
Findings of the Association for Computational Linguistics: EACL 2024, pages 10704–10714
November 12-16, 2024 ©2024 Association for Computational Linguistics

PDF-to-Tree: Parsing PDF Text Blocks into a Tree

Yue Zhang1, Zhihao Zhang1, Wenbin Lai1, Chong Zhang1

Tao Gui2, Qi Zhang1,3, Xuanjing Huang1,3

1 School of Computer Science, Fudan University
2 Institute of Modern Languages and Linguistics, Fudan University

3 Shanghai Key Laboratory of Intelligent Information Processing, Fudan University
yuezhang.fdu@gmail.com, {tgui,qz,xjhuang}@fudan.edu.cn

Abstract

In many PDF documents, the reading order
of text blocks is missing, which can hinder
machine understanding of the document’s
content. Existing works try to extract one
universal reading order for a PDF file. However,
applications, like Retrieval Augmented Gen-
eration (RAG), require breaking long articles
into sections, subsections and table cells for
better indexing. For this reason, this paper
introduces a new task and dataset, PDF-to-
Tree, which organizes the text blocks of a
PDF into a tree structure. Since a PDF may
contain thousands of text blocks, this paper
proposes a transition-based parser that uses
a greedy strategy to build the tree structure.
Compared to the parser for plain text, we also
use multi-modal features to encode the parser
state. Experiments show that our approach
achieves an accuracy of 93.93%, surpassing
the performance of baseline methods by an
improvement of 6.72%. The dataset is public
available at https://github.com/yuezh000/PDF-
to-Tree.

1 Introduction

Document AI is a research field that has emerged
in recent years. It focuses on automating the
reading, comprehension, and analysis of data in
PDF documents. These documents can be either
scanned or digital-born(rendered) files. Although
many PDFs are digital-born, their formats were
designed for layout purposes. As a result, the
structural information retained within them is
often incomplete, which can hinder machine
understanding of the document’s content.

There’s a lot of research on PDF layout analyz-
ing, like categorizing text blocks and predicting
the relationships between them. Earlier studies
relies on purely visual features, such as, Deep-
DeSRT(Schreiber et al., 2017), PDFTableDetec-
tion(Hao et al., 2016), VisualDetection(Soto and
Yoo, 2019) and dhSegment(Ares Oliveira et al.,

title

abstract

section
subsection

paragraph
token token

paragraph
token token

subsection
table

table row
cell

footnote
annotation

[a]

[b] [c]

cell

1

2
4

3
5

root

Figure 1: In a PDF([a]), text blocks are independent
of each other and don’t have a specific order. The
reading order prediction task([b]) can partially resolve
this issue. However there’s only one text sequence,
footnotes, captions and other irrelevant text blocks are
inserted into the main text sequence. This might lead
to confusion. Additionally, some applications, like
RAG, require breaking down long articles into sections
for better content retrieval. To tackle this issue, we
propose a new task and dataset, PDF-to-Tree task([c]),
which organizes text blocks into a tree structure for
downstream task to retrieve.

2018). Later research incorporates visual, textual,
and positional information. Such works include
LayoutLM serials (Xu et al., 2020), (Xu et al.,
2021a), (Xu et al., 2021b), DocStruct(Wang et al.,
2020), SPADE(Hwang et al., 2021), BROS(Hong
et al., 2021), StructuralLM(Li et al., 2021a) and
StrucTexT(Li et al., 2021b). There are also
many datasets developed in this area, including,
RVL_CDIP(Harley et al., 2015), FUNSD(Jaume
et al., 2019a), EPHOIE(Jaume et al., 2019b),
PubLayNet(Zhong et al., 2019), SROIE(Huang

10704

Step Stack Buffer Transition A ← ∅

0 [ROOT] [T1, T2, T3, T4, T5] ARC(ROOT, T1, title) A∪ (ROOT, T1, title)

1 [ROOT, T1] [T2, T3, T4, T5] ARC(T1, T2, abstract) A∪ (T1, T2, abstract)

2 [ROOT, T1, T2] [T3, T4, T5] SHIFT A

...

title

abstract

paragraph

section

paragraph

T1

T2

T3

T4

T5

Input Document Text Blocks Desired Tree

PDF Miner
or OCR

Transition-based Parser

T3 T1

T4

T5

BUFFER STACK

T2

Figure 2: We leverage a transition-based parser to predict tree structure of a document from a sequence of input
text blocks. The input document is processed by PDF Miner or OCR tools to get text block sequence. Then the
sequence is processed by the parser to predict a serial of transition actions that build the tree. The parser archive this
by using a buffer to hold input sequence and a stack to hold intermediate tree nodes. In each step, the parser predicts
a shift or arc operation that pops elements from the buffer and reconstructs the tree in the stack.

et al., 2019), DocBank(Li et al., 2020), CORD(Park
et al., 2019), and SciTSR(Chi et al., 2019).

To address the issue of missing structure in-
formation in PDF documents, existing research
develops the task of reading order prediction. This
involves predicting a global rank for each text
block and linking them into a text sequence. Such
efforts include LayoutParser(Shen et al., 2021),
LayoutReader(Wang et al., 2021) and ERNIE-
layout(Peng et al., 2022).

However, we believe that placing all text blocks
in the same sequence is insufficient. This is
because there are independent document elements
like footnotes and captions, which should have
their own reading order. Especially for RAG
applications, which require breaking down long
documents into sections, subsections and table
rows, a more detailed method is needed to represent
the content of PDF documents. Therefore, we
introduce the PDF-to-Tree task and dataset. By
organizing text blocks into a tree structure, we aim
to solve the issue of complex document structures.

We manually annotate the tree structures of
9,310 PDF pages. As shown in Figure 1, through
the PDF-to-Tree task, text blocks in a PDF are
organized into a tree structure. Compared to
reading unordered text blocks directly from a PDF
file, downstream tasks can accurately access the
content needed from the document through its tree
structure.

Additionally, we propose a transition-based
parser that effectively completes the PDF-to-Tree
task. There are multiple ways to construct a
tree from a sequence. Considering a PDF may

contain thousands of text blocks, depending on the
document’s length, we opt for a transition-based
parser to address this issue. Compared to other
algorithms (the minimum spanning tree or pairwise
linking methods), the time and memory complexity
of a transition-based parser scales linearly with
the length of the document. Unlike plain text
dependency parsing, text blocks in PDF documents
contain more information besides text, such as
visual details and layout. We also use features from
different modalities to encode the parser state.

In general, our main contributions are in three
folders:

1) We introduce a new task and dataset for digital
document understanding, called PDF-to-Tree. This
task converts PDFs into a tree structure, making it
easier for downstream tasks, like RAG, to precisely
locate content in the articles.

2) We develop a transition-based parser for
implementing PDF-to-Tree. This approach scales
linearly with document length, and can handle
PDFs made up of thousands of text blocks. We
also use multi-modal features to encode the parser
state.

3) Our experiments show that our method
achieves an accuracy of 93.93%, which is 6.72%
higher than the baseline methods.

2 Method

In this section, we discuss how to reconstruct
document structure from a sequence of input text
blocks.

10705

[CLS]
[S#0]

T1
[S#1]

T2
...

[SEP]
[B#0]
T3

Encoder

Text
Embedding

Layout
Embedding

V1

V2
...

V3

Image
Embedding

bbox1

bbox2
...

bbox3

+ +

h[CLS]
h[S#0]

h1
h[S#1]

h2
...

h[SEP]
h[B#0]

h3

Encoded
Features

Label
Prediction

STACK
(T1, V1, bbox1)
(T2, V2, bbox2)

BUFFER
(T3, V3, bbox3)

h[S#0]

h[S#1]

0.7

0.1

...

0.0

0.1

0.6

...

0.0

C
lassifier

title

abstract

...

other

title

abstract

...

other

arc(title, [S#0], [B#0])
A
rgm

ax

Position
Prediction

[S#0]

[S#1]gather

Figure 3: An overall illustration of transition prediction

2.1 PDF-to-Tree
To reconstruct the tree structure of a document,
we leverage a transition-based parser. Given an
input document d, we first extract all text blocks
[T1, T2, ..., Tn] from d with PDF Miner or OCR
tools depends on whether the input is a scanned
or digital born document. Then a transition-based
parser turns text block sequence into a tree. Let’s
denote the final desired tree by the set of arcs in
that tree, Â = [(head, tail, label), ...]. Now the
goal of PDF-to-Tree is to predict Â.

We can archive that via a transition-based parser
with a configuration c consists of a stack s, a buffer
b, and a set of arcs A. In the initial state, A = ϕ,
s = [ROOT], and b = [T1, T2, ..., Tn]. In each
step, the classifier predicts actions based on the
content of s and b, as shown in Figure 2. At the end
of each step, A is updated by adding the predicted
arc into the set, A ← A ∪ [predicted_arc].
Eventually, we will get our desired tree, A→ Â.

Specifically, in each step we predict the follow-
ing actions:

• SHIFT - pop the first element and push it into
the stack.

• ARC - create a new arc from any element of
the stack to the first element in the buffer and
predict the label of arc.

As Equation 1 shows, our parser needs to predict
not only the label of the arc but also the starting
point of the arc. In practice, we limit the start
position of an arc with in a fixed size window of
the stack to ease the prediction process.

label, arc_start = classifier(a, b, A) (1)

2.2 Transition Prediction
Figure 3 illustrates the process of PDF-to-Tree
predicting transition actions based on the current

configuration at the current step. First, embeddings
are created for the nodes in the stack and buffer.
Text, bounding boxes and their corresponding
images are concatenated together in the order they
appear in the stack. The concatenated sequence
is then separately embedded for text, image, and
layout. These embeddings are combined according
to their positions and served as inputs for the
encoder. The encoder produces hidden state for
each node, and classification is performed to obtain
labels and the starting position of arcs.

Given the current configuration of a parser,
denoted as c = (s, b, A), we use the following
notations to introduce the out model. ni represents
a node from either s or b. ti represents the text
within the node ni, bboxi represents the bounding
box of ni, and vi represents the image information
of ni.

2.2.1 Text Embedding
We connect the ti from nodes in both s and b in
sequential order to form a sequence S. Before each
node ni, a special token is inserted as a separator.
For nodes in s, we use the special character [S#i],
and for nodes in b, we use [B#i]. As a result, we
obtain the sequence S as shown in Equation 2.

S =[CLS],[S#0],t0,[S#1],t1,...,[SEP],[B#0],tn. (2)

2.2.2 Layout Embedding
For each node, ni, besides embedding ti, it’s
also necessary to embed layout information, bboxi.
To be specific, we employ four distinct types of
layout embedding, including absolute position,
relative position, bounding box size(width and
height), and font size. Absolute position refers
to the coordinates bboxi = (xi0, y

i
0, x

i
1, y

i
1) of the

bounding box. Relative position indicates the
position of the bounding box relative to the first

10706

node in the buffer, bboxb0 = (xb00 , yb00 , xb01 , yb01). If
bboxi and bboxb0 are from different pages, then
based on the page number, the model will add
the corresponding page height to the y-coordinate
of the bounding box below. All coordinates are
normalized to the range of 0 to 1000. The results
of embedding bi are also ordered according to the
corresponding ti sequence, and the embeddings’
outcomes at each position are averaged.

Emblayout =

(xi
0,y

i
0,x

i
1,y

i
1)

(xi
0,y

i
0,x

i
1,y

i
1)−(x

b0
0 ,y

b0
0 ,x

b0
1 ,y

b0
1)

(w,h), width and height

(fs), font size

(3)

2.2.3 Image Embedding
Out model embeds visual inputs with
LayoutLM(Xu et al., 2020). Specifically,
LayoutLMv1/v2 employs ResNet to embed
images, while LayoutLMv3 uses a transformer to
embed image patches. For situations where arcs
span across pages, page images are concatenated.
All page images, including those stitched together
for spanning page elements, are resized to 512 x
512.

2.2.4 Label and Position Prediction
After completing the embedding for all the modal-
ities, the model will sum the embeddings for
corresponding positions together. Then, it will
encode the sequence of embeddings to get the
hidden state, denoted as hS , for the input sequence
S. For each node in stack s, the model gathers the
hidden value at the position of the special character
[S#i] from hS , to get h[S#0], h[S#1], ..., h[S#n].
As Equation 4 shows, the model will put the
gathered hidden state through a bi-linear module
and obtain classification results for each node in the
stack. Let’s denote label[S#i] as the label of node
ni in the stack, and score[S#i] as the corresponding
score. Finally, the model will take [S#i] with the
maximum score(score[S#i]) as the start position
for the predicted arc and corresponding label as arc
label, as Equation 5 illustrates.

label[S#i], score[S#i] = classifier(h[S#i]) (4)

arc_start = argmax
[S#i]

(score[S#i]) (5)

Labels Train Test Dev
of documents 1,040 129 129
of pages 7,554 786 970

Table 1: Statistics of training, development, and testing
sets

3 Experiments

In this section, we dive into the implementation
details of PDF-to-Tree and conduct experiments on
the PDF-to-Tree dataset. Also, we create a baseline
with BROS(Hong et al., 2021), StrucTexT(Li et al.,
2021b) and LayoutLMv2-RE(Xu et al., 2021a).
Those models are commonly used approaches in
structured text understanding. All experiments
were carried out using one to eight NVIDIA Tesla
A800 80GB GPUs.

3.1 Dataset

We introduce a new dataset called PDF-to-Tree,
which annotates the text blocks in each document
into a tree structure. In contrast, previous
entity linking datasets, such as FUNSD(Jaume
et al., 2019a), EPHOIE(Jaume et al., 2019b),
SROIE(Huang et al., 2019), mainly focused on
information extraction, containing only partial text
blocks from single pages, such as forms. As shown
in Figure 4, the annotation information consists of
two parts: text blocks with bounding boxes, and
arcs that represent the relationships between the
text boxes. Please refer to Appendix A for more
details.

"blocks": [
 ... ,
 {
 "id": 99
 "text": ”2 MATERIA...",
 "bbox": [50, 83, 124, 97]
 "font_size": 12
 }, ...
]

"arcs": [
 [96, 99, ”section"],
 [99, 100, " paragraph "],
 [100, 101, " paragraph "],
]

Figure 4: An annotation example of the PDF-to-Tree
Dataset. We use code to automatically extract text
blocks from PDFs and then manually annotate the
relationships between these blocks to create a tree
structure.

All the files in the PDF-to-Tree dataset are
digital-born(rendered) PDFs from public domain,

10707

including product manuals, public technical reports,
white papers, and so on. We use the open-source
tool PDF Miner to automatically extract text blocks
from PDF documents. Then, we manually label
the relationships between the blocks to create a
tree structure. For each document, we have at least
two crowdsourced annotators working on it. All of
our annotators are college students. We pay $0.20
per page for the annotation. Please refer to the
Appendix A for the details of our annotation tool.

In total, we gather 1290 documents comprising
9310 pages. There are 18 categories of labels. We
allocate 80% of the documents for training, 10%
for testing, and retain 10% as a development set.
Specific data proportions are detailed in Table 1.

In previous document layout datasets, like
DocBank(Li et al., 2020), PubLayout(Zhong et al.,
2019), most commonly, academic papers were used
as document sources(such as LaTeX or XML), and
layout annotations were automatically generated
by analyzing the source files. While this covered
a larger number of documents, the layouts were
relatively uniform. On the other hand, the PDF-to-
Tree dataset employs a combination of machine
and human annotations. This means that even
when the source files of the documents are not
available, complete structural information of the
document can still be obtained. As a result,
the entire collection of documents encompasses
a wider range of layouts, including documents
like product manuals and public technical reports,
which are not typically found in academic papers.
Additionally, due to this diversity of document
types, the distribution of document lengths also
varies considerably, ranging from a minimum of 1
page to a maximum of 85 pages.

3.2 Baseline
In current Document AI works, entity linking
is suitable to predict the relationships between
text blocks, such as arcs in the PDF-to-Tree task.
Therefore, we select three methods of entity linking
to build our baseline, including BROS (Hong
et al., 2021), StrucTextV1 (Li et al., 2021b), and
LayoutLM-RE(Xu et al., 2021a). These models
outperform other methods on entity linking tasks of
the FUNSD dataset. We use the code provided by
the original authors as the baseline implementation.
However, the code of StrucText doesn’t include the
fine-tuning part, we implement that part ourselves
according to the description mentioned in the
original paper.

Since PDF-to-Tree has documents up to 85
pages in length, it’s not realistic to fit all the text
blocks of a document into the input window size
of aforementioned baseline models. To mitigate
this issue, we preprocess the dataset, dividing
documents into blocks of no more than 500 tokens
each for training and prediction and ignore the arcs
between blocks. This simplification will affect
approximately 5% arcs in test set.

3.3 Training
For our PDF-to-Tree model, we opt for both
text-only and text-image multi-modal pre-trained
models as encoders, comparing how different
modalities affect the outcomes. Specifically, we
choose BERT for text-only pre-training models,
and LayoutLM for the multi-modal pre-training
model. We utilized both the base and large versions
of the aforementioned pre-trained models in our
training code. We use PyTorch to implement our
model and the pre-trained weights are provided by
Hugging Face.

Throughout training, our model employs the
AdamW optimizer and a linear warm-up scheduler
for the initial 10% of steps. Cross entropy loss is
used for label and position prediction. We conduct
hyperparameter searches for learning rate, batch
size, and dropout using the dev dataset. For the
base version of BERT, we use a learning rate of
4 × 10−5, while for the large version, we use a
learning rate of 2 × 10−5. Comparatively, for
LayoutLMv1/2/3, a smaller learning rate is needed
to make the model converge. We ultimately chose
2× 10−5 as the learning rate for the base version
and 1× 10−5 for the large version. In all cases, the
dropout is set to 0.1, the batch size is 32, and the
number of epochs is 6. For the baseline models, we
follow the hyperparameters provided in the original
papers.

3.4 Metrics
To assess the accuracy of the model in reconstruct-
ing document structure, we utilize the attachment
score, which is widely used metrics in dependency
parsing. Unlabeled attachment score(UAS) is
the percentage of tokens with correctly assigned
heads, while labeled attachment score (LAS) is
the percentage of tokens with correctly assigned
heads and dependency relation labels. We define
UAS and LAS in the PDF-to-Tree task by replacing
tokens with text blocks, as Equation 6 and 7
illustrates. The primary emphasis of UAS lies in

10708

Model Modality† Params UAS LAS Label F1‡

StrucTexTv1base (Li et al., 2021b) T+L+V 110M 0.8046 0.7636 0.8899
BROSbase (Hong et al., 2021) T+L+V 110M 0.8384 0.7800 0.8722
BROSlarge (Hong et al., 2021) T+L+V 340M 0.8721 0.8210 0.8925
LayoutLMv2-REbase (Xu et al., 2021a) T+L+V 220M 0.8419 0.7530 0.8007
LayoutLMv2-RElarge (Xu et al., 2021a) T+L+V 426M 0.8451 0.8020 0.8592
PDF-to-Treebert T+L 110M 0.9158 0.7900 0.8609
PDF-to-Treelayoutlm T+L 160M 0.9229 0.7551 0.8342
PDF-to-Treelayoutlmv2 T+L+V 220M 0.9338 0.7994 0.8678
PDF-to-Treelayoutlmv3 T+L+V 133M 0.9385 0.8020 0.8709
PDF-to-Treebert-large T+L 340M 0.9189 0.7757 0.8532
PDF-to-Treelayoutlm-large T+L 390M 0.9233 0.7836 0.8547
PDF-to-Treelayoutlmv2-large T+L+V 426M 0.9363 0.8070 0.8757
PDF-to-Treelayoutlmv3-large T+L+V 368M 0.9393 0.8166 0.8817
† “T” refers to text, “L” refers to layout and “V” refers to visual.
‡ F1-Score of entity labeling.

Table 2: Accuracy on PDF-to-Tree Dataset. Our method has advantages in extracting structural information from
PDFs. However, BROS(Hong et al., 2021) performs better in labeling.

the precision associated with the construction of
the document’s structure. LAS takes into account
both the labels and the links of text blocks.

UAS =
of blocks with correct link

of all blocks
(6)

LAS =
of blocks with correct link and label

of all blocks
(7)

4 Results

In this section, we compare our model with
the baselines on both PDF-to-Tree and FUNSD
datasets. We also evaluate the effects of various
modality encoders on structure parsing for the PDF-
to-Tree dataset. Additionally, we perform error
analysis, ablation experiments, and inference speed
analysis.

4.1 Accuracy on PDF-to-Tree

In general, the transition-based parser module
shows a significant improvement in the task of
document-level structure parsing. Our method,
PDF-to-Tree outperforms the baseline models by
6.72% in the UAS. This indicates that incorporating
the transition-based parser module effectively
filters out many irrelevant pairs and enhances
the precision of link prediction, compared to
the pairwise linking strategy in the baseline.

This approach effectively leverages the inherent
characteristics of the document structure. However,
BROS(Hong et al., 2021) exhibits a slightly better
performance in the labeling task, k, achieving a
0.44% higher LAS score compared to our method.
We separately calculated the entity level labeling
accuracy. Without considering linking, BROS has
an F1 score of 89.25%, while our F1 score is
88.17%.

Furthermore, the modality of the pretrained
weights also plays an important role in the results.
By leverage the text-image multi-modal pretrained
weights, LayoutLMv3, the UAS and LAS are
improved, comparing to BERT, which are pre-
trained solely on text. Among the LayoutLM series,
LayoutLMv1 only uses image embeddings during
pre-training. On the other hand, LayoutLMv2/3
utilize image embeddings in both pre-training
and fine-tuning. Consequently, when employing
LayoutLMv3, the PDF-to-Tree model achieves the
highest UAS and LAS scores.

4.2 Accuracy on FUNSD

To better understand the performance of our
method on entity labeling and linking tasks, we
also conducted experiments on the FUNSD dataset.
As shown in Table 3, the results are generally
consistent with those from the PDF-to-Tree dataset.
Overall, our method excels in linking but falls
short in labeling. In the future, we might enhance
overall performance by combining the labeling

10709

Model Label F1 Link F1
BERTbase 0.6092 0.2765
LayoutLMbase 0.7854 0.4586
LayoutLMv2base 0.8189 0.4291
StrucTexTbase 0.8309 0.4410
BROSbase 0.8305 0.7146
PDF-to-Treelayoutlmv3 0.8012 0.7261

Table 3: Accuracy on FUNSD.

components of other methods with ours.

4.3 Ablation Study
Despite of visual modality, we also want to
know how the other types of modalities affect the
outcomes. As shown in Table 4, by removing
layout as input, the model’s UAS and LAS decrease
by 3.25% and 2.52%. It shows the layout input is
helpful for document structure parsing.

Model Modality UAS LAS
P2Tlayoutlmv3 T+L+V 0.9393 0.8166
P2Tbert T+L 0.9158 0.7900
P2Tbert-wo-layout T 0.8833 0.7280

Table 4: Ablation Study on PDF-to-Tree Dataset

pa
rag

rap
h

tab
le

tex
t

ref
ere

nc
e

fig
ure

 te
xt

eq
ua

tio
n

sec
tio

n

cap
tio

n
meta

he
ad

er
au

tho
r
titl

e

an
no

tat
ion
foo

ter

qu
est

ion

an
sw

er
0.0

0.2

0.4

0.6

0.8

LA
S

102

103

104

of

 la
be

ls

Figure 5: Labeled Attachment Score of Different Labels.
The bars illustrate the LAS of labels. The line shows
the number of labels. Labels with lower occurrence
rates exhibit much lower scores. Some document
components, such as meta and header, have a sufficient
number of annotations, but their scores are not high due
to their varied forms.

4.4 Score of Different Labels
Besides overall accuracy, we also analyze the
accuracy for each label. As shown in the figure, the
model performs well in predicting more common
labels, such as paragraph, table, and reference. It
also does well with simpler labels like authors and

Model Sec / Page
BROSbase 0.362
LayoutLMv2-REbase 0.528
StrucTexTbase 0.262
P2Tlayoutlmv3 1.138

Table 5: The inference speed of P2T is slightly slower
than the baseline. However, considering that all cross-
page links are ignored in the baseline models, this speed
difference is acceptable.

titles. The model finds labels like meta and header,
which vary a lot in form, the most challenging.
Compared to the least common labels, meta and
header have a decent number of samples, but their
scores are still not good. This is because document
headers and meta information are more varied than
fixed elements like titles and paragraphs. Overall,
these results are as expected. Handling these rare
and variably formatted tags is still a challenging
task.

4.5 Inference Speed
We choose PDF-to-Treelayoutlmv3 to compare the
inference speed with the baseline models because
these models share the similar parameter size and
modality. As shown in Table 5, due to PDF-to-Tree
encoding each state during the parsing process,
it’s slower in speed compared to the baselines.
Specifically, on PDF-to-Treelayoutlmv3, the average
time to complete predictions for one page is 1.138
seconds, whereas the baselines only needs 0.511
and 0.262 seconds. Considering that the baseline
models ignore all arcs cross pages due to not being
able to fit the entire document into memory, this
difference is acceptable. Moreover, the time cost
of PDF-to-Tree only depends on document length.
As depicted in Figure 6, with an increase in pages,
the time cost of PDF-to-Tree grows linearly. In
the future, we can further improve the inference
speed of PDF-to-Tree by optimizing the encoding
process.

5 Related Work

Document AI is a research area that has gained
attention in recent years. There’s a lot of valuable
information stored in the form of digital documents.
The goal of Document AI is to extract and
convert digital documents into structured data.
Jaume et al. divides Document AI into two
subtasks: One involves categorizing blocks within
the document to obtain labels for these blocks,

10710

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of Pages

5

10

15

20

Se
co

nd
s

Figure 6: The inference cost of PDF-to-Tree increases
linearly with the length of the document.

which is called entity labeling. The other involves
establishing connections between blocks to identify
the relationships between them, which is known as
entity linking. In addition to these two tasks, there
is also a lot of research that mainly focuses on how
to obtain better multimodal feature representations
of documents.

5.1 Entity Labeling
For entity labeling, many studies use the NER
framework to label sequences at the token level.
These studies include BERTgrid(Denk and Reiss-
wig, 2019), Post-OCR-Parsing(Hwang et al., 2019).
Additionally, there are some studies that aim to
combine the spatial information of text blocks for
labeling sequences at the block level. Examples
of such studies are GraphIE(Qian et al., 2018),
TRIE(Zhang et al., 2020), LayoutParser(Shen
et al., 2021), LayoutLM serials(Xu et al., 2020),
(Xu et al., 2021a), (Xu et al., 2021b). Also
Wang et al. finds that formatting can disrupt
sequence labeling. In addition to providing
semantic labels for text blocks, predicting the
reading order is also necessary. Research in this
field includes works like LayoutParser(Shen et al.,
2021), LayoutReader(Wang et al., 2021), ERNIE-
Layout(Peng et al., 2022).

5.2 Entity Linking
Studies, such as dhSegment(Ares Oliveira et al.,
2018), DocStruct(Wang et al., 2020), StrucTexT
serials(Li et al., 2021b), (Yu et al., 2023) combine
these two tasks and perform Entity Labeling and
Linking at the block level simultaneously. Those
studies mainly deal with blocks of individual pages.
SPADE(Hwang et al., 2021) and BROS(Hong
et al., 2021) formulates entity linking as a spatial

dependency parsing problem. However the linking
strategy is pair-wise. What sets this paper apart
is the utilization of a transition-based parser for
constructing entity links.

Numerous datasets have been introduced
to support research in this direction, such as
FUNSD(Jaume et al., 2019a), CORD(Park et al.,
2019), and SciTSR(Chi et al., 2019). Unlike
our work, these datasets usually focus only on
information extraction. The annotated text blocks
and relationships often cover only part of the
information on a single page. In contrast, the
PDF-to-Tree dataset and task aim to organize the
information from an entire document into a tree
structure.

5.3 Multi-Modal Feature Representation

Early works typically involved using a single
modal for predictions, either text or images.
LayoutLM(Xu et al., 2020) find that utilizing
multi-modal data can significantly enhance the
model’s performance in understanding structured
text. Similar works include StructuralLM(Li et al.,
2021a), StrucTexT serials(Li et al., 2021b), (Yu
et al., 2023). BROS(Hong et al., 2021) leverages
2D relative positions with area masking strategy
to develop a pre-trained language model. And it
achieves or even surpasses the performance of other
models in Entity Labeling and Entity Linking tasks
by using only text and layout modalities.

Meanwhile, datasets like DocBank(Li et al.,
2020), PubLayout(Zhong et al., 2019), and RVL-
CDIP(Harley et al., 2015) are introduced to support
pre-training for layout understanding. These
datasets share the common characteristic of being
annotated directly from the source code of digital
documents. In this paper, we employed a combi-
nation of automated and manual annotation. This
enables support for a broader range of document
types, including product manuals, public technical
reports, white papers, and so on. However, the cost
of manual annotation is high, and in future work,
unsupervised methods, such as clustering(LI et al.,
2022) or domain adaptation(Hui SUN, 2023), can
be considered to improve efficiency.

6 Discusion

In this paper, we discuss the task of document
structure parsing. This task is more intricate
compared to the traditional reading order predic-
tion. For complex layout documents, which may

10711

contain multiple reading orders.. To address these
challenges, we introduce a transition-based parser
as a solution. Alongside this, we introduce a new
dataset called PDF-to-Tree to support this task.
Experimental results demonstrate the effectiveness
of our approach. However, there is still room for
improvement in identifying less common labels.
Moreover, there are areas where the efficiency of
inference can be enhanced.

7 Limitation

All the PDFs used in the PDF-to-Tree dataset are
born digital(rendered). In theory, our method could
also be applied to scanned documents. However,
due to resource constraints, it has not been used on
the PDF-to-Tree dataset yet. In future work, we
plan to include scanned documents in our dataset as
well. Additionally, the high cost of manual labeling
limits the amount of annotated data we can obtain.
In future work, we believe it’s worth discussing
how to automatically label the tree structure of a
document.

8 Acknowledgments

The authors wish to thank the anonymous reviewers
for their helpful comments. This work was partially
funded by National Natural Science Founda-
tion of China (No.62206057,62076069,61976056),
Shanghai Rising-Star Program (23QA1400200),
Program of Shanghai Academic Research Leader
under grant 22XD1401100, and Natural Science
Foundation of Shanghai (23ZR1403500).

References
Sofia Ares Oliveira, Benoit Seguin, and Frederic

Kaplan. 2018. dhsegment: A generic deep-
learning approach for document segmentation. In
2018 16th International Conference on Frontiers in
Handwriting Recognition (ICFHR).

Zewen Chi, Heyan Huang, Heng-Da Xu, Houjin
Yu, Wanxuan Yin, and Xian-Ling Mao. 2019.
Complicated table structure recognition. ArXiv,
abs/1908.04729.

Timo I. Denk and Christian Reisswig. 2019. Bertgrid:
Contextualized embedding for 2d document repre-
sentation and understanding. ArXiv, abs/1909.04948.

Leipeng Hao, Liangcai Gao, Xiaohan Yi, and Zhi Tang.
2016. A table detection method for pdf documents
based on convolutional neural networks. In 2016
12th IAPR Workshop on Document Analysis Systems
(DAS).

AdamW. Harley, Alex Ufkes, and KonstantinosG.
Derpanis. 2015. Evaluation of deep convolutional
nets for document image classification and retrieval.
Cornell University - arXiv,Cornell University - arXiv.

Teakgyu Hong, Donghyun Kim, Mingi Ji, Wonseok
Hwang, Daehyun Nam, and Sungrae Park. 2021.
Bros: A pre-trained language model focusing on
text and layout for better key information extraction
from documents. In AAAI Conference on Artificial
Intelligence.

Zheng Huang, Kai Chen, Jianhua He, Xiang Bai,
Dimosthenis Karatzas, Shijian Lu, and C. V. Jawahar.
2019. Icdar2019 competition on scanned receipt ocr
and information extraction. In 2019 International
Conference on Document Analysis and Recognition
(ICDAR).

Ming LI Hui SUN. 2023. Enhancing unsupervised
domain adaptation by exploiting the conceptual con-
sistency of multiple self-supervised tasks. SCIENCE
CHINA Information Sciences, 66(4):142101–.

Wonseok Hwang, Seonghyeon Kim, Minjoon Seo,
Jinyeong Yim, Seunghyun Park, Sungrae Park,
Junyeop Lee, Bado Lee, and Hwalsuk Lee. 2019.
Post-ocr parsing: building simple and robust parser
via bio tagging.

Wonseok Hwang, Jinyeong Yim, Seunghyun Park,
Sohee Yang, and Minjoon Seo. 2021. Spatial
dependency parsing for semi-structured document
information extraction. In Findings of the
Association for Computational Linguistics: ACL-
IJCNLP 2021.

Guillaume Jaume, Hazim Kemal Ekenel, and Jean-
Philippe Thiran. 2019a. Funsd: A dataset for form
understanding in noisy scanned documents. In 2019
International Conference on Document Analysis and
Recognition Workshops (ICDARW).

Guillaume Jaume, Hazim Kemal Ekenel, and Jean-
Philippe Thiran. 2019b. Funsd: A dataset for form
understanding in noisy scanned documents. In 2019
International Conference on Document Analysis and
Recognition Workshops (ICDARW).

Chenliang Li, Bin Bi, Ming Yan, Wei Wang, Songfang
Huang, Fei Huang, and Luo Si. 2021a. Structurallm:
Structural pre-training for form understanding. In
Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers).

Minghao Li, Yiheng Xu, Lei Cui, Shaohan Huang, Furu
Wei, Zhoujun Li, and Ming Zhou. 2020. Docbank: A
benchmark dataset for document layout analysis. In
Proceedings of the 28th International Conference on
Computational Linguistics.

Qingyu LI, Yuhan HUANG, Shan JIN, Xiaokai HOU,
and Xiaoting WANG. 2022. Quantum spectral

10712

https://doi.org/10.1109/icfhr-2018.2018.00011
https://doi.org/10.1109/icfhr-2018.2018.00011
https://api.semanticscholar.org/CorpusID:199552037
https://api.semanticscholar.org/CorpusID:202558968
https://api.semanticscholar.org/CorpusID:202558968
https://api.semanticscholar.org/CorpusID:202558968
https://doi.org/10.1109/das.2016.23
https://doi.org/10.1109/das.2016.23
https://api.semanticscholar.org/CorpusID:237485613
https://api.semanticscholar.org/CorpusID:237485613
https://api.semanticscholar.org/CorpusID:237485613
https://doi.org/10.1109/icdar.2019.00244
https://doi.org/10.1109/icdar.2019.00244
https://doi.org/https://doi.org/10.1007/s11432-021-3535-2
https://doi.org/https://doi.org/10.1007/s11432-021-3535-2
https://doi.org/https://doi.org/10.1007/s11432-021-3535-2
https://doi.org/10.18653/v1/2021.findings-acl.28
https://doi.org/10.18653/v1/2021.findings-acl.28
https://doi.org/10.18653/v1/2021.findings-acl.28
https://doi.org/10.1109/icdarw.2019.10029
https://doi.org/10.1109/icdarw.2019.10029
https://doi.org/10.1109/icdarw.2019.10029
https://doi.org/10.1109/icdarw.2019.10029
https://doi.org/10.18653/v1/2021.acl-long.493
https://doi.org/10.18653/v1/2021.acl-long.493
https://doi.org/10.18653/v1/2020.coling-main.82
https://doi.org/10.18653/v1/2020.coling-main.82
https://doi.org/https://doi.org/10.1007/s11432-022-3492-x

clustering algorithm for unsupervised learning. SCI-
ENCE CHINA Information Sciences, 65(10):200504–
.

Yulin Li, Yuxi Qian, Yuechen Yu, Xiameng Qin,
Chengquan Zhang, Yan Liu, Kun Yao, Junyu Han,
Jingtuo Liu, and Errui Ding. 2021b. Structext:
Structured text understanding with multi-modal
transformers. In Proceedings of the 29th ACM
International Conference on Multimedia.

Seunghyun Park, Seung Shin, Bado Lee, Junyeop Lee,
Jaeheung Surh, Minjoon Seo, and Hwalsuk Lee. 2019.
Cord: A consolidated receipt dataset for post-ocr
parsing.

Qiming Peng, Yinxu Pan, Wenjin Wang, Bin Luo,
Zhenyu Zhang, Zhengjie Huang, Teng Hu, Weichong
Yin, Yongfeng Chen, Yin Zhang, Shikun Feng,
Yu Sun, Hao Tian, Hua Wu, and Haifeng Wang.
2022. Ernie-layout: Layout knowledge enhanced pre-
training for visually-rich document understanding.

Yujie Qian, Enrico Santus, Zhijing Jin, Jiang Guo,
and Regina Barzilay. 2018. Graphie: A graph-
based framework for information extraction. arXiv:
Computation and Language,arXiv: Computation and
Language.

Sebastian Schreiber, Stefan Agne, Ivo Wolf, Andreas
Dengel, and Sheraz Ahmed. 2017. Deepdesrt: Deep
learning for detection and structure recognition of
tables in document images. In 2017 14th IAPR
International Conference on Document Analysis and
Recognition (ICDAR).

Zejiang Shen, Ruochen Zhang, Melissa Dell, Benjamin
Charles Germain Lee, Jacob Carlson, and Weining
Li. 2021. LayoutParser: A Unified Toolkit for Deep
Learning Based Document Image Analysis., page
131–146.

Carlos Soto and Shinjae Yoo. 2019. Visual detection
with context for document layout analysis. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP).

Zilong Wang, Yiheng Xu, Lei Cui, Jingbo Shang,
and Furu Wei. 2021. Layoutreader: Pre-training
of text and layout for reading order detection. In
Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing.

Zilong Wang, Mingjie Zhan, Xuebo Liu, and Ding
Liang. 2020. Docstruct: A multimodal method to
extract hierarchy structure in document for general
form understanding. In Findings of the Association
for Computational Linguistics: EMNLP 2020.

Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu
Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio,
Cha Zhang, Wanxiang Che, Min Zhang, and Lidong
Zhou. 2021a. Layoutlmv2: Multi-modal pre-
training for visually-rich document understanding.

In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers).

Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang,
Furu Wei, and Ming Zhou. 2020. Layoutlm: Pre-
training of text and layout for document image
understanding. In Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge
Discovery & Data Mining.

Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang,
Yijuan Lu, Dinei Florencio, Cha Zhang, and Furu
Wei. 2021b. Layoutxlm: Multimodal pre-training for
multilingual visually-rich document understanding.
arXiv: Computation and Language,arXiv: Computa-
tion and Language.

Yuechen Yu, Yulin Li, Chengquan Zhang, Xiaoqiang
Zhang, Zengyuan Guo, Xiameng Qin, Kun Yao,
Junyu Han, Errui Ding, and Jingdong Wang. 2023.
Structextv2: Masked visual-textual prediction for
document image pre-training.

Peng Zhang, Yunlu Xu, Zhanzhan Cheng, Shiliang Pu,
Jing Lu, Liang Qiao, Yi Niu, and Fei Wu. 2020. Trie:
End-to-end text reading and information extraction
for document understanding. In Proceedings of the
28th ACM International Conference on Multimedia.

Xu Zhong, Jianbin Tang, and AntonioJimeno Yepes.
2019. Publaynet: largest dataset ever for document
layout analysis. Cornell University - arXiv,Cornell
University - arXiv.

A Dataset Annotation

The goal of the PDF-to-Tree annotation task is to
extract text blocks from a PDF file and label their
relationships in a tree structure. We start by using
the open-source tool PDF Miner to extract text
blocks from the PDF. Any incorrectly extracted
blocks are manually corrected. Next, we use multi-
level numbering to label the relationships between
text blocks. Finally, we can add arcs between
adjacent text blocks with serial numbers to form a
tree structure.

As Figure 7 illustrates, with two-level num-
bering, the first level represents the global order
of document components, and the second level
represents the order of the text block within the
document component. For instance, the label
“paragraph-3-2” means that this text block is is
the second block within that paragraph and the
paragraph is the third component in the entire
document. Please note that the numbering is not
continuous. We use number to represent relative
order, making it easy to insert new labels anywhere

10713

https://doi.org/https://doi.org/10.1007/s11432-022-3492-x
https://doi.org/10.1145/3474085.3475345
https://doi.org/10.1145/3474085.3475345
https://doi.org/10.1145/3474085.3475345
https://api.semanticscholar.org/CorpusID:207900784
https://api.semanticscholar.org/CorpusID:207900784
https://doi.org/10.1109/icdar.2017.192
https://doi.org/10.1109/icdar.2017.192
https://doi.org/10.1109/icdar.2017.192
https://doi.org/10.1007/978-3-030-86549-8_9
https://doi.org/10.1007/978-3-030-86549-8_9
https://doi.org/10.18653/v1/d19-1348
https://doi.org/10.18653/v1/d19-1348
https://doi.org/10.18653/v1/2021.emnlp-main.389
https://doi.org/10.18653/v1/2021.emnlp-main.389
https://doi.org/10.18653/v1/2020.findings-emnlp.80
https://doi.org/10.18653/v1/2020.findings-emnlp.80
https://doi.org/10.18653/v1/2020.findings-emnlp.80
https://doi.org/10.18653/v1/2021.acl-long.201
https://doi.org/10.18653/v1/2021.acl-long.201
https://doi.org/10.1145/3394486.3403172
https://doi.org/10.1145/3394486.3403172
https://doi.org/10.1145/3394486.3403172
https://doi.org/10.1145/3394171.3413900
https://doi.org/10.1145/3394171.3413900
https://doi.org/10.1145/3394171.3413900

Figure 7: An illustration of annotation tool used for the PDF-to-Tree dataset.

in the sequence. For example, we can insert 15
between 10 and 20.

For more complex components like tables, we
can extend to more levels of numbering, such as
using the second level for row numbers and the
third level for column numbers. For example, the
label “table-5-3-1” indicates that it is the first cell in
the third row of the table, which is the fifth element
in the article.

10714

