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Abstract

We introduce a novel continued pre-training
method, MELT (Materials-aware continued pre-
training), specifically designed to efficiently
adapt the pre-trained language models (PLMs)
for materials science. Unlike previous adapta-
tion strategies that solely focus on construct-
ing domain-specific corpus, MELT comprehen-
sively considers both the corpus and the train-
ing strategy, given that materials science corpus
has distinct characteristics from other domains.
To this end, we first construct a comprehensive
materials knowledge base from the scientific
corpus by building semantic graphs. Lever-
aging this extracted knowledge, we integrate
a curriculum into the adaptation process that
begins with familiar and generalized concepts
and progressively moves toward more special-
ized terms. We conduct extensive experiments
across diverse benchmarks to verify the effec-
tiveness and generality of MELT. A compre-
hensive evaluation convincingly supports the
strength of MELT, demonstrating superior per-
formance compared to existing continued pre-
training methods. In-depth analysis of MELT
also shows that MELT enables PLMs to effec-
tively represent materials entities compared to
the existing adaptation methods, thereby high-
lighting its broad applicability across a wide
spectrum of materials science1.

1 Introduction

Materials science encompasses interdisciplinary
studies concerning the behaviors, properties, and
applications of materials. Given the vast search
space in materials science, deep learning-based ap-
proaches have emerged as significant avenues to
accelerate the entire research pipeline (Tshitoyan
et al., 2019; Weston et al., 2019; Olivetti et al.,
2020). Specifically, methods centered on natural

* These authors contributed equally to this work.
1Our code is available at https://github.com/

JunhoKim94/MELT
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Figure 1: Frequency histograms of all words and
chemical formulas on materials science corpus (150K
materials-related scientific papers).

language processing (NLP) have provided promis-
ing results across a number of materials tasks, such
as materials entity recognition (Weston et al., 2019;
Friedrich et al., 2020) and synthesis action retrieval
(Wang et al., 2022a). However, the limited and
scarce nature of datasets in this domain poses sub-
stantial challenges for developing models that gen-
eralize well across a broad range of materials enti-
ties (Song et al., 2023a).

One promising approach to addressing this lim-
itation involves adapting the pre-trained language
models (PLMs) for materials science by continu-
ously pre-training them on materials science corpus
(Gupta et al., 2022; Huang and Cole, 2022). How-
ever, these methods have predominantly focused
on constructing the domain-specific corpora used
in the continued pre-training process, neglecting
the training strategies employed in the adaptation
process. This oversight can lead to inefficiencies in
capturing domain-specific nuances and knowledge.
For example, the chemical formulas (e.g., LiCoO2),
which are fundamental terms in the materials sci-
ence field, are typically infrequent words (Figure
1). Therefore, these domain-specific terms are of-
ten inadequately captured by the random masking
strategy used in previous studies, leading to sub-
optimal adaptation results.
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In this paper, we propose a novel continued pre-
training method, namely MELT (MatEriaLs-aware
continued pre-Training) that learns the knowledge
of materials science through the tailored masking
strategy to materials science. To this end, we begin
by extracting chemical entities from the materials
science corpus. However, these entities alone do
not encompass all the fundamental concepts of ma-
terials science, specifically the structure-property-
processing-performance paradigm (William and
Callister, 1989). To bridge this gap, we expand the
coverage of materials knowledge by constructing
semantic graphs that integrate relevant concepts
and missing entities. Building on this enhanced
materials knowledge, we introduce curriculum into
the adaptation process, starting with more familiar
and interconnected entities and gradually advanc-
ing to more specialized and less common terms.
This comprehensive adaptation allows PLMs to
effectively learn materials science knowledge.

To verify the efficacy of MELT, we perform
extensive experiments, spanning a wide range of
downstream tasks for materials science on both
generation and classification tasks. Comprehensive
evaluation results clearly support the superiority of
MELT over strong baselines. Moreover, we verify
that MELT enables PLMs to effectively learn the
materials by thoroughly transforming both the train-
ing corpora and adaptation strategies, underscoring
the efficacy of the tailored approach to materials
science. In summary, the contributions of this paper
include the following:

• We propose MELT, a novel continued pre-
training method to adapt the pre-trained lan-
guage models for materials science.

• We introduce a method for constructing a se-
mantic graph of materials entities to widen the
coverage of materials knowledge.

• We demonstrate that MELT substantially im-
proves the performance compared to previous
adaptation methods for materials science.

2 Related Works

2.1 NLP in Materials Science

The increasing number of textual datasets in mate-
rials science (e.g., scientific publications, patents)
has facilitated the use of NLP-based approaches
to address various materials tasks, such as rela-
tion classification (Mysore et al., 2019a; Mullick

et al., 2024a) and materials entity extraction (We-
ston et al., 2019; Friedrich et al., 2020). For exam-
ple, Weston et al. (2019) proposed a bidirectional
LSTM tagger for named entity recognition on tags
associated with the well-known materials science
tetrahedron (i.e., structure, property, processing,
performance). Tshitoyan et al. (2019) demon-
strated promising results with embedding-based
unsupervised methods for understanding chemistry
knowledge and chemical properties. Beyond em-
bedding models, Trewartha et al. (2022) introduced
PLMs trained on a materials science corpus fol-
lowing the BERT procedure (Devlin et al., 2019).
Similarly, Gupta et al. (2022) and Huang and Cole
(2022) adapted SciBERT (Beltagy et al., 2019) and
BERT (Devlin et al., 2019) to the domains of gen-
eral materials and battery-specific corpora by ad-
ditionally training on the domain-specific corpus.
Recently, HoneyBee (Song et al., 2023b) suggested
the materials domain-specific instruction data to
fine-tune the large language models.

Previous studies have demonstrated promising
results in adapting PLMs to materials science.
However, these methods have primarily focused on
adapting the corpus for materials science while em-
ploying a basic random masking strategy (Devlin
et al., 2019). Such a domain-agnostic approach
potentially prevents the models from adequately
learning about chemical entities and diverse for-
mulas, which often fall into the less frequent tail
distributions in word frequency. In contrast, MELT

is a tailored approach to materials science, focusing
on both the adaptation corpus and learning strate-
gies to adapt PLMs for materials science.

2.2 Continued Pre-training of PLMs
Building PLMs from scratch requires substantial
computational resources; therefore, continued pre-
training has garnered significant attention, espe-
cially in scientific domains. For example, Gururan-
gan et al. (2020) adapted PLMs trained on general
corpora to various domains (e.g., computer science,
biomedical) by performing random-based masked
language modeling on the target domain corpus.
Lin et al. (2021b) performed the domain adapta-
tion by selectively masking entities based on the
trained taggers. Subsequently, Wilf et al. (2023)
proposed Diff-Masking that utilizes the frequency
difference between generic and target domains to
perform masked language modeling on domain-
specific terms. In addition to the masking strategy,
several works studied the catastrophic forgetting
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Figure 2: Overall adaptation process of PLMs with MELT. Starting from the materials science corpus, we extract
chemical entities (e.g., chemical names and formulas). These entities are then expanded to related terms based on
the materials embeddings with their compositional property, resulting in materials semantic graphs. Based on the
constructed graphs, MELT performs curriculum masking over materials corpus (e.g., three phases in this example).

problem when adapting PLMs to other domains
(Jin et al., 2022; Ke et al., 2023).

In contrast, MELT has distinct characteristics
compared to the previous continued pre-training
methods. First, previous works have designed a
domain-agnostic masking strategy based on ran-
dom sampling and word frequency. However,
MELT involves a tailored masking strategy to ma-
terials science by comprehensively constructing
materials knowledge based on the fundamental
concepts of materials (i.e., structure, property, pro-
cessing, performance). Second, MELT integrates a
curriculum into the adaptation process, providing
better local optima compared to naive adaptation
methods (Bengio et al., 2009).

3 Materials-aware Continued Pre-training

We elaborate on the proposed continued pre-
training method, MELT. The key strategy is to
extract the material entities from the scientific pa-
pers and inject the extracted knowledge of the ma-
terials into the PLMs through a masked language
modeling (MLM) objective. To this end, we first
extract the materials entities from the materials sci-
ence corpus. From these entities, we expand the
materials knowledge by semantically augmenting
the related entities and properties. We then start
pre-training on the basic materials entities and pro-

gressively move more specialized knowledge in
a curriculum manner. The overall procedures are
described in Figure 2.

3.1 Continued Pre-training through MLM
We start by setting the training objective of contin-
ued pre-training. Following the promising results
of the previous study (Gururangan et al., 2020), we
adapt the PLMs to different domains by performing
MLM (Devlin et al., 2019) on the domain-specific
corpus related to materials science. Specifically,
it masks out a small portion of the input sequence
(i.e., replace the original word with the special to-
ken [mask]) and trains the model to predict the
original tokens. Formally, let the set of words to
be masked be denoted as G, the MLM training
objective is as follows:

L(x, x̂; θ) =
∑

wm∈G,wm∈x
logP (y = wm|x̂; θ)

(1)
where x and x̂ denote the original and masked in-
put sequences based on the set of masking words
G, respectively. In a typical pre-training objective,
the set G is randomly determined without consider-
ing the importance of words in the target domain.
However, such a random strategy makes the PLMs
poorly learn the sparse domain-specialized terms
(Wilf et al., 2023), as these terms are rarely selected
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for the training. Therefore, the objective of MELT

is to fill the masking set G with the materials knowl-
edge to adapt the PLMs to the domains of materials
science effectively.

3.2 Materials-aware Entity Masking

Chemical Entity Extraction While the general
domain corpus is widely spread across diverse
sources and formats (e.g., Wikipedia, News, SNS),
the large-scale corpus for materials science mainly
exists in the form of scientific publications (e.g.,
patents, papers). Moreover, it has several dis-
tinct characteristics. First, the materials corpus
includes a number of chemical formulas (e.g., H2O,
LiCoO2), which are crucial components to under-
standing materials science. For example, in ma-
terials benchmarks for token classification, such
as named entity recognition, the formulas roughly
take up 20% among all entities2. Secondly, mate-
rials corpus frequently include various representa-
tions of domain-specific jargon and abbreviations
(e.g., "THF" for Tetrahydrofuran, "AZT" for 3’-
azido-3’-deoxythymidine).

To extract these terms to learn materials knowl-
edge, we follow the hybrid approach of Chem-
DataExtractor (Swain and Cole, 2016; Mavracic
et al., 2021), utilizing both dictionary-based map-
ping and CRF taggers to identify the materials enti-
ties. The extracted terms include not only elemental
and compound names but also materials character-
istics such as density, melting point, and electrical
conductivity. This wealth of material-aware en-
tity extraction provides a solid foundation for the
continued pre-training.

Semantic Graph for Knowledge Expansion
While the various types of material-aware entities
from previous extraction phases involve knowledge
about materials, they still lack the fundamental con-
cept of materials science about structure-property-
processing-performance paradigm within materials
science (William and Callister, 1989).

To augment these fundamental relations, we con-
struct semantic graphs of materials entities by con-
necting related terms and finding similar yet miss-
ing entities with the seed entities. To this end, we
first train a lightweight embedding model (Tshi-
toyan et al., 2019) on the materials corpus 3. Based
on the learned embeddings of materials terms and
entities, we leverage the compositional property

2Based on the statistics of MatScholar and SOFC.
3Details for word embeddings are in Appendix A.2

of the embedding representations (Mikolov et al.,
2013) where the addition of the two embeddings
can indicate the compositional meaning (e.g., the
sum of the two embeddings, Vietnam and Capital,
can infer the meaning of Hanoi). For example, to
find out the Application of the carbon entity, adding
the embedding about Application to the embedding
of carbon can infer new entities related to the prop-
erty of carbon (Detailed example can be found in
Appendix A.1).

To obtain the pivot vectors representing funda-
mental concepts of materials science, we extract
the example pairs of each concept4 from MatKG
(Venugopal et al., 2022) and build the concept em-
beddings by subtracting the word embeddings of
the pair of each concept. Formally, let the set of
the word pairs for the concept R be denoted as SR,
and the embedding for the concept R is derived as
follows:

e(R) =
1

|SR|
∑

(wa,wb)∈SR

(e(wa)− e(wb)) (2)

where wa and wb are the subject and object for the
relation concept R, and e(w) denotes the trained
embedding for the word w. Based on the embed-
dings of each relation concept, we build the seman-
tic graph where nodes represent entities and edges
represent similarity between entities. Specifically,
we make the connections based on the cosine simi-
larity between all words in trained embeddings and
compositional embedding of extracted entities and
concepts as follows:

(e(wi) + e(R)) · e(V)
∥(e(wi) + e(R))∥∥e(V)∥ , ∀wi ∈ G (3)

where e(V) denotes the embeddings for all words.
However, all words connected by this procedure
are not closely related to each entity. Therefore, we
only leave the top-k elements based on their simi-
larity. Throughout this process, we obtain a richer
set of materials entities for MLM. The number of
unique entities is in Appendix A.4

3.3 Curriculum-based Entity Learning
While continued pre-training with the tailored
masking can effectively train the knowledge of ma-
terials sciences, learning with specialized entities
from the beginning makes the training unstable,

4We consider six fundamental concepts: Material, Property,
Application, Characterization, Descriptor, Symmetry/Phase.
The details for each relation are listed in Appendix A.3.
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Algorithm 1 Curriculum-based Entity Learning

Input: Node degree-based curriculum {G1...GK},
PLM parameters θ, training corpus D, maximum
training step τ , masking probability pm,

1: for token sequence T in D do
2: Search entities e in T .
3: Order entities according to {G1...GK}
4: end for
5: while step < τ do
6: for stage i = 1, 2, ...,K do
7: T ′←MaskingEntities(T , Gi, pm)
8: Train with MLM for PLM θ on T ′

9: end for
10: end while
11: return PLM parameters θ

leading to poor generalization performance (Tay
et al., 2019a; Zhan et al., 2021; Lee et al., 2022). In-
spired by the human learning process, which learns
easy concepts first and moves to harder ones, we
introduce a curriculum into the adaptation process.

To define the difficulty within the set of extracted
materials terms G, we utilize the node degree5

in the constructed semantic graph in section 3.2.
Since the more connected entities are likely to be
more familiar and well-defined within the corpus,
they can provide a straightforward criterion for
prioritizing the learning sequence. Therefore, we
gradually mask materials entities from those with
higher node degrees (i.e., fundamental and com-
mon concepts) to those with lower node degrees
(i.e., niche and specialized concepts).

We thus calculate the node degree of all entities
and decompose the set of entities G into a strati-
fied format, i.e., G = {N1,N2, ...,NK} where K
is the number of stages for the curriculum, and N1

consists of the easiest entities while NK includes
the hardest entities. Then, we gradually expand the
materials entities from the easiest entity set G1 to
the hardest entity set to construct the curriculum
set Gi as follows:

Gi = Gi−1 ∪Ni, (G1 = N1) (4)

By utilizing the curriculum sets, we progressively
mask the entities connected to previously learned
entities for each stage. The detailed process is
represented in Algorithm 1.

5Node degree is the number of connected edges to nodes.

4 Experiments

In this section, we verify the efficacy of the MELT.
Specifically, we answer the following four ques-
tions through extensive experiments and analysis:

Q1 (Adaptability) Does MELT enable better
adaptation than existing methods across di-
verse benchmarks? (§4.2, §4.4 §4.5)

Q2 (Transferability) How the extracted materi-
als knowledge from MELT is related and affect
to downstream tasks? (§4.3, §4.6, §4.7)

Q3 (Efficiency) Does MELT offer better effi-
ciency than existing continued pre-training
methods for domain adaptation? (§4.8)

Q4 (Insights) What materials science knowledge
is extracted and learned during the continued
pre-training? (§4.9)

4.1 Experimental Setups
Baselines To confirm the effectiveness of MELT,
we mainly compare ours with strong domain adap-
tation methods for PLMs: DSP (Gururangan et al.,
2020), EntityBERT (Lin et al., 2021a), Diff-
Masking (Wilf et al., 2023), and DAS (Ke et al.,
2023). The detailed experimental setups for base-
lines are described in Appendix C.1.

Pre-training To adapt the PLMs to the domain of
materials science, we leverage the 150K scientific
papers related to materials science following the
previous work (Gupta et al., 2022). In MELT, we
implement iterative curriculum learning, consisting
of 10K steps for warm-up training and 10K steps
for each subsequent curriculum stage. We set the
number of curriculum stages (K) to 3 based on the
empirical analysis. Detailed analysis is represented
in Appendix F.

Downstream Tasks and Datasets To demon-
strate the diverse aspects of the MELT, we compare
the models on both generation and classification
tasks. For generation tasks, we evaluate each base-
line using the MatSci-NLP dataset (Song et al.,
2023a), which comprises seven materials-related
tasks (e.g., materials entity recognition, slot filling).
Detailed information on each task within MatSci-
NLP can be found in Appendix B. For classifica-
tion tasks, we adopt four different tasks following
the previous research (Gupta et al., 2022), which
include NER (MatScholar (Weston et al., 2019),
SOFC-EXP (Friedrich et al., 2020)), paragraph
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Table 1: Evaluation results on MatSci-NLP. NER: Named-Entity Recognition, RC: Relation Classification, EAE:
Event Argument Extraction, PC: Paragraph Classification, SAR: Synthesis Action Retrieval, SC: Sentence Classifi-
cation, SF: Slot Filling. The best and the second best results are highlighted in boldface and underline, respectively.

Method Metric
MatSci-NLP

NER RC EAE PC SAR SC SF Overall

SciBERT
(Beltagy et al., 2019)

Micro-F1 0.738 0.818 0.458 0.671 0.701 0.909 0.500 0.693
Macro-F1 0.517 0.600 0.290 0.568 0.528 0.612 0.258 0.482

DSP
(Gururangan et al., 2020)

Micro-F1 0.733 0.857 0.483 0.704 0.772 0.914 0.568 0.722
Macro-F1 0.500 0.631 0.313 0.579 0.649 0.630 0.322 0.518

EntityBERT
(Lin et al., 2021b)

Micro-F1 0.728 0.805 0.495 0.765 0.739 0.897 0.559 0.713
Macro-F1 0.528 0.567 0.311 0.699 0.621 0.581 0.303 0.516

DAS
(Ke et al., 2023)

Micro-F1 0.770 0.848 0.478 0.672 0.778 0.902 0.592 0.725
Macro-F1 0.567 0.628 0.292 0.607 0.641 0.607 0.356 0.528

Diff-Masking
(Wilf et al., 2023)

Micro-F1 0.771 0.858 0.471 0.686 0.769 0.879 0.589 0.721
Macro-F1 0.575 0.641 0.301 0.573 0.687 0.622 0.373 0.539

Micro-F1 0.786 0.860 0.498 0.728 0.798 0.911 0.610 0.741
MELT (ours)

Macro-F1 0.593 0.620 0.341 0.647 0.685 0.613 0.395 0.556

Table 2: Ablation results on MatSci-NLP. CEL and
MEM indicate curriculum-based entity learning and
materials-aware entity masking, respectively. The val-
ues in parentheses represent the performance difference
to MELT. Detailed results are shown in Appendix E.

Method
MatSci-NLP (Overall)

Micro-F1 Macro-F1

MELT (ours) 0.741 0.556

w/o CEL 0.729 (-0.012) 0.542 (-0.014)

w/o CEL, MEM 0.713 (-0.028) 0.516 (-0.040)

classification (Glass Science (Venugopal et al.,
2021)), and slot filling (SOFC-Filling (Friedrich
et al., 2020)) tasks. Detailed evaluation metrics are
shown in Appendix C.3.

Backbones Following prior work (Gupta et al.,
2022), we apply each adaptation method to the
SciBERT (Beltagy et al., 2019), which is an
encoder-based model pre-trained on a scientific
corpus comprising approximately 1.14 million doc-
uments. For generation tasks, following the re-
cent setup from the previous work (Song et al.,
2023a), we construct an encoder-decoder trans-
former model by integrating a transformer decoder
with the encoder model, which pre-trained on each
baseline.

4.2 Main Results

Table 1 presents the overall performance results
on the MatSci-NLP benchmark. The comparison
indicates that MELT yields the best adaptation out-
comes compared to previous methods. Specifically,
MELT enhances the performance of the backbone
model by an average of 6.9% and 15.3% in terms
of Micro-F1 and Macro-F1 scores, respectively,
across all tasks. This indicates the broad applica-
bility of the proposed method to various materials
science tasks. It is also noteworthy that domain-
agnostic methods (i.e., Diff-Masking, DAS) reveal
limited performance improvement compared to the
random masking baseline (i.e., DSP (Gururangan
et al., 2020)). It underscores the effectiveness of the
domain-specific approach in continued pre-training.
Overall, the results strongly support the superior-
ity of the proposed method in adapting PLMs to
materials science.

4.3 Ablation Study

We perform ablation studies to confirm whether the
components in MELT are crucial in producing bet-
ter PLMs for materials science. Table 2 shows
the ablation results about two components: (i)
Materials-aware entity masking (MEM) by build-
ing a semantic graph of chemical entities6 (ii)

6Note that models without the expansion do not have cur-
riculum components as well because the proposed curriculum
learning depends on the results of the expansion procedure.
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Table 3: Comparison of different curriculum strategies
with MELT. The best results are highlighted in boldface.

Curriculum Strategy
MatSci-NLP (Overall)

Micro-F1 Macro-F1

No Curriculum 0.729 0.542
Frequency 0.736 0.545
Concept 0.736 0.551
Masking Ratio 0.737 0.547
Reverse 0.730 0.552

MELT (ours) 0.741 0.556

Table 4: Evaluation results on four classification tasks.
The best and second best results are highlighted in bold-
face and underline, respectively.

Methods NERSOFC NERMS PC SF

SciBERT 80.3 85.3 94.2 59.1
DSP 80.4 85.8 95.2 61.4
EntityBERT 80.0 85.1 94.7 62.2
DAS 79.7 85.5 95.1 58.4
Diff-Masking 80.6 85.6 94.7 62.0

MELT (ours) 81.1 86.0 95.7 62.9

Curriculum-based entity learning (CEL) based on
the node degree of the constructed graph. Notably,
we find that omitting each component from MELT

leads to a substantial drop in performance, provid-
ing empirical verification of the proposed method
in continued pre-training. Specifically, we high-
light the results of the model without both CEL
and MEM in MELT, which uses only the chemical
entities similar to those in EntityBERT. Although
this model exhibits inferior performance compared
to the random masking baseline, it achieves signifi-
cantly improved performance when expanding its
knowledge with fundamental concepts from the ma-
terials science tetrahedron and learning it through
a well-defined curriculum.

4.4 Effect of the Curriculum Adaptation

To further investigate the effectiveness of the pro-
posed curriculum learning, we compare ours with
the existing curriculum-based MLM strategies: Fre-
quency, Concept, Masking Ratio, and Reverse7. Ta-
ble 3 presents the comparison results on the MatSci-
NLP benchmark. We observe that the curriculum
approach in MELT demonstrates superior perfor-

7Details for each strategy is described in the Appendix D
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mance compared to existing curriculum strategies.
These results underscore the efficacy of consider-
ing node degree in materials semantic graphs when
adapting PLMs for materials science.

4.5 Evaluation on Classification Tasks

To assess the generality of our model, MELT, we
evaluate each baseline on four classification tasks
following the settings from prior work (Gupta et al.,
2022). We present the evaluation results on test sets
in Table 4. Similar to the results in generation tasks,
MELT outperforms other baselines in most cases.
These results demonstrate that PLMs adapted by
MELT perform effectively across various classifica-
tion tasks.

4.6 Masking Relevance to Downstream Tasks

We additionally analyze how the extracted knowl-
edge relates to the entities of the downstream tasks.
Here, we compare the proposed method with the
random masking. For evaluation, we aggregate
all words with their tags in NER (MatScholar and
SOFC), RC, and SF tasks and calculate the over-
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Figure 5: Comparison of the Macro F1 score for the
SOFC-NER and SOFC-Filling test sets over the differ-
ent number of pre-training steps.

lapped ratio of entity tags (labels starting with B-
or I-). Figure 3 shows the comparison results with
the baseline. The results show that the proposed
method, MELT, shows a significantly larger ratio
of entity tags. It can be interpreted as our masking
strategy successfully extracting domain-specific en-
tities (e.g., chemical formulas, property).

4.7 Effect of Materials-aware Entity Masking

The extracted knowledge from MELT is centered
on chemical entities (the first step of the proposed
method), and the benchmark datasets for materi-
als science involve a number of chemical entities.
To verify the effectiveness of the entity-centric ap-
proach, we further analyze the performance of the
fine-tuned model for the classes of the chemical
entities (i.e., chemical names or formulas) in the
slot-filling task (SOFC-Filling). Figure 4 shows the
categorical performance of the entity-based (ours)
and random-based approaches. We observe that
our MELT achieves superior performance in all ma-
terials categories. Specifically, MELT outperforms
random-based masking about 25% on the Support
materials class. Moreover, our MELT performs bet-
ter than random masking across a variety of proper-
ties. These results indicate that materials-aware en-
tity masking can improve the generalization ability
of PLMs by learning from diverse material entities.

4.8 Efficiency of Continued Pre-training

We analyze the training efficiency of our proposed
MELT by comparing the performance of SOFC-
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Figure 6: Example of the constructed graphs starting
from the initially extracted chemical formula (FeO3).
Only the entities in white circles are used to construct
the set of masking words G.

NER and SOFC-Filling test sets per pre-training
step with the baseline. The results are shown in Fig-
ure 5. We observe that our MELT consistently out-
performs the baselines after 40K steps pre-trained
on both datasets. These results indicate that our
materials-aware masking and curriculum learning
strategies efficiently adapt the PLMs to materials
science domains.

4.9 Extracted Materials Knowledge

Our MELT extracts chemical entities from the sci-
entific corpus and expands the knowledge through
a materials semantic graph. To validate the con-
structed knowledge, we sample a part of the graph
with the five relation types (i.e., Property, Method,
Application, Symmetry label, Descriptor). Fig-
ure 6 represents the expansion of material entities
(e.g., DP, electrodes, cotunnite) with five relation
types from extracted chemical entities in corpora
(i.e., FeO3)8. We observe that most extracted en-
tities (e.g., electrodes, Micro Electromechanical
Systems) represent the related concepts well, in-
dicating the effectiveness of our automatic knowl-
edge expansion. Moreover, even in cases of entities
with incorrect relations (e.g., CaO, Al2O3 with the
property relation), these entities are still materials-
related words, demonstrating that such entities can
be effectively used in the training stage. The over-
all results highlight the usefulness of the extracted
knowledge from MELT. More examples can be
found in Appendix G

8Note that we only represent the additional entities that
overlap with MatKG (Venugopal et al., 2022)
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5 Conclusion

In this paper, we have proposed MELT, a novel con-
tinued pre-training method to adapt PLMs for mate-
rials science. Unlike previous approaches that typi-
cally focus on the adaptation corpus, our method
comprehensively considers both the corpus and the
training strategy in the adaptation process. Specif-
ically, we have constructed the materials knowl-
edge base by considering materials science tetrahe-
dron (William and Callister, 1989). This extracted
knowledge is then transferred to the PLMs in a
structured, curriculum-based manner. We have con-
ducted extensive experiments across diverse materi-
als science benchmarks. The evaluation results con-
vincingly demonstrate that our tailored approach
yields superior performance on downstream tasks
compared to domain-agnostic methods. In-depth
analysis focusing on generality, efficiency, and in-
sights has further supported the efficacy of MELT

in continued pre-training, highlighting its broad
value in the field of materials science.

Limitations

While we have demonstrated that MELT effectively
adapts the PLMs on materials science domains,
there are several limitations that present valuable
opportunities for future research.

Further Analysis on Generation Tasks We
have mainly focused on improving the efficacy
of continued pre-training on information retrieval
tasks (e.g., NER, Slot Filling), aligning with pre-
vious works (Song et al., 2023a; Trewartha et al.,
2022; Gupta et al., 2022). However, the applica-
bility of MELT on further generation tasks for ma-
terial discovery, such as hypothesis or code gener-
ation (Miret and Krishnan, 2024), remains under-
explored in this work. Nevertheless, considering
the significant performance improvements of MELT

achieved on generation benchmarks, MatSci-NLP,
we believe that MELT is expected to work well
within other generation tasks. We leave the explo-
ration of this direction as promising future research.

Tokenization for Materials Sciences We have
expanded materials entities and masked them to
adapt the PLMs on the materials domain in this
work. During this process, we have observed that
complex materials terms such as chemical formulas
and substances split into multiple subwords (e.g.,
LiMnO2 tokenized to {LiMn, ##O, ##2}). Such

over-tokenization may limit the PLMs to learn-
ing meaningful representations in the pre-training
stage, which leads to sub-optimal results on the
downstream tasks (Kononova et al., 2021). These
observations highlight the necessity of materials
domain-specific tokenizers for processing complex
chemical terms, and we expect that future work in
this direction will be another promising avenue for
domain adaptation for PLMs.
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Appendix

A Details for Entity Expansion

A.1 Example of Chemical Entity Expansion

carbon

nitrogen

copper

calomel

electrodes

platinum_counter RTA

heat_treatment

annealing

Ap
pli
ca
tio
n Synthesis

Figure 7: 2D Projection of the materials entities (carbon,
nitrogen, copper) having the relations of Applications
(electrodes, platinum_counter, calomel) and Synthesis
method (annealing, heat_treatment, RTA).

A.2 Details for Word Embedding Models

Table 5: Hyper-parameter settings for our word embed-
ding models

Hyper-parameters Values

Vocabulary size 876,911
Epochs 30
Embedding sizes 200
Learning rate 0.01
Context Window 8
Sub-sampling threshold 1e-4
Number of negative samples 15

Since the word embedding has been known to
capture the relations between words or phrases
(Mikolov et al., 2013), we adopt the materials
word2vec model, Mat2Vec (Tshitoyan et al., 2019),
to expand the materials-related entities and their
relations (Section 3.2). In this section, we detail
the implementations for word embedding. Follow-
ing the previous work (Tshitoyan et al., 2019), we
tokenized our pre-training corpus, utilizing Chem-
DataExtractor (Mavracic et al., 2021) and their pre-
defined rule-based tokenizer to construct the vo-
cabulary. The vocabulary consisted of all words
that occurred more than five times except chemical
formulae. We leverage the skip-gram with negative
sampling loss. The detailed hyperparameters are
shown in Table 5

A.3 Expansion Categories of Materials

We consider six fundamental relations between
materials entities, following the relations on
the large-scale materials graph, MatKG (Venu-
gopal et al., 2022). Specifically, they catego-
rized text tokens into one of the following seven
classes: Material, Property, Application, Synthe-
sis Method, Characterization Method, Descriptor,
and Symmetry/Phase Label. Regarding the tra-
ditional structure-property-processing-application
paradigm in materials science (William and Cal-
lister, 1989), these entities encapsulate the total
knowledge of any given concept. Thus, we expand
the materials properties by utilizing six different
categories, which are provided in MatKG (Venu-
gopal et al., 2022).

A.4 Detailed Statistics for Semantic Graph

#Unique Entities

MELT 713,241
MELT w/o expansion 332,724

Table 6: The number of Unique entities

We construct the materials-aware semantic graph
for the tailored masking strategy to materials sci-
ence (Section 3.2). In this section, we detail the
statistics for our semantic graph. Specifically, we
compare the number of unique materials-aware en-
tities before and after expansion. The details are
shown in Table 6. The results indicate that our
expansion methods provide more diverse material-
aware entities (e.g., chemical properties and appli-
cations).

B Details for MatSci-NLP

Table 7: The detailed size and meta-datasets for MatSci-
NLP (Song et al., 2023a).

Task
Size

(#Samples)
Meta-Dataset
(#Datasets)

NER 112,191 4
RC 25,674 3

EAE 6,566 2
PC 1,500 1

SAR 5,547 1
SC 9,466 1
SF 8,253 1
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We compare our models on the multitask genera-
tion benchmark, MatSci-NLP (Song et al., 2023a),
which includes seven different types of tasks with
13 datasets. Specifically, MatSci-NLP consists of
named-entity recognition (NER) (Friedrich et al.,
2020; Weston et al., 2019; Yamaguchi et al., 2020;
Mysore et al., 2019b), relation classification (RC)
(Yamaguchi et al., 2020; Mysore et al., 2019b; Mul-
lick et al., 2024b), event argument extraction (EAE)
(Yamaguchi et al., 2020; Mysore et al., 2019b),
paragraph classification (PC) (Venugopal et al.,
2021), synthesis action retrieval (SAR) (Wang et al.,
2022b), sentence classification (SC) (Friedrich
et al., 2020), and slot filling (SF) (Friedrich et al.,
2020). The detailed statistics are represented in
Table 7.

C Implementation Details and Setups

C.1 Continued Pre-training Baselines

We compare our MELT with four strong contin-
ued pre-training methods for domain adaptation.
For all baselines and MELT, we mask 15% of the
total tokens except Diff-Masking. We detail the
implementations as follows:

DSP (Gururangan et al., 2020) is a naive ap-
proach to continually pre-train the PLMs for do-
main adaption by utilizing a random masking strat-
egy. We consider the word-level approaches in our
experiments following the masking strategies of
MatSciBERT (Gupta et al., 2022).

EntityBERT (Lin et al., 2021a) is a method for
masking tokens based on whether they are part
of domain-specific entities by utilizing the NER
model. The original paper leverages the PubMed-
BERT model, which was trained originally in the
clinical domain. In this work, we utilize the Chem-
DataExtractor (Mavracic et al., 2021) to identify
materials entities for masking.

Diff-Masking (Wilf et al., 2023) chooses tokens
to mask based on anchor words, which are not
commonly found in general domains XPT but com-
monly found in specific domains XT . We leverage
the XPT as the SciBERT pre-training corpus (Belt-
agy et al., 2019) and XT as the corpus, which we
constructed in section 3.2. Following the original
paper, we mask 25% of the total tokens and use 20
anchor words.

DAS (Ke et al., 2023) is an approach that adap-
tively updates the parameters by considering the im-

portance of target domains. Following the original
paper, we use the weights of contrastive learning λ
and temperature τ as 1.0 and 0.05, respectively.

C.2 Hyper-parameters

Pre-train. For hyper-parameters to pre-train the
MELT and baselines, we pre-trained all models for
100K steps with a batch size of 128, a sequence
length of 128, and a maximum learning rate of
1e-4. We utilize the linear warm-up ratio 0.048,
following the previous work (Gupta et al., 2022).
Since the materials entities have different token
lengths, we adjust the mask ratios dynamically for
each curriculum stage to mask 15% tokens of the
token tokens.

Generation Tasks. For generation tasks, we fol-
low the settings in MatSci-NLP (Song et al., 2023a).
Specifically, we use a learning rate of 2e-5, Adam
optimizer, batch size of 4, and a maximum num-
ber of 20 training epochs with early stopping for
MatSci-NLP. We also utilize 3 layers and 8 heads
for decoder transformers.

Classification Tasks. For classification tasks, we
follow the settings in MatSciBERT (Gupta et al.,
2022). Specifically, we use the number of epochs
20, 40, 15, and 10 for SOFC-NER, SOFC-Filling,
MatScholar, and Glass Science, respectively. For
each task, we sweep the learning rate in {2e-5, 3e-
5, 5e-5}. We use Adam optimizer, and the batch
size is 16.

C.3 Evaluation

We follow the evaluation metrics used in MatSci-
NLP (Song et al., 2023a) and MatSciBERT (Gupta
et al., 2022) for generation and classification tasks,
respectively. For the generation benchmark MatSci-
NLP, we evaluate each baseline based on both
Micro-F1 and Macro-F1. We evaluate each base-
line by leveraging both Micro-F1 and Macro-F1
with five different random seeds. For classification,
we evaluate each baseline using the Macro-F1 score
over entity tags on SOFC-NER and SOFC-Filling,
the Micro-F1 score for MatScholar, and the accu-
racy score for Glass Science tasks. We report the
average cross-validation results over five different
folds with three random seeds for classification.

D Curriculum Learning Baselines

We compare our models with four different
curriculum-based learning methods: frequency,
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Table 8: The detailed ablation results for each downstream task on MatSci-NLP. CEL and MEM indicate curriculum-
based entity learning and materials-aware entity masking, respectively.

Method Metric
MatSci-NLP

NER RC EAE PC SAR SC SF Overall

Micro-F1 0.786 0.860 0.498 0.728 0.798 0.911 0.610 0.741
MELT (ours)

Macro-F1 0.593 0.620 0.341 0.647 0.685 0.613 0.395 0.556

w/o CEL
Micro-F1 0.773 0.830 0.465 0.771 0.778 0.899 0.588 0.729
Macro-F1 0.565 0.588 0.287 0.683 0.687 0.612 0.373 0.542

w/o CEL, MEM
Micro-F1 0.728 0.805 0.495 0.765 0.739 0.897 0.559 0.713
Macro-F1 0.528 0.567 0.311 0.699 0.621 0.581 0.303 0.516

masking ratio, and concept-based. We also detail
the implementation of baselines. For a fair com-
parison, all curriculum learning baselines include
a warm-up stage. We utilize 3 curriculum stages
(K = 3) and 10K steps for each curriculum stage.

Frequency. We leverage the frequency of mate-
rials entities in the training corpus for defining a
difficulty, similar to the previous work (Tay et al.,
2019b). We initially train the model with the most
frequent materials entities and then progressively
add the less frequent entities.

Concept. We utilize the concept-based curricu-
lum learning following the previous work (Lee
et al., 2022). We first extract the base concepts
using both frequency and node degree and then
progressively expand the entities that are related to
base concepts.

Masking ratio. We utilize the masking ratio as
a difficulty metric, which is used as baselines in
previous work (Lee et al., 2022). Specifically, we
only mask 10% of the first sequence, and we grad-
ually increase the masking ratio linearly to 20% of
tokens when 100K is reached.

Reverse. We train the model with the reverse
order of curriculum in MELT. Specifically, we first
train with the warmup stage and then progressively
train the model from stage 3 to stage 1.

E Detailed Ablation Results

The detailed results are shown in Table 8. We ob-
serve that omitting each component in MELT leads
to significant performance drops in most down-
stream tasks.

F The Number of Curriculum Stage

Table 9: Comparison of numbers of curriculum stages
on four different classification tasks.

Methods NERSOFC NERMS PC SF Overall

2 stage 81.3 86.0 95.4 60.2 80.7
3 stage 81.1 86.0 95.7 62.9 81.4
4 stage 81.0 85.9 96.4 61.9 81.3

To verify the design choice of the number of
curriculum stages for MELT, we compare the per-
formance among the model with different numbers
of curriculum stages. The results are shown in
Table 9. Experimental results show that 3 stage cur-
riculum appears to be best. Based on these results,
we use 3 stages (K = 3) in all our models.
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Figure 8: Examples of the constructed graphs start-
ing from the two different chemical entities-Chemical
names (carbon). Only the entities in white circles are
used to construct the set of masking words G.
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