens its mouth?

pillows

𝓐𝓐ttribute orange cat
green banana

cat lying in a bed of sand𝓡𝓡elation kittens cuddling on tiled floor

Prompt: generate a list of counterfactual keywords.

blankets
0.165
0.163
0.169
0.085

0.156
0.206

(Optional) Counterfactual Prompt: 
Carefully avoid the listed counterfactual keywords {𝓞𝓞; 𝑨𝑨; 𝑹𝑹} in your response.

[Task]: Self-gen Counterfactuals & PVP. 

CLIPscore KeywordsCategory

Plausibility Verification Process
Constraint    𝒦𝒦 head: 0.11 ≤ CLIPscore ≤ 0.18

: green banana, kittens cuddling on tiled floor

Figure 1: Counterfactual Inception: LMMs gener-
ate counterfactual keywords at the object, attribute,
and relation levels, then integrate them with a coun-
terfactual prompt to implant counterfactual think-
ing to the models. To filter out keywords that are
either too similar or too deviated from the visual
content, we adopt a robust constraint called PVP.

comes to in-context learning [Brown et al., 2020;
Alayrac et al., 2022], prompt engineering [Zhou
et al., 2022; Bsharat et al., 2023], and chain-of-
thought [Wei et al., 2022; Kojima et al., 2022;
Zhang et al., 2023], vision models can exploit the
generation power into the various vision tasks such
as visual understanding and reasoning [Yu et al.,
2022; Huang et al., 2024].

Although the recent breakthroughs of multi-
modal instruction tuning approaches [Dai et al.,
2023; Liu et al., 2023c] unlock enhanced visual pro-
ficiency by aligning model responses with human-
specific instructions, LMMs still struggle with
unexpected hallucination in their responses [Liu
et al., 2023a; Zhou et al., 2024]. The hallucina-
tion in LMMs involve false premises, where the
models generate incorrect, nonsensical, or unre-
lated responses for the visual contents. To al-
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leviate the hallucination in LMMs, recent stud-
ies have been proposed in the context of curated
instruction-tuning [Liu et al., 2023a; Wang et al.,
2023], or integrating visual information using ex-
ternal solvers [Wang et al., 2024; Yin et al., 2023;
Zhou et al., 2024]. However, they require addi-
tional training on the tailored instruction or labor-
intensive resources to fine-tune the models [Sun
et al., 2024; Yu et al., 2023]. To step out such limi-
tations and reduce hallucination in a training-free
manner, we present a novel way of eliciting an ex-
ceptionality capability from LMMs by engaging
them to consider alternative counterfactuals.

In our daily life, we ponder what if...? scenarios
at least once in awhile— these sorts of thoughts
can be termed as counterfactual that is contrary
to what actually happened [Menzies and Beebee,
2001; Epstude and Roese, 2008]. By thinking of
how events might have unfolded differently if we
had taken alternative actions (or even seemingly
irrelevant thinking), we can enhance cognitive flex-
ibility in the present and identify more about what
happens now [Roese, 1997]. Motivated by such
human tendency, we delve into the following ques-
tion: "Can we elicit counterfactual thinking from
LMMs by imagining what-if scenarios and mitigate
hallucination in their responses?".

Building on the concept of counterfactuals, we
propose Counterfactual Inception, a novel method
of implanting counterfactual thinking into LMMs
using inconsistent keywords against given visual
contents. In our work, we expose LMMs to self-
generated counterfactual priors and examine their
contextual flexibility in generating responses. Such
approach not only allows LMMs to explore a
wide range of potential answers but also promotes
broader contextual exploration and the considera-
tion of hypothetical narratives. Our findings demon-
strate that this thinking enhances the model’s ability
to engage with and generate responses that spans a
wider spectrum of visual understanding, effectively
reducing hallucinatory outputs.

Specifically, as illustrated in Fig. 1, we instruct
LMMs themselves to generate counterfactual key-
words at the object-, attribute-, and relation-levels
for the visual contents. These keywords are then in-
corporated into the conditional response generation
for user queries with a counterfactual prompt. To
consistently promote LMMs to engage in counter-
factual thinking, the key challenge is on the optimal
selection of counterfactual keywords in triggering
the exceptional thought. Accordingly, we present

Plausibility Verification Process (PVP), a robust
constraint designed to filter out the sub-optimal key-
words based on CLIP [Radford et al., 2021] align-
ment between the visual contents and their coun-
terfactual keywords. Through extensive analyses
on recent LMMs including open-source [Liu et al.,
2023b; Dong et al., 2024; Liu et al., 2024b; Chen
et al., 2024b] and proprietary models [Google,
2023; OpenAI, 2023c], we corroborate that Coun-
terfactual Inception helps to alleviate hallucination
in general across various benchmarks.

Our contributions can be summarized as fol-
lows: (i) we introduce Counterfactual Inception,
a novel method that prompts counterfactual think-
ing into LMMs using deliberately deviated lan-
guage keywords to mitigate hallucination, (ii) we
present Plausible Verification Process (PVP), a
robust constraint designed to refine the selection
of counterfactual keywords, ensuring the optimal
trigger of counterfactual thinking in LMMs. (iii)
Through extensive experiments and analyses on
various LMMs, including both open-source and
proprietary models, we demonstrate that Counter-
factual Inception effectively enhances reliability of
model responses across diverse benchmarks.

2 Related Work

V+L: Large Multi-modal Models. The release of
open-sourced LLMs [Touvron et al., 2023; Chiang
et al., 2023] has spurred active research towards
more generalized integration, especially vision-
language (VL) modalities. By using the language
models as linguistic channels, LMMs can integrate
visual information into broader VL understanding
tasks [Yang et al., 2022; Lu et al., 2023]. After the
surge of VL learning [Li et al., 2021, 2022; Yu et al.,
2022] facilitated cross-modal alignment, recent ap-
proach in LMMs is adopting visual instruction-
tuning [Dai et al., 2023; Liu et al., 2023c; Dong
et al., 2024; Chen et al., 2024b] on various datasets.
LLaVA series [Liu et al., 2023c,b, 2024b] have
paved the way for building multi-modality sys-
tems that can freely interact with users’ instruc-
tions. Along with such paradigm, a wide range of
advanced architectures and adaptations to specific
domains [Lin et al., 2023; Li et al., 2024] have
actively explored. Additionally, numerous propri-
etary LMMs are expanding their capabilities into
multi-modal tasks, by releasing advanced products
such as Gemini 1.5 [Reid et al., 2024], and GPT-
4o [OpenAI, 2024], which allow users to interact
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with the models through multi-modal channels.
Hallucination in Large Multi-modal Models. De-
spite the remarkable advancements of LMMs, the
major issue of hallucination still persists in their
responses. Hallucination refers to the phenomenon
where generated texts are inconsistent with the vi-
sual contents, one of the long-standing challenges
in image captioning [Rohrbach et al., 2018]. When
it comes to LMMs, this problem can be worse
due to their use of the expressive capabilities of
LLMs, which enable more detailed and rich de-
scriptions [Jing et al., 2023]. As their representa-
tion becomes abundant, the complexity of hallu-
cinations also increases, leading to a multifaceted
issue. This includes challenges: (i) the scarcity of
large-scale image-text instruction pairs [Liu et al.,
2023a], and (ii) the entropic gap between visual
and textual data [Sun et al., 2024], which can be
exacerbated during alignment pre-training.

Recent works have explored various ways to mit-
igate hallucination, including fine-tuning LMMs
with robust instructions [Liu et al., 2023a; Wang
et al., 2023], implementing multi-step LMM-aided
reasoning [Wang et al., 2024; Yin et al., 2023;
Zhou et al., 2024; Chen et al., 2024a], utilizing
RLHF [Sun et al., 2024; Yu et al., 2023] for pro-
viding human feedback instructions, and deploy-
ing contrastive decoding in the inference phase of
LMMs [Leng et al., 2023; Woo et al., 2024; Kim
et al., 2024]. More recent hallucination survey
compilation can be found in [Liu et al., 2024a;
Bai et al., 2024b]. Our counterfactual method pro-
vides a novel approach to reducing hallucinations
in LMMs by conditioning them on exceptional
thought through counterfactual keywords. We em-
phasize that our method can achieve significant
mitigation of hallucinatory responses without addi-
tional fine-tuning or human-resource instructions.

3 Proposed Method

3.1 Counterfactual Keyword Generation

Firstly, we can generally categorize the hallucina-
tory types into three distinct groups— nonexistent
objects, incorrect object attributes, and erroneous
object relations, as found in previous research [Liu
et al., 2024a; Bai et al., 2024b]. To mitigate the
hallucination in the model response, our approach
is implanting counterfactual thinking into LLMs
by harnessing counterfactual keywords. These key-
words intentionally do not describe what is visibly
apparent but instead provide hypothetical contexts.

Example of Counterfactual Inception:

User Is the jam on the bread made of straw-
berry?

GT In fact, this photo only shows a cut and
toasted bread slice. There is no jam on it.

Intern-VL 1.5 Based on the image, the jam on the bread
has a deep red color, which is commonly
associated with strawberry jam. How-
ever, without a clearer view or additional
information, it is not possible to defini-
tively confirm the flavor of the jam.

Counterfactual Counterfactual Prompt:
Inception Carefully avoid the listed Counterfactual

Keywords in your response.

Counterfactual Keywords:
O: cookie
A: a piece of burnt crusty french baguette
R: toaster on the table

Intern-VL 1.5 The image does not show any jam on the
bread, so I cannot confirm if it is made of
strawberry or any other fruit.

Table 1: Example of Counterfactual Inception us-
ing a baseline Intern-VL 1.5 [Chen et al., 2024b].

Importantly, they serve as primary anchors for the
contextual exploration for better understanding of
true visual clues. Therefore, we concretize counter-
factual categories into trinary taxonomy, which can
serve plausible alternatives for the visual contents:

• Object Substitution: replacing an object in the
image with another that could logically occupy
the same space but alters the scene’s context.

• Attribute Modification: changing an object’s
color, size, or shape in a way that makes sense
visually but leads to a different interpretation.

• Relational Changes: adjusting the spatial or in-
teractional relationships between objects to sug-
gest a different narrative within the scene.

Following tailored criteria (O: object, A: at-
tribute, andR: relation), we instruct LMMs them-
selves to generate three different categorical key-
words for the given images, providing plausible
but misleading interpretations of the visual con-
tents. Here, obtaining counterfactual keyword is a
challenging and complex task for LMMs. Accord-
ingly, we first manually generate a few examples
for in-context learning, then design a structured
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prompt with these seed examples to generate key-
words for the categories: O={oi}No

i=0, A={ai}Na
i=0,

andR={ri}Nr
i=0, where No, Na, and Nr represent

the different numbers of keywords in each category.
We illustrate detailed keyword generation prompts
in Table 6. Please see Appendix B.2 for the further
explanation of keyword generation.

3.2 Counterfactual Inception
After generating the keywords, we implant the
counterfactual keywords into LMMs as conditional
prior information to guide model responses that dis-
regard these inputs in the generation phase. Specifi-
cally, for the given LMMs Mθ, parameterized with
θ, our objective is generating output sequences
y<t+1=[y1, y2, . . . , yt] with given visual content
v and textual query q. When incorporating self-
generated counterfactual keywords to the models,
we concatenate all of the keywords generated from
a given image into a single list k=[O;A;R]∈R|K|,
where K denotes whole counterfactual keywords
set. After that, utilizing these keywords as con-
ditional prior, we can formulate auto-regressive
responses of LMMs as follows:

pθ(y|v, q, k) =
T∏

t=1

pθ(yt|v, q, k, y<t). (1)

Note that our method can be adapted to existing
LMMs in a training-free manner with a specific
counterfactual prompt (see Table 7). As exempli-
fied in Table 1, we prompt the models to carefully
disregard the self-generated counterfactual key-
words during their response generation for the user
textual query (please see details in algorithm 1).

In other words, our method explicitly signal
the models to consider alternative explanations an-
choring from the self-generated counterfactual key-
words. Consequently, our counterfactual approach
not only promotes broader contextual understand-
ing but also enhances reliability of the model re-
sponse. It enables LMMs to focus on true visual
clues within the context by incorporating counter-
factual information into the response generation,
which helps to mitigate hallucination.

3.3 Khead: Plausibility Verification Process
Even when we instruct the models to generate key-
words, they may not always fulfill our counterfac-
tual intentions— for example, even with specific
instruction, they might produce completely nonsen-
sical keywords that are irrelevant to the visual con-
tent, or generate keywords that are closer to factual

Figure 2: Frequency distribution for the counterfac-
tual keywords. The dashed lines indicate truncation
level. We have empirically observed that the key-
words in the upper half of the distribution are closer
to factual information rather than counterfactual,
thus the lower half, excluding extreme low, is set
as the criteria. See Fig. 6 for the keyword analysis.

rather than counterfactual. Therefore, the key chal-
lenge lies in finding the optimal counterfactual key-
words k∗=Khead(k) that trigger the counterfactual
thinking. To analyze the keywords, we randomly
sample 500 images from COCO [Chen et al., 2015]
and extract counterfactual keywords from 6 base-
lines, totaling 3000 instances and approximately
10K (O), 9.5K (A), and 9.5K (R) keywords in each
category, respectively.

To measure semantic alignment between the
counterfactual keywords and visual contents, we
employ CLIP [Radford et al., 2021] and delve into
the cross-modal similarity for the text-image pairs.
As in Fig. 2, the counterfactual keywords, while
not directly descriptive, still touch upon concepts
or contexts loosely related to the visual contents,
leading to a wide range of medium to low scores.
Following central limit theorem, the semantic space
covered by the keywords has inherent symmetry
around a mean value, with fewer keywords being
extremely poorly or highly related, creating the bell
curve typical of a normal distribution.

Regarding higher CLIP score suggests a better
match— that is, the text more accurately or rele-
vantly describes the image, we truncate the coun-
terfactual keyword set based on the score, such that
Khead(k) = {k ∈ K : λbot ≤ CLIP(v, k) ≤ λtop}.
As in the dashed lines in Fig 2, we empirically set
the truncation hyperparameter to the lower half of
the distribution, but not at the extreme low end,
which aligns with the definition of a counterfactual
keyword— meaningful, yet not direct, alternatives
to the visible content. Further analysis in Sec. 4.4.
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POPE MMVP
Model #param

Acc (↑) Prec Rec F1 (↑) ☼ Û L � , h Ô k � Avg (↑)
Open-source Models
LLaVA-1.5 84.07 90.88 75.73 82.62 22.2 50.0 23.1 20.0 40.0 60.0 36.4 37.5 16.7 35.33
+ Ours

13B 85.03 93.61 75.20 83.40 22.2 50.0 30.1 10.0 60.0 70.0 40.1 25.0 16.7 39.33
IXC2-VL 84.13 83.12 85.67 84.37 11.1 53.3 30.8 50.0 35.0 60.0 27.3 37.5 16.7 36.00
+ Ours

7B 87.50 94.61 79.53 86.42 22.2 60.0 42.3 40.0 25.0 70.0 36.4 50.0 50.0 42.67
LLaVA-NeXT 86.50 83.86 90.40 87.01 16.7 60.0 38.5 30.0 35.0 80.0 40.9 37.5 0.0 40.67
+ Ours

34B
85.63 79.35 96.33 87.02 33.3 63.3 46.2 40.0 45.0 60.0 40.9 25.0 0.0 44.67

InternVL 1.5 85.83 82.83 90.40 86.45 27.8 76.7 46.2 30.0 45.0 80.0 36.4 25.0 33.3 48.00
+ Ours

26B 89.50 92.11 86.40 89.16 33.3 73.3 61.5 40.0 50.0 60.0 36.4 25.0 50.0 51.33
Proprietary Models
Gemini 1.5 Pro 80.70 85.78 73.60 79.22 27.8 53.3 38.5 40.0 55.0 40.0 45.5 62.5 66.7 46.00
+ Ours

N/A 84.09 77.78 95.45 85.71 55.6 56.7 34.6 40.0 45.0 50.0 50.0 50.0 66.7 48.67
GPT-4V 82.70 85.50 78.80 82.00 38.9 50.0 38.5 40.0 30.0 70.0 36.4 62.5 66.7 44.00
+ Ours

N/A 85.50 87.60 82.60 85.07 50.0 45.5 50.0 37.5 50.0 53.3 66.7 80.0 25.0 48.67

Table 2: Evaluation results on discriminative benchmarks. We focus on the most challenging category
adversarial for POPE [Li et al.]. The each column symbol in MMVP [Tong et al., 2024] indicates 9
different visual patterns. We refer Appendix. A for subset details.

4 Experiments

4.1 Experimental Setup

Baselines & Implementation. We adopted re-
cent high-performing 6 LMMs as our baseline mod-
els, which can be categorized into open-/closed-
source: (i) open-source: LLaVA-1.5 (13B) [Liu
et al., 2023b], InternLM-XComposer2 (7B) [Dong
et al., 2024], LLaVA-NeXT (34B) [Liu et al.,
2024b], InternVL 1.5 (26B) [Chen et al., 2024b]
and (ii) proprietary models: Gemini 1.5 Pro [Reid
et al., 2024] and GPT-4V [OpenAI, 2023c]

For generating counterfactual keyword set K
from each model, we equally used same prompt
format in Table 6, but with different guidelines and
seed examples. To configure the settings for PVP,
CLIP-ViT-L [Radford et al., 2021] is employed
to measure CLIP score (cosine similarity) for the
visual contents and the generated counterfactual
keyword pairs. We set CLIP score truncation to
0.11 for lower and 0.18 for upper boundary.

Benchmarks and Evaluation Metrics. To as-
sess hallucination in LMMs, benchmarks can be
sorted into two types: (i) hallucination discrimina-
tion, which involves selecting the correct answers
from multiple choices, and (ii) non-hallucinatory
generation, testing the broader range of hallu-
cinations in model responses, measured by ei-
ther rule-based or GPT-aided methods [OpenAI,
2023b]. In our experiments, key evaluation bench-
marks include POPE [Li et al.] and MMVP [Tong
et al., 2024] for hallucination discrimination, and
CHAIR [Rohrbach et al., 2018] and MMHal-
Bench [Sun et al., 2024] for non-hallucinatory gen-

eration (Please see details in Appendix A):
• POPE uses 9K image-question pairs from

COCO dataset to detect object hallucinations.
We exclusively focus on the most challenging,
adversarial setting. Evaluation metrics are accu-
racy, precision, recall, and F1-score.

• MMVP measures accuracy for CLIP-blind pairs,
which have similar CLIP score but vary visually
(300 instances & 9 visual patterns). Each pattern
has curated questions with two response options
and scores only if the models identify both pairs.

• CHAIR evaluates the proportion of hallucinatory
objects in the model responses relative to the total
number of objects in the true image caption. It
consists of two metric variations: per-sentence
and per-instance proportion.

• MMHal-Bench assesses descriptive score and
hallucination severity in the model responses us-
ing GPT-4 with distinct eight question types. The
metric ranges from 0 to 7 for the overall score,
and the hallucination rate (%).

4.2 Counterfactual Keyword Statistics
As in Sec. 3.1, we first instruct the LMMs them-
selves to perform the counterfactual keyword gen-
eration task and adopt PVP constraint to filter out
sub-optimal keywords. For 6 baselines and 4 bench-
marks we have summarized the keywords statistics
in Fig. 3. The solid color indicates the frequency
after adjusting PVP constraint.

We can observe several interesting findings in the
statistics: (i) similar to human perception [Lin et al.,
2021], we can observe LMMs tend to struggle with
performing counterfactual thinking in the order of
object-, attribute-, and relation-level imagination.
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Figure 3: The statistical results for the number
of counterfactual keywords for 6 baselines and 4
benchmarks in each three category. Note that the
brighter colors in each bar indicates raw keyword
count, and the solid colors are the count after ad-
justing PVP constraint.

This difficulty is clearly shown in the filtered ra-
tios using PVP for each keyword category— note
that the most filtered category is relation. (ii) fol-
lowing the scaling law, the more outperforming
models that exploiting larger LLMs shows a bet-
ter capability of extracting keywords. Especially
for proprietary models, they show less than 40%
filtered ratio in object- and attribute-level keyword
categories, unlike open-source models, which have
a filtered ratio of over 50%. This results in overall
lower average CLIP scores for the keywords gener-
ated by both Gemini and GPT-4V compared to the
open-sourced models, as in Table 8. More detailed
statistics are in Fig. 7 and Appendix B.4.

4.3 Experimental Results

Discriminative Benchmarks. The evaluation for
discriminative benchmarks is summarized in Ta-
ble 2. As in the table, we can observe that overall
performance has been improved, compared to the
baselines after adopting our methods. Especially,
as analyzed in [Liu et al., 2023a], the composition
of POPE focuses solely on questioning the exis-
tence of objects, rather than their absence (e.g., "Is
there {something} in the image?"). The combina-
torial results of a high accuracy and F1 score indi-
cate that our method can boost the existing LMMs
to effectively mitigate hallucination by cautiously
confirming yes for the existence of objects (i.e., the
model does not often make up objects).

We further compare our method with 6 LMM
baselines in MMVP benchmark, which comprehen-
sively assess CLIP-blind pairs for 9 distinct visual
patterns. As shown in the Table 2, the results indi-

CHAIR MMHal-Bench
Model #param

CS (↓) CI (↓) All (↑) Hal (↓)
Open-source Models
LLaVA-1.5 26.4 11.12 2.39 52.1
+ Ours

13B 22.4 10.94 2.54 42.7
IXC2-VL 24.4 9.75 3.17 29.2
+ Ours

7B 20.2 8.30 3.38 25.0
LLaVA-NeXT 19.6 10.10 3.30 34.0
+ Ours

34B 16.6 7.81 3.42 32.0
InternVL 1.5 18.2 9.00 3.15 33.3
+ Ours

26B 17.8 7.93 3.42 26.0
Proprietary Models
Gemini 1.5 Pro 23.4 12.01 3.62 31.0
+ Ours

N/A 22.4 12.76 4.30 13.5
GPT-4V 20.0 9.23 3.44 28.1
+ Ours

N/A 17.8 8.67 3.47 20.8

Table 3: The evaluation results on generative
benchmarks. CS and CI indicates CHAIR metric
for sentence- and instance-level, respectively. In
MMHal-Bench, "All" indicates overall scores eval-
uated by GPT-4 and "Hal" denotes the hallucination
rate (%) in the model responses.

cate significant improvements in average accuracy
after adjusting Counterfactual Inception— increas-
ing from 5.8% up to 18.53%. These improvements
show that the counterfactual thinking is indeed
helpful to reassess the visual context for the given
images without further fine-tuning, leading to reli-
able responses that capture more relevant facts and
complex visual patterns.

Generative Benchmarks. Beyond the discrimi-
native benchmarks, which primarily evaluate multi-
ple choice questions, we assess LMM baselines to
identify their non-hallucinatory generation capabil-
ities by measuring the proportion of hallucinated
contents in their responses. As presented in Table 3,
our method enhances the overall performance on
both CHAIR and MMHal-Bench benchmarks. For
CHAIR evaluation, we randomly sample 500 im-
ages from COCO 2014 validation set and prompt
("Please describe this image in detail.") to the mod-
els with max generation length of 64. As in the ta-
ble, for the both per-sentence (CS) and per-instance
(CI) results demonstrate consistent improvements
in the tasks of long and short description generation
across LMM baselines in general.

For the results of MMHal-Bench using GPT-
aided evaluation, we clearly observe not only per-
formance gains in the overall score but also a re-
markably reduced hallucination ratio. In particular,
Gemini 1.5 Pro exhibits a significant hallucination
reduction in their responses, with improvements
of more than 50%. From the generative results
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Models PVP
POPE (dis) MMHal-B (gen)

Acc (↑) F1 (↑) All (↑) Hal (↓)
LLaVA-1.5 84.07 82.62 2.39 52.08

Baseline
IXC2-VL

-
84.13 84.37 3.17 29.17

+ O LLaVA-1.5
✗

83.47 81.37 2.41 46.88
IXC2-VL 84.57 83.39 2.93 30.00

+ O LLaVA-1.5
!

84.43 82.70 2.48 45.00
IXC2-VL 86.53 85.29 3.21 27.00

+ O;A;R LLaVA-1.5
✗

83.57 81.64 2.42 46.00
IXC2-VL 86.13 84.89 2.79 36.46

+ O;A;R LLaVA-1.5
!

85.03 83.40 2.54 42.71
IXC2-VL 87.50 86.42 3.38 25.00

Table 4: The results of ablation study for the effec-
tiveness of PVP constraint and the conjunction of
keyword categories. O indicates the result of only
utilizing object-level keywords.

above, by introducing counterfactuals to LMMs,
we demonstrate that our method encourages the
model to explore alternative paths, thereby enhanc-
ing contextual understanding based on true visual
clues and reducing hallucinatory responses.

4.4 Analysis on Counterfactual Inception

Ablation Study. We mainly conduct ablation
studies on the following two components: (i) the
effectiveness of PVP constraint, which is designed
to truncate the self-generated keywords that are
either too similar or too deviated and (ii) the com-
binatorial results of using object-, attribute-, and
relation-level counterfactual keywords. For the ab-
lation studies, we use two baselines (LLaVA-1.5
and IXC2-VL) along with POPE (discriminative)
and mmHal-Bench (generative) benchmarks.

First, as shown in Table 4, the existence of PVP
constraint can significantly boost benchmark per-
formances, indicating that the selection of optimal
keywords is an important factor for counterfactual
thinking. This indicates that disregarding too sim-
ilar (closer to factual) or too deviated keywords
potentially provokes ill-posed response generation
and leads to cross-modal inconsistency. Through
this ablation, we demonstrate that PVP, which lever-
ages a simple yet effective truncation method based
on the alignment score between visual contents and
keywords, is a necessary step for integrating coun-
terfactual keywords into LMMs without additional
training. Further discussion is in Appendix C.2.

Next, as in Sec. 3.1, we mainly generate counter-
factual keywords at three different levels of gran-
ularity— object, attribute, or relation. We analyze
how the attribute- and relation-level keywords can
further enhance performance by using object-level
keywords (O) as the primary anchors for concep-

Figure 4: The cumulative frequency distribution
along the scores for COCO dataset with 6 baselines.
The dashed lines indicates PVP constraint area.

tualizing counterfactuals. By comparing the re-
sults of +O and +O;A;R with PVP constraint
adjusted, we recognize that the conjunction of key-
words indeed helps to broaden context awareness,
which results in performance improvements and
mitigates hallucinatory responses.

Validity on Counterfactual Keywords. We ex-
plore the validity of generated counterfactual key-
words and the use of PVP constraint by analyzing
their distribution across CLIP scores. First, since
no ground truth labels for the self-generated key-
words, we randomly sampled 100 images from
COCO 2014 validation set and manually determine
whether the keywords were closer to counterfactual
or factual for the given images (binary task)— total
2K generated keywords integrated from whole 6
baselines. After that, as illustrated in Fig. 4, we
visualize the cumulative frequency of each sample
based on their CLIP score and analyze distribution
with the gray colored PVP constraint area.

The thresholds of PVP constraint are depicted as
purple dashed lines for distinguishing optimal coun-
terfactual keywords. In PVP constraint area, we
can observe that a large number of yellow scatter
points, categorized as counterfactual keywords, are
included in the gray zone with a steep slope. In ad-
dition, the orange distribution of factual keywords
are mostly located above the upper threshold. In
summary, we highlight the robustness of our refine-
ment method in identifying optimal counterfactual
keywords. Note that extreme cases (either too sim-
ilar or too deviated) are sparsely distributed at both
extremes and filtered out through PVP constraint.

Closer Look at Counterfactual Keywords. As
an additional analysis, we explore the counterfac-
tual keywords that frequently occurred in each of
6 baselines for the same 500 images sampled from
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Figure 5: The graphical results of Top-5 words oc-
currence using morphological analysis (NLTK) in
counterfactual keywords. Each legend box indi-
cates total number words in object, attribute, and
relation keyword category, respectively.

COCO 2014, which can reveal word-level distri-
bution and potential bias when generating the key-
words. To do that, we tokenize the counterfactual
keywords for each category: O, A, and R with
PVP constraint. Then, we conduct a morphologi-
cal analysis for each category using the following
criteria: O for nouns, A for adjectives, andR for
adverbs and verbs. In Fig. 6, we visualize the top-
5 morpheme words for each category. As in the
figure, we can observe that A keywords tend to
focus on colors when modifying attributes, while
both O and R are relatively evenly distributed in
general, especially considering the low count of
top-1 words and total categorical counts. Interest-
ingly, we find that GPT4V shows a notable bias
towards "ice" in its generation of counterfactual
keywords (O)— ice cream, iced tea, iced donuts,
etc,. Such bias may the frequently occurred words
in its training data, reflecting a specific weakness
of the model’s ability to generate diverse alterna-
tives. Also this indicates the potential availability

What colors are the traffic signs at the top, in the middle, 
and at the bottom?

Baseline:
The traffic signs at the top and in the middle are blue with 
white text, while the sign at the bottom is white with 
black text.

Counterfactual Keywords:
windmill tower, flag of a city, curved traffic light pole, 
street sign for beach, traffic light with different colors
Counterfactual Inception:
The traffic signs at the top and bottom are white, while 
the one in the center is blue.

What is the gender of the person riding the motorcycle 
in the image?

Baseline:
The person riding the motorcycle in the image is a woman.

Counterfactual Keywords:
parked on a gravel path in the snow, vintage car, bike in a 
shop display, motorcycle on sidewalk
Counterfactual Inception:
The image does not show a person riding the motorcycle, 
so it is not possible to determine the gender of the rider.

Which sheep is in front of the other sheep?

Counterfactual Keywords:
cows and pigs, goats, flock in an abandoned factory, giant 
lambs' ears
Counterfactual Inception:
The sheep in the front is the one with a predominantly 
white coat and a blue tag in its ear. It is standing in front of 
the other sheep, which have a mix of black and white 
wool.

Baseline:
The sheep in front of the other sheep is the one that is 
standing in the mud.

Figure 6: Case study on MMHal-Bench using the
highest-performing model (InternVL 1.5). The hal-
lucinatory responses are marked as red, and the
refined responses are blue using ours.

of counterfactual keywords as revealing generative
vulnerabilities in the alternative responses.

Case Study of Counterfactual Inception. The
case studies are depicted in Fig. 6 for the image-
question pairs on MMHal-Bench, where it evalu-
ate the degree of hallucination in the generated
model responses. As shown in the figure, our
method mitigates hallucinatory responses and an-
swers grounded on the true visual clues in the im-
age (not solely based on the biases). We highlight
that this is mainly due to the counterfactual key-
words— plausible but misleading visual interpre-
tations, which expand visual understanding by us-
ing these keywords as the primary anchor, thereby
enabling broader contextual exploration based on
alternative visual contents. We include additional
qualitative results and failure cases in Appendix C.

5 Conclusion

In this work, we propose a novel method of reduc-
ing hallucination in LMMs, Counterfactual Incep-
tion. By integrating counterfactual thinking to the
models through self-generated keywords, our ap-
proach improves the reliability of model responses.
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The introduction of Plausibility Verification Pro-
cess (PVP) further ensures the precision of select-
ing counterfactual keywords to implant counter-
factual thinking. Our extensive analyses across
various models and benchmarks corroborate that
our approach can effectively trigger exceptional
thought to the models without additional training
and mitigate hallucination in their responses.

6 Limitation and Future Scope

Our study introduces Counterfactual Inception, im-
planting counterfactual thinking into LMMs and
demonstrates that conditioning on counterfactual
keywords is helpful to mitigate hallucinatory re-
sponse generation. Despite our new findings, our
work reveals several limitations to discuss and fu-
ture research direction for further exploration.

Firstly, even if we have examined the recent out-
performing baselines with varying model sizes in-
cluding both open-source and closed-source, due
to academic budget and computational power, our
work restricted to investigate how the model sizes
can affect the capability of implanting counterfac-
tual thinking and the degree of hallucination in their
responses. This leaves an open question to figure
out the impacts of counterfactual thinking across
smaller and larger size of LMMs.

Furthermore, our framework requires additional
computational costs due to the self-generation task
of counterfactual keywords. As computational anal-
ysis, we compare the token throughput (token/s)
and latency (ms/token) on 8 NVIDIA RTX A6000
GPUs as in Table 5 (randomly sample 50 examples
on COCO dataset with two baselines). Here, even
at the cost of slightly increased inference time, we
emphasize the importance of our approach, which
significantly mitigates the hallucinatory responses
for real-world applications, as well as ensuring
quick responses.

Lastly, while we introduced a simple yet effec-
tive PVP constraint to filter out counterfactual key-
words, its optimality can be enhanced with a more
rigorous filtering mechanism. As we investigated
in Sec. 4.4, selecting optimal counterfactual key-
words significantly affects hallucinatory genera-
tion. As discussed in Appendix C.2, incorrectly
assigned counterfactual keywords can provoke ill-
posed response generation, such as parroting key-
words— this tendency is exacerbated in smaller
models. This suggests a further need to explore
more effective methods for identifying optimal

Model # param Throughput (token/s)↑ Latency (ms/token)↓
LLaVA-1.5

13B
11.08 91.03

+ Ours 7.60 134.08
InternVL 1.5

26B
9.40 106.44

+ Ours 5.93 169.91

Table 5: Throughput (token/s) and latency (ms/-
token) are computationally analyzed. Note that
we calculate the total computation involved in key-
word generation and model responses.

counterfactual keywords as a future direction.
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A Benchmark and Metric

We additionally explain the benchmarks details for
better understanding of their data statistics and met-
rics to evaludate hallcination.

A.1 Discriminative Benchmark

POPE [Li et al.] (Polling-based Object Probing
Evaluation) is designed to detect object hallucina-
tions using 9K image-question pairs. The questions
are about the presence of objects (e.g., "Is there
a person in the image?") and are categorized
into three sampling settings based on the selection
method of nonexistent objects: random, popular,
and adversarial. In the random setting, nonexis-
tent objects are chosen randomly. In the popular
setting, objects are selected from a pool of those
most frequently occurring, whereas in the adver-
sarial setting, objects that often co-occur but are
absent in the image are chosen. In our experiment,
we focus exclusively on adversarial setting, as it
is the most challenging setting than the others and
better represents the complex hallucination aspects
of real-world adaptation. The evaluation metrics
used are accuracy, precision, recall, and F1-score.

MMVP [Tong et al., 2024] (Multi-modal Visual
Patterns) aims to identify CLIP-blind pairs that
are considered similar by CLIP but have distinct
visual semantics. It contains 150 pairs with 300
questions across 9 visual patterns: Orientation and
Direction (☼), Presence of Specific Features (Û),
State and Condition (L), Quantity and Count (�),
Positional and Relational Context (,), Color and
Appearance (h), Structural and Physical Charac-
teristics (Ô), Text (k), Viewpoint and Perspective
(�). The questions are carefully designed to ask
the details that CLIP vision encoder ignores and
provides two options to select (e.g., "Where is the
yellow animal’s head lying in this image?
(a)Floor (b)Carpet). Accuracy is used as the
evaluation metric for each of the 9 visual patterns,
and only when the models correctly predict both
pairs is the accuracy considered.

A.2 Generative Benchmark

CHAIR [Rohrbach et al., 2018] (Caption Hallu-
cination Assessment with Image Relevance) is a
benchmark for evaluating image and caption con-
sistency from the language generation. It calculates
the degree of word cardinality intersection between
the responses generated by the model and the actual
image captions. It uses two variations of the metric,

per-sentence (CS) and per-instance (CI), to evaluate
whether the responses include hallucinated objects:

CS =
|{sentences w/ hallucinatory object}|

|{all sentences}| ,

CI =
|{hallucinatory objects}|
|{all objects mentioned}| .

(2)

For CHAIR evaluation, we randomly sampled
500 images from COCO 2014 validation and gen-
erate model responses with the max length of 64.

MMHal-Bench [Sun et al., 2024] focuses on the
evaluation of the degree of hallucination, which is
different from the previous LMM benchmarks [Liu
et al., 2023d], with GPT-4. The question, response,
category names of the image content, and human-
generated answer are provided as input to GPT-4.
Then, GPT-4 measures the severity of hallucina-
tion in a range of 0 to 7. The higher score denotes
less hallucination. The questions can be sorted into
8 types: object attribute, adversarial object, com-
parison, counting, spatial relation, environment,
holistic description, and others.

B Details of Counterfactual Inception

B.1 Algorithm
The better understand of full method, we specified
the detailed algorithm of Counterfactul Inception
in algorithm 1.

Algorithm 1 Counterfactual Inception

Require: Input image v, user query q, LMM Mθ,
keyword generation prompt p in Table. 6

1: Initialize keyword lists O,A,R
2: for c ∈ {O,A,R} do ▷ Keyword gen & PVP
3: k ←Mθ.generate(v, pc)
4: kpvp ← {k∈|K|:λbot≤CLIP(v, k)≤λtop}
5: Append kpvp to category list.
6: end for
7: k∗ ← [O;A;R] ▷ Concatenate all keywords
8: while t < T do ▷ Implanting keywords
9: logitMθ

←Mθ(v, q, k, y<t)
10: yt = argmax(Softmax(logitMθ

))
11: Set t← t+ 1
12: end while
13: return y<t+1 ▷ Return generated responses

B.2 Keyword Generation
We have utilized counterfactual keywords to im-
plant counterfactual thinking into LMMs. Due
to space limits in the main manuscript, the de-
tailed methodology for generating these keywords
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Counterfactual Keywords Generation Prompt:
###Instruction###
Generate a list of counterfactual keywords for the provided image. These keywords should propose plausible
yet intentionally misleading alternatives to the actual visual content of the image. Ensure that the changes are
visually conceivable and logically consistent within the context of the scene.

###Guidelines###
(option. O) Object Substitution: Replace an object in the image with another that could logically occupy the
same space but alters the scene’s context or meaning.
(option. A) Attribute Modification: Change an object’s color, size, or shape in a way that makes sense visually
but leads to a different interpretation.
(option. R) Relational Changes: Adjust the spatial or interactional relationships between objects to suggest a
different narrative or dynamic within the scene.

##Examples##
(Image 1): The photo features a tuxedo cat sitting inside the drum of a front-loading washing machine. The cat’s
distinctive white and black fur, white bib, and paws are visible against its dark body. It stares directly at the
camera with bright eyes. The washing machine has various control knobs and buttons, and the area is cluttered
with items like laundry detergent. The ambient, warm lighting adds a homely feel.
(option. O): small dog, laundry basket, robot vacuum, soccer ball
(option. A): orange cat, glowing dryer, vintage suitcase, oversized watch
(option. R): cat outside the dryer, dryer in a store display, cat playing with socks

###Your Answer###
List as many counterfactual keywords as possible for the image following the guidelines.
[Counterfactual Keywords]:

Table 6: Instruction prompt for generating counterfactual keywords. To generate different category
of counterfactual keywords: object-, attribute-, or relation-level, the instruction has three options to
choose O, A, orR.

Counterfactual Prompt:
Carefully avoid the listed Counterfactual
Keywords in your response.

Counterfactual Keywords: {cf_keywords}.
Question: {question}

Table 7: Counterfactual prompt to integrate the
generated counterfactual keywords with user
queries. Note that red text indicates placeholders
for the keywords and user questions.

is elaborated in this section. In Sec. 3.1 of the
main manuscript, we categorized counterfactual
keywords in three different taxonomy: object sub-
stitutionO, attribute modificationA, and relational
changes R. In generating the counterfactual key-
words directly from the LMMs, we discovered that
a simple instruction such as "Generate counterfac-
tual keywords that mismatch for the given image"
cannot fulfill our initial counterfactual intention.
This is because the counterfactual thinking requires
models to possess complex reasoning capabilities
that capture exceptional clues in both visual and
linguistic contexts.

Referring to comprehensive prompt engineer-
ing [Bsharat et al., 2023], we found that adopting
in-context learning is an effective way of gener-
ating plausible yet misleading counterfactual key-

words for visual content. We hypothesize that this
is achievable due to the diverse pre-training on the
language models inside LMMs, which includes a
wide array of hypothetical and counterfactual sce-
narios found in various texts such as literature and
speculative fiction.

Accordingly, we first instruct GPT4V [OpenAI,
2023c] to generate seed examples that are not
grounded in the true visual clues, from the perspec-
tives of three different views— object, attribute,
and relation. Then, we manually modify the seed
examples to meet our counterfactual design. Con-
sequently, as illustrated in Table 6, we introduce a
structured prompt to generate counterfactual key-
words in three different granularity with selecting
options: O, A, andR.

B.3 Counterfactual Prompt
After obtaining counterfactual keywords, we ap-
ply a simple rule-based text pre-processing to fil-
ter out non-informative characters such as punc-
tuation marks, stop words, noise words. Subse-
quently, we designed a specific prompt to integrate
the counterfactual keywords with user queries with
placeholders, which is then forwarded to the mod-
els. As shown in Table 7, we sophisticatedly de-
signed a counterfactual prompt to guide the models
in disregarding the extracted counterfactual key-
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Model PVP
POPE MMVP COCO MMHal-Bench

O A R Score O A R Score O A R Score O A R Score

LLaVA-1.5
✗ 571 557 678 0.205 457 487 568 0.199 796 858 907 0.204 142 159 124 0.201
! 190 175 262 0.154 177 155 179 0.154 249 258 205 0.153 50 47 30 0.153

IXC2-VL
✗ 1963 1836 1783 0.189 1156 1087 1062 0.189 1928 1830 1838 0.188 371 352 344 0.191
! 858 768 623 0.152 543 513 403 0.154 913 764 629 0.152 153 132 106 0.152

LLaVA-NeXT
✗ 2312 2120 1856 0.191 1333 1170 1092 0.192 2441 2172 2159 0.190 454 400 356 0.197
! 1109 954 383 0.154 550 489 383 0.154 1070 897 781 0.153 180 159 140 0.154

InternVL 1.5
✗ 1050 1039 1024 0.194 611 619 598 0.189 1034 1020 1071 0.191 203 197 192 0.193
! 445 439 380 0.154 230 221 182 0.152 662 634 407 0.151 94 69 40 0.153

Gemini 1.5
✗ 1897 1795 1687 0.173 1191 1093 1090 0.178 1859 1832 1753 0.172 372 359 329 0.172
! 1291 1028 582 0.151 749 630 377 0.151 1250 1090 632 0.150 230 184 108 0.150

GPT4V
✗ 2000 1922 1988 0.178 1200 1160 1182 0.181 1995 1865 1972 0.169 384 370 379 0.181
! 1369 1021 549 0.153 748 656 314 0.151 1320 1211 732 0.150 234 184 90 0.150

Table 8: Details of counterfactual keywords statistics and average CLIP score along keyword category.

Figure 7: Detailed analysis on the categorical counterfactual keyword distribution.
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Q1. Is there a cup in the image?
Q2. Is there a bowl in the image?

InternVL 1.5:
A1. Yes, there is a cup in the image. It is located near the 
sandwich on the plate.
A2. Yes, there is a bowl in the image. It is located near the 
sandwich on the plate.

Counterfactual Keywords:
green salad bowl
Counterfactual Inception:
A1. No, there is no cup in the image.
A2. No, there is no bowl in the image.

Q1. Is there a car in the image?
Q2. Is there a truck in the image?

GPT4V:
A1. No, there is no car in the image. The image shows the 
back of a bus with an advertisement featuring an 
animated character. The bus is on a road, and there are 
some trees and signs visible in the background, but no 
cars are visible in this particular shot.
A2. Yes, there is a truck in the image. It appears to be a 
commercial truck with an advertisement on the back 
featuring an animated character. The truck is on a road 
with other vehicles and buildings in the background.

Counterfactual Keywords:
desert road, blue sky, bicycle
Counterfactual Inception:
A1. Yes, there is a car in the image.
A2. No, there is no truck in the image

Figure 8: Additional case study on POPE dataset. The hallucinatory responses are marked as red, and the
refined responses are blue using ours.

words when generating responses to user queries.
We pinpoint that simply implanting the counter-
factual prompt with the counterfactual keywords
enables the models to mitigate hallucinatory re-
sponses without additional training.

B.4 Details of Keyword Statistics

In addition to Sec. 4.2, we further explore the
details of self-generated counterfactual keywords
statistics for object, attribute, and relation category.
One findings, we can observe as in Table 8, is
that the more outperforming LMM baselines show
lower average CLIP scores, which indicates bet-
ter association for the alternatives for the visual
clues. Among open-sourced models, we found
that InternVL 1.5, which achieved competent per-
formances compared to proprietary multi-modal
models, generates relatively a limited number of
counterfactual keywords for the given counterfac-
tual instruction. Our assumption of this tendency
is on the combined results of its fine-tuning stage,
which utilizes text-only data sources such as Open-
Hermes 2.5 [Teknium, 2023], Alpaca-GPT4 [Taori
et al., 2023], ShareGPT [Zheng et al., 2024], and
COIG-CQIA [Bai et al., 2024a], and its deeper
cross-modal alignment layers, which may leads to
focus on the actual clues within the visual context.

C Qualitative Assessment

C.1 Additional Case Study

In our additional case study, we focus on providing
further instances demonstrating the effectiveness
of our approach, Counterfactual Inception, across
various benchmarks. We evaluated our method
on discriminative benchmarks such as POPE [Li
et al.] and MMVP [Tong et al., 2024], generative
benchmark MMHal-Bench [Sun et al., 2024].

As in Fig. 8 and Fig. 9, we illustrate qualitative
results for POPE and MMVP datasets, both are
discriminative benchmarks where models select
answers from the multiple options provided. The
utilized models used in this qualitative study are
LLaVA-NeXT, InternVL 1.5, and GPT-4V, all of
them are the most outperforming multi-modal mod-
els in open-source and close-source, respectively.
Importantly, we highlight that after conditioning
on the given plausible but misleading counterfac-
tual keywords, the baselines demonstrate a better
understanding of the true visual clues, enabling a
broader contextual exploration that helps to miti-
gate hallucinatory responses.

In Fig. 11, we visualize case studies of MMHal-
Bench, which is a generative benchmark, to illus-
trate the effectiveness of Counterfactual Inception
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Is the duck's entire beak visible in the picture?
(a) Yes 
(b) No

LLaVA-NeXT:
(left) (b) No / (Right) (b) No

Is the lock locked or unlocked? 
(a) Locked 
(b) Unlocked

Counterfactual Keywords:
orange fish, piranha, dog with yellow collar
Counterfactual Inception:
(left) (a) Yes / (Right) (b) No

InternVL 1.5:
(left) (b) Unlocked / (Right) (b) Unlocked

Counterfactual Keywords:
red paint chipped away, combination dial pad
Counterfactual Inception:
(left) (a) Locked / (Right) (b) Unlocked

Are the wheels of the school bus visible in the image?
(a) Yes 
(b) No

GPT4V:
(left) (b) No / (Right) (b) No

Counterfactual Keywords:
neon lights, convertible car, fire truck, delivery van
Counterfactual Inception:
(left) (a) Yes / (Right) (b) No

Figure 9: Additional case study on MMVP dataset.
The hallucinatory responses are marked as red, and
the refined responses are blue using ours.

Q1. What type of fruit is this?
Q2. How many uncut fruits are in the image?

LLaVA 1.5:
A1. The image shows a group of unripe lychee fruits.
A2. There are four uncut fruits in the image

Counterfactual Keywords:
Kiwi fruit peeled open revealing flesh, fruit bowl
Counterfactual Inception:
A1. The image shows a group of unripe fruit, which are 
likely to be kiwi fruit, sitting on a wooden table.
A2. There are three uncut fruits in the image.

Figure 10: Failure cases on in-the-wild dataset. The
hallucinatory responses are marked as red, and the
refined responses are blue using ours.

in mitigating descriptive hallucination and improv-
ing generative ability. The results reveal that the
original baselines generate ambiguous or inconsis-
tent responses not grounded on the visual contents,
as if the model recognizes non-existent objects.
These comprehensive case studies demonstrate that
our approach not only enables LMMs to clearly
understand the visual context but also significantly
enhances their reliability in identifying and describ-
ing actual elements present in the visual content,
thereby providing more reliable and contextually
appropriate responses.

C.2 Failure Case
Here, we investigate failure cases to understand the
limitations of counterfactual thinking as in Fig. 10.
Through the analysis, we identified that small mod-
els (LLaVA 1.5-13B) sometimes parrots counter-
factual keywords in its generated sentences, rather
than effectively constructing counterfactual scenar-
ios using these keywords. We hypothesize that
this tendency could be linked to the lack of excep-
tional thought in small models, which potentially
leads to the anchoring effect [Tversky et al., 1982],
a cognitive bias where initial information dispro-
portionately influences subsequent responses. Al-
though we have proposed a simple and effective
PVP constraint to mitigate such negative potential
in advance, developing more advanced constraints
could be another future research to enhance the
counterfactual thinking capabilities of LMMs.
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How is the yellow boat positioned in relation to the 
white yacht in the image?

LLaVA-NeXT:
In the image, the yellow boat is positioned to the right of 
the white yacht. The yellow boat appears to be moving 
towards the right side of the frame, while the white yacht 
is stationary or moving in the opposite direction.

What is playing on the monitor?

InternVL 1.5:
The monitor is not displaying any content, so I cannot 
determine what is playing on it.

Counterfactual Keywords:
computer keyboard accessory, white laptop
Counterfactual Inception:
The image does not provide any information about what 
is playing on the monitor, as the monitor is not visible in 
the photo.

How many people are there in the image?

Counterfactual Keywords:
blue background, congratulations, summer 2021, summer 
2014, beach photo, winter 2014, family at the beach, 
birthday card, happy new year.
Counterfactual Inception:
There are four people in the image.

GPT4V:
There are three people visible in the image. They appear 
to be posing together for a photo.

Counterfactual Keywords:
cloudy sky, man holding phone, red, man, the image 
shows a man driving, man looking at water.
Counterfactual Inception:
The yellow boat is positioned in front of the white yacht in 
the image.

Figure 11: Additional case study for MMHal-Bench dataset. The hallucinatory responses are marked as
red, and the refined responses are blue using ours.
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