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Abstract

Various audio-LLMs (ALLMs) have been ex-
plored recently for tackling different audio
tasks simultaneously using a single, unified
model. While existing evaluations of ALLMs
primarily focus on single-audio tasks, real-
world applications often involve processing
multiple audio streams simultaneously. To
bridge this gap, we propose the first multi-audio
evaluation (MAE) benchmark that consists of
20 datasets from 11 multi-audio tasks encom-
passing both speech and sound scenarios. Com-
prehensive experiments on MAE demonstrate
that the existing ALLMs, while being powerful
in comprehending primary audio elements in
individual audio inputs, struggling to handle
multi-audio scenarios. To this end, we propose
a novel multi-audio-LLM (MALLM) to capture
audio context among multiple similar audios
using discriminative learning on our proposed
synthetic data. The results demonstrate that
the proposed MALLM outperforms all base-
lines and achieves high data efficiency using
synthetic data without requiring human annota-
tions. The proposed MALLM opens the door
for ALLMs towards multi-audio processing era
and brings us closer to replicating human audi-
tory capabilities in machines. 1

1 Introduction

Large language models (LLMs) have become re-
markably powerful, driving advancements in var-
ious tasks across the field of natural language
processing (NLP) (Touvron et al., 2023; Achiam
et al., 2023; Team et al., 2023). Recent advance-
ments in LLMs have also led to the development
of various powerful audio large language models
(ALLMs) (Chu et al., 2023; Huang et al., 2024;
Rubenstein et al., 2023), which have achieved im-
pressive results on a range of audio tasks, e.g., auto-
matic speech recognition (Hu et al., 2024), speech

* Corresponding author.
1Code is available at github.com/MatthewCYM/MALLM.

Audio1: Clapping Audio2: Raining

What's the sound in Audio1?

It's sound of clapping.

What's the sound in Audio2?

It's sound of raining.

Are the sounds in Audio1 and Audio2 same?

Yes, they are the same.

Figure 1: Motivating Example - Qwen-Audio’s re-
sponses for single audio inputs and a two-audio input
task.

synthesis (Gao et al., 2024c), sound event classifi-
cation (Tang et al., 2024; Yue et al., 2024b).

However, a crucial limitation exists: current
ALLM training and evaluation primarily focus on
single audio inputs. This is a significant drawback,
as various real-world applications, e.g., virtual as-
sistants, often require processing multiple audio
streams simultaneously. Additionally, multi-audio
processing is essential for effectively implement-
ing few-shot in-context learning, which is a fun-
damental capability for advanced LLMs. Unlike
text-based LLMs, which excel at handling multiple
texts (Wang et al., 2024; McKenna et al., 2023), and
vision LLMs, which have established benchmarks
for processing multiple images (Li et al., 2024;
Huang et al., 2023b; Zhao et al., 2024; Li et al.,
2023), the audio field lacks systematic evaluations
and benchmarks for multi-audio tasks with ALLMs.
Although several ALLMs (Chu et al., 2023; Zhan
et al., 2024) claim to handle multi-audio contexts,
their performance quantification remains unclear.
This underscores a significant gap in the audio field,
in contrast to the vision and language fields, which
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already possess established evaluations and bench-
marks for their respective tasks.

To bridge this gap, we propose the first dedi-
cated multi-audio benchmark for ALLMs, encom-
passing 11 tasks for both open-ended and close-
formed generation across speech and sound do-
mains. Comprehensive experiments on 15 ALLMs
reveal that existing open-source ALLMs fall short
in multi-audio scenarios despite their strong single-
audio processing abilities. For instance, as shown
in Fig. 1, while ALLMs can perfectly identify Au-
dio1 as clapping and Audio2 as raining respectively
in a single-audio scenario, they struggle to deter-
mine whether Audio1 and Audio2 are the same
when tasked with understanding the relationship
between two audio inputs. This suggests that cur-
rent ALLMs are not well-equipped to handle multi-
audio tasks, even those that are straightforward for
humans. This further underlines the need for ad-
vancements in ALLMs to handle multiple audio
inputs to enhance human-computer interaction.

To this end, we propose an innovative and scal-
able multi-audio large language model (MALLM)
that effectively captures audio contexts essential for
reasoning over multiple audios. Inspired by the suc-
cess of discriminative learning (Clark et al., 2020;
Li et al., 2024; Jia et al., 2021), we define a chal-
lenging discriminative task that trains the model to
discover the subtle differences between two sim-
ilar audio samples. Furthermore, we introduce a
scalable audio pairs synthesis strategy to enable
multi-audio processing ability without the need for
data collection and human labeling. Comprehen-
sive experiments show that MALLM significantly
outperforms existing open-source ALLMs under
multi-audio scenarios while maintaining competi-
tiveness under single-audio scenarios.

Overall, our contributions include: (1) Novel
Evaluation Benchmark: We propose the first
multi-audio benchmark (MAE) for evaluating the
multi-audio processing capabilities of ALLMs, en-
compassing a diverse range of tasks from both
the speech and sound domains. (2) Advanced
Multi-Audio LLM: Beyond focusing on the sin-
gle audio content, our proposed MALLM not only
demonstrates remarkable performance across di-
verse multi-audio tasks but also achieves remark-
able data efficiency through an innovative data
synthesis strategy. (3) Comprehensive Evalua-
tion: We conduct a comprehensive evaluation on
15 ALLMs across various tasks, providing a solid
foundation for future research.

2 Related Works

Recently, numerous studies have integrated au-
dio encoders with pre-trained LLMs to develop
multimodal ALLMs, serving as general-purpose
task solvers for various audio-input tasks across
speech and sound domains. Most ALLMs fo-
cus on specific audio types, like speech (Zhang
et al., 2023; Zhan et al., 2024; Das et al., 2024),
or sound (Panagopoulou et al., 2023; Kong et al.,
2024; Moon et al., 2023; Han et al., 2023). A
few recent models handle multiple types of audio,
showing strong capabilities in universal audio un-
derstanding (Gong et al., 2023; Chu et al., 2023;
Tang et al., 2024). Meanwhile, to effectively bench-
mark the advancements in ALLMs, new evaluation
benchmarks such as AIR-Bench (Yang et al., 2024)
and Dynamic-SUPERB (Huang et al., 2023a) have
been introduced. However, these benchmarks and
existing ALLMs primarily focus on tasks involv-
ing single audio inputs, largely overlooking scenar-
ios with multiple audio streams. In contrast, our
work introduces the MAE benchmark, specifically
designed to assess multi-audio processing capabil-
ities. Notably, MAE includes a variety of tasks
across diverse scenarios, encompassing both au-
dio and speech, making it suitable for benchmark-
ing a broad spectrum of ALLMs. Additionally,
we develop the MALLM, the first ALLM specifi-
cally tailored for multi-audio tasks, demonstrating
significant improvements in processing multiple
audio streams while maintaining competitive per-
formance on single-audio tasks.

3 MAE Benchmark

We propose the first multi-audio benchmark (MAE)
for evaluating ALLMs, as illustrated in Fig. 2.
The MAE comprehensively benchmarks the multi-
audio processing capabilities of ALLMs by includ-
ing a wide variety of generation tasks from different
fields and scenarios. It comprises six speech tasks
and five sound tasks, covering both open-ended
and close-form generation tasks. Open-ended ques-
tions allow models to produce free-form responses
without predefined constraints. Conversely, closed-
form questions restrict models to a predetermined
set of possible outcomes. The MAE is automati-
cally constructed using an advanced text-only LLM
from various existing single-audio datasets with-
out the need for further human annotation. Each
sample in the MAE includes a combination of two
audio contexts and a task instruction.
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Speech  identification 

Speech1: how came
you to leave the key in
the door [Coughing]

Speech2: how came
you to leave the key in
the door [Sneezing]

Are the contents of Speech1 and
Speech2 same?

Yes.

Story generation

Audio1: dog barking Audio2: bird chirping

Create a short story that contains the
sounds in both Audio1 and Audio2.

In a small city park, Mr. Collins walked his
terrier, Max, under the morning sun.
Suddenly, a flock of sparrows burst from
the bushes, chirping wildly. Excited, Max
barked and wagged his tail, watching them
fly away. Mr. Collins smiled, enjoying the
simple symphony of barks and chirps,
feeling at peace amidst nature.

Speech comparison

Speech1: the clumsy
customer spilled some

expensive perfume

Speech2: the clumsy
customer spilled some

perfume

What's the content difference between
Speech1 and Speech2?

The primary difference between the two
speeches is the adjective "expensive" in
Speech1, which emphasizes the value
of the perfume. This addition highlights
the gravity of the customer's clumsiness
by suggesting a higher cost associated
with the spill compared to the more
neutral description in Speech2.

Keyword comparison 

Speech1: off Speech2: go

Do two speeches contain the same
keyword?

No.

Intent identification 

Speech1: turn the lights
on

Speech2: switch on the
lights

Do these two speeches represent the
same intent category?

Yes.

Dialogue response generation

Speech1: What are you
working on?

Speech2: I'm figuring
out my budget

Speech1 is the first utterance from Speaker1
and Speech2 is the second utterance from
Speaker2. Next, what would be the possible
response from Speaker1?

Umm…. What budget?

Hotword detection

Speech1: he seemed
born to please without
being conscious of the
power he possessed

Speech2: they are
cousins you know we

are all cousins

Which speech contains the word "power"?

Speech1.

Event detection

Audio1: alarm, speech Audio2: telephone,
raining

Which audio contains the sound of
telephone?

Audio2.

Sound comparison 

Audio1: dog barking Audio2: people
coughing

Are the sound events in two audios
same?

No.

Caption retrieval

Audio1: a motor bike
drives by while birds

chirp in the background.

Audio2: a metal cage
door swings open and

shuts repetitively

Which one of the audios better match the
audio caption: "A metal cage door swings
open and shuts repetitively."?

Audio2.

Event retrieval 

Audio1: vacuum cleaner Audio2: chainsaw

The sound of vacuum cleaner is happened
in Audio1 or Audio2?

Audio2.

Figure 2: Overview of proposed MAE benchmark. Yellow blocks show the speech tasks, while grey blocks show
the sound tasks. Speech transcriptions, audio labels, input instructions, and expected output responses are given.

To correctly answer the questions from MAE,
ALLMs are required to effectively combine the in-
formation from both context audios. Notably, MAE
is designed to examine ALLMs’ multi-audio pro-
cessing ability at different levels. For closed-form
generation tasks, we directly derive the ground
truth labels from existing single-audio labels to
compute metric scores. Motivated by the recent
success of LLM-based text evaluation (Fu et al.,
2023), we utilize a text-only LLM as an automatic
evaluator to assign binary good/bad labels to re-
sponses generated by ALLMs for open-ended gen-
eration tasks (see APPX. A). We summarize the
data statistics of the MAE in Tab. 1. Next, we
introduce the construction process for each task.

3.1 Speech Tasks
For speech, we design two open-ended generation
tasks from sentence and dialogue levels and four
closed-form tasks from word and sentence levels.

Speech comparison: This sentence-level, open-

ended task requires ALLMs to identify content dif-
ferences between pairs of speeches. Speech pairs
are sourced from ASR datasets with timestamp-
level transcription. We segment the speech into spo-
ken words with timestamps and instruct an LLM
to reconstruct a subset of these words into a new
speech without semantic errors, such as omitting
the adjective "expensive" in Fig. 2. Then, we com-
bine the original and reconstructed speech or two
reconstructed speeches as an evaluation pair. Note
that ground truth transcriptions of two speeches can
be obtained from the original labels, allowing us to
utilize the LLM as an evaluator to label the ALLMs’
responses based on the derived transcriptions.

Dialogue response generation: This dialogue-
level, open-ended task involves generating a sub-
sequent utterance from the examined ALLMs in a
dialogue based on the first two utterances. Simi-
larly, the LLM evaluator assesses the overall quality
of the generated dialogue response with respect to
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Type Task Category Source # Samples Metric

Speech

Speech comparison Open-ended
Librispeech (Panayotov et al., 2015) 1000

Acc
TIMIT (Lamel et al., 1989) 1000

Dialogue generation Open-ended
DailyTalk (Lee et al., 2023) 1000

Acc
MELD (Poria et al., 2019) 304

Hotword detection Closed-form
Librispeech (Panayotov et al., 2015) 500 / 500

Acc
TIMIT (Lamel et al., 1989) 500 / 500

Speech identification Closed-form
Librispeech (Panayotov et al., 2015) 500 / 500

F1/Acc
WSJ (Paul and Baker, 1992) 500 / 500

Keyword comparison Closed-form
AudioKeyword (Mazumder et al., 2021) 513 / 513

F1/Acc
SpeechCommands (Warden, 2018) 500 / 500

Intent identification Closed-form FLUENT (Lugosch et al., 2019) 504 / 507 F1/Acc

Sound

Story generation Open-ended
ESC-50 (Piczak, 2015) 1000

Acc
UrbanSound (Salamon et al., 2014) 1000

Sound comparison Closed-form
ESC-50 (Piczak, 2015) 500 / 500

F1/Acc
UrbanSound (Salamon et al., 2014) 500 / 500

Caption retrieval Closed-form
Clotho (Drossos et al., 2020) 506 / 494

Acc
AudioCaps (Kim et al., 2019) 528 / 472

Event retrieval Closed-form
ESC-50 (Piczak, 2015) 503 / 497

Acc
UrbanSound (Salamon et al., 2014) 503 / 497

Event detection Closed-form AudioSet (Gemmeke et al., 2017) 500 / 500 Acc

Table 1: Data statistics of MAE benchmark. For closed-form tasks, class-wise number of samples are given.

the transcriptions of the preceding utterances.
Hotword detection: Hotword detection is de-

fined as a word-level, close-ended task derived
from existing ASR datasets. Given a pair of ran-
domly sampled speeches, the ALLMs are asked to
detect which speech contains a specific noun that
appears only in one of them. This task evaluates
the models’ precision in recognizing and differenti-
ating specific lexical items within speech contexts.

Intent identification: This task is defined as a
sentence-level, close-ended task. We construct con-
text speech pairs by randomly sampling speeches
that either share the same intent or represent dif-
ferent intents from existing intent classification
datasets. The ALLMs are tasked with determin-
ing whether the paired speeches belong to the same
intent category, evaluating their ability to discern
and categorize the underlying communicative pur-
poses in speech data.

Keyword comparison: This task is a word-
level, close-ended challenge derived from exist-
ing keyword-spotting datasets. We sample pairs of
speeches that either share the same keywords or
contain different ones. The ALLMs are asked to
determine whether the keywords presented in the
two speeches are identical.

Speech identification: Speech identification
is a sentence-level, close-formed task involving
context-positive speech pairs and negative pairs
with distinct transcriptions. The ALLMs are re-
quired to discern whether speech pairs have the
same content. Positive pairs are formed by adding
different background noises (e.g., coughing and
sneezing in Fig. 2) to the same speech, yielding
identical content but different backgrounds. Nega-
tive pairs consist of randomly selected speeches.

3.2 Sound Tasks

For sound, we design one open-ended and four
closed-form tasks to challenge the ALLM compre-
hension of global and local level audio intricacies.

Story generation: This open-ended task tests
the ALLMs’ global understanding of audio by chal-
lenging them to integrate diverse sound events from
multiple audios into a coherent narrative. We ran-
domly select two audio samples, each with a dis-
tinct event, and task the ALLMs to create a brief
narrative incorporating both sounds. The correct-
ness of the story is contingent upon the inclusion
of both specified sounds; any omission marks it as
incorrect. For instance, as shown in Fig. 2, a story
is correct if it includes both the dog barking and
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TTSHe sailed to Cyprus alone,
although not quite alone.

S1: Original

A1: Barking

Annotated sounds

Transformation
A1 vs. A2
A1 vs. A3
A1 vs. A4
A2 vs A3
A2 vs A4

A1 vs. A1+A3
A1 vs. A1+A4

A1+A3 vs. A1+A4

Sound pairs

S1 vs. S2
S1 vs. S3
S1 vs. S4
S1 vs. S5

Speech pairs

Instruction: Describe the difference between two audios.

ALLM

He sailed to Cyprus alone,
although not quite entirely alone.

S2: Add words

He sailed to Cyprus, although not
quite alone.

S4: Delete words

He voyaged to Cyprus alone,
although not quite alone.

S3: Modify words

Although he sailed to Cyprus
alone, he wasn't quite alone.

S5: Swap words

TransformationSpeech pair synthesis

A2: Barking

A3: Raining

A4: Clapping

A1+A3: Barking + Raining

A1+A4: Barking + Clapping

Sound pair synthesis

A1+A3: Barking + Raining A1+A4: Barking + Clapping

S1: ... to Cyprus,... S4: ... to Cyprus alone,... 

Mixed pairs

Unified discriminative training

Audio: Both audios have sound of dog barking, while Audio 1 has
extra sound of raining ...
Speech: The difference between  two speeches lies in their
structure and emphasis:... 

Synthetic responses

Figure 3: MALLM training framework: speech/sound pair synthesis, and unified synthetic discriminative training.

bird chirping sounds. We utilize the LLM evaluator
to assess the completeness of the sound integration.

Event detection: Using multi-label sound event
classification datasets, we create a task where
ALLMs are asked to detect a specified sound in
given audios containing multiple sounds, such as
identifying if telephone ringing is present in Au-
dio1 or Audio2 (Fig. 2). This task demands precise
understanding and interpretation of local audio de-
tails to identify specific sound events accurately.

Sound comparison: We randomly select two
audio samples, which may either share the same
sound event labels or differ. ALLMs are then in-
structed to compare two audios to determine if
these two audios belong to the same sound event
category. This requires the models to not only rec-
ognize the sound event in a single audio but also
compare them for similarities and differences.

Caption retrieval: In this task, the ALLMs are
presented with two audio samples and a correspond-
ing audio caption. The models are required to deter-
mine which of the two audios aligns more closely
with the given caption. This task assesses the ability
of the ALLMs to understand audio content globally
and analyze their similarities with descriptive text.

Event retrieval: Similar to caption retrieval but
simpler, ALLMs are asked to retrieve the audio
sample based on one single specific sound event
label each time, testing their ability to match labels
with corresponding audio samples.

4 MALLM

In this section, we introduce the specifics of our
proposed MALLM. Fig. 3 depicts our discrimi-
native ALLM fine-tuning strategy. Specifically,
MALLM is trained to describe the subtle distinc-
tions between two similar audios, enhancing its
capability to handle multi-audio scenarios. To ef-
fectively tackle the challenging discriminative prob-
lem, the MALLM is expected to possess a deep
comprehension of all input audios and infer both
intra-audio and inter-audio relationships. In this
way, MALLM can be effectively augmented with
reasoning abilities across multiple audios. Further-
more, to improve the data efficiency and scalability,
we propose the automatic construction of a syn-
thetic training dataset without additional human
intervention. This dataset includes pairs of both
synthetic speech and sound pairs with subtle dif-
ferences, which are used to fine-tune MALLM,
expanding its multi-audio processing capabilities.

Speech pair synthesis: To automate the con-
struction of speech pairs, we start by randomly se-
lecting a sentence from a text corpus. An advanced
text-based LLM is then utilized to generate four
variations of the sentence, each containing slight
modifications. This is achieved by instructing the
LLM with different prompts that direct it to add,
delete, or modify a limited number of words in the
original sentence and to alter its structure. Detailed
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prompts for this process are provided in APPX. C.
Following these text modifications, a robust pre-
trained text-to-speech (TTS) model converts both
the original and modified sentences into speech.
This controlled synthesis process ensures that ac-
curate ground-truth transcriptions are available for
all generated speech samples. Ultimately, each
original sentence is paired with its four modified
counterparts, yielding four synthetic speech pairs
with subtle differences per input sentence.

Audio pair synthesis: To generate audio pairs
with synthetic data, we start from individual audio
recordings labeled with distinct sound events. For
two individual audios containing different sound
events, we directly mix the audios with balanced
signal-to-noise ratios (SNR), resulting in a new au-
dio file containing both sound events. For instance,
mixing an audio of a dog barking with an audio of
rain produces a new synthetic audio featuring both
barking and raining. This mixing process ensures
the ground truth sound event labels for the synthetic
data are accurately maintained. Ultimately, various
combinations of these mixed audios are generated
to form audio pairs, as illustrated in Fig. 3.

Discriminative learning: Following the acqui-
sition of synthetic data pairs, we fine-tune the
MALLM through inter-audio discriminative train-
ing tasks encompassing a mixture of speech and
audio pairs with the instruction tuning loss. As
previously stated, we have access to ground truth
labels for all synthetic data, facilitating the straight-
forward transformation of these labels into natural
responses for training purposes. For speech pairs,
we utilize an advanced text-only LLM to gener-
ate differences between two speech transcriptions
as the ground-truth responses. Regarding audio
pairs, we apply predefined rules to map annotated
sound event labels to their corresponding responses
(see APPX. B). To stabilize the training and pre-
vent catastrophic forgetting, we also sample single
audios from various tasks for joint training. De-
tails regarding the MALLM training dataset are
provided in APPX. B.

5 Experiment

5.1 Experiment Setup

Throughout the experiments, we use GPT-42 for
data synthesis and downstream performance evalu-
ation. For the TTS module in speech pair synthesis,

2gpt-4-turbo-2024-04-09

we utilize MMS-TTS (Pratap et al., 2024). We im-
plement the MALLM based on Qwen-Audio (Chu
et al., 2023), incorporating an audio encoder,
Whisper-large-v2 (Radford et al., 2023), and a large
language model, Qwen-7B (Bai et al., 2023). We
use LoRA (Hu et al., 2022) to fine-tune all modules
of Qwen-Audio (Chu et al., 2023) except the audio
encoder with a learning rate 5e-5 and batch size 16
for 5 epochs. The training takes 48 GPU hours on
Nvidia A100.

5.2 Examined Models
Our evaluation encompasses a diverse range of
ALLMs on the MAE benchmark. For speech-
related tasks, we assess LTU-AS (Gong et al.,
2023), SALMONN (Tang et al., 2024), Qwen-
Audio (Chu et al., 2023), SpeechGPT (Zhang
et al., 2023) and AnyGPT (Zhan et al., 2024).
In the domain of sound processing, we evalu-
ate LTU (Gong et al., 2024), LTU-AS (Gong
et al., 2023), SALMONN (Tang et al., 2024),
Qwen-Audio (Chu et al., 2023), NextGPT (Wu
et al., 2023), PandaGPT (Su et al., 2023), X-
InstructBLIP (Panagopoulou et al., 2023) and
Pengi (Deshmukh et al., 2023). In addition, we in-
clude advanced proprietary models, Gemini-Flash3

and Gemini-Pro4, as the performance upper bound
of speech tasks, since they cannot handle the sound
tasks. Note that the examined ALLMs sometimes
fail to follow the instructions, leading to the ab-
sence of predicted answers for closed-form tasks.
In that case, we default the predicted answer to
"No" or "Audio1", depending on the task context.
Since MAE is class-balanced, this strategy effec-
tively equates to a random guessing strategy.

5.3 MAE Results
MAE-Speech: The evaluation results for various
ALLMs on the MAE-Speech benchmark (Tab. 2)
show that all open-source ALLMs struggle with
multi-audio scenarios across all tasks. The highest-
performing model, Qwen-Audio, merely achieves
an average accuracy of 39.6%. In closed-form
tasks, these models tend to collapse to consistently
give the same answer for all queries, leading to
approximately 50% accuracy. For example, Qwen-
Audio always answers "Yes" for intent identifica-
tion. Furthermore, models like LTU-AS frequently
fail to adhere to the provided instructions, result-
ing in extremely poor performance, particularly in

3gemini-1.5-flash-preview-0514
4gemini-1.5-pro-preview-0514
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Model Speech comparison
(Acc)

Dialogue response generation
(Acc)

Speech identification
(F1/Acc)

Librispeech TIMIT DailyTalk MELD Librispeech WSJ

LTU-AS 0.6 0.9 14.7 11.5 66.7 / 50.0 66.7 / 50.0
SALMONN-7B 17.7 17.5 1.6 3.6 66.7 / 50.0 66.7 / 50.0
SALMONN-13B 22.9 27.9 2.2 3.6 68.5 / 54.1 67.3 / 51.5
SpeechGPT 1.2 0.6 1.9 3.3 2.0 / 50.5 1.6 / 50.2
AnyGPT 3.7 2.9 2.1 3.0 27.6 / 44.5 32.5 / 48.8
Qwen-Audio 11.6 13.1 20.4 15.5 1.58 / 50.2 0.00 / 50.0

Gemini-Flash 66.4 55.8 89.7 56.6 99.4 / 99.4 99.6 / 99.6
Gemini-Pro 60.5 52.5 79.0 44.4 99.3 / 99.3 99.2 / 99.2

MALLM 70.3 59.6 50.7 40.5 96.5 / 96.6 87.6 / 89.0

Hotword detection
(Acc)

Keyword comparison
(F1/Acc)

Intent identification
(F1/Acc)

Avg.
(Acc)

Librispeech TIMIT SpeechCommand AudioKeyword FLUENT

LTU-AS 49.8 49.9 52.6 / 49.2 64.0 / 48.3 66.6 / 50.3 34.1
SALMONN-7B 61.4 55.7 64.5 / 50.3 65.2 / 48.8 66.8 / 50.2 37
SALMONN-13B 51.9 51.2 0.4 / 50.0 6.0 / 50.9 1.2 / 50.2 37.9
SpeechGPT 50.0 50.1 10.1 / 48.0 11.2 / 48.7 20.8 / 50.3 32.3
AnyGPT 49.0 49.8 2.7 / 49.1 3.7 / 49.4 14.8 / 49.9 32.0
Qwen-Audio 60.9 63.9 0.0 / 50.0 0.0 / 50.0 66.8 / 50.2 39.6

Gemini-Flash 99.9 100.0 91.7 / 92.3 79.4 / 82.8 80.2 / 75.5 83.5
Gemini-Pro 99.7 99.8 94.9 / 95.0 89.36 / 90.16 83.0 / 79.6 81.7

MALLM 80.0 86.8 88.2 / 88.7 78.03 / 80.90 75.7 / 68.6 73.8

Table 2: Comparison of various ALLMs on MAE-Speech. The first block shows the open-source ALLMs, while the
second block shows the proprietary ALLMs. The best performance among open-source ALLMs are bold.

open-ended tasks. This issue is hypothesized to
stem from insufficient supervised fine-tuning data.

In contrast, the proprietary Gemini series mod-
els demonstrate exceptional performance across the
MAE benchmark, reaching nearly 100% accuracy
in simple tasks like hotword detection. This un-
derscores the significant performance disparity be-
tween current open-source ALLMs and their propri-
etary counterparts. Notably, the Gemini technical
reports do suggest the multi-audio processing abili-
ties of Gemini models and examine a multi-audio
in-context learning scenario (Reid et al., 2024).
Therefore, it’s likely that Gemini models are spe-
cially optimized with multi-audio data.

Our newly developed MALLM significantly sur-
passes all open-source models, posting an average
accuracy of 73.8%. It is important to mention that
the MALLM’s tuning data does not encompass
dialogue or intent-related data. Nevertheless, we
observe substantial improvements in these areas,
suggesting that our discriminative training strat-
egy effectively enhances the general multi-audio
processing capabilities of ALLMs. Overall, our
MALLM substantially narrows the gap between
open-source and proprietary models, even surpass-

ing proprietary models in tasks like speech compar-
ison.

MAE-Sound: The evaluation results for various
ALLMs on the MAE-Sound benchmark, shown
in Tab. 3, reveal that most ALLMs struggle with
multi-audio contexts similar to the findings from
MAE-Speech. Among all ALLMs, Qwen-Audio
achieves the best performance, particularly in event
retrieval and sound detection tasks. Despite this, its
overall performance is still deemed unsatisfactory.
Our proposed MALLM significantly outperforms
Qwen-Audio and all other models, achieving an
average accuracy of 74.3% across all tasks. This su-
perior performance again underscores the efficacy
of our discriminative learning approach tailored for
multi-audio contexts in large audio language mod-
eling. Overall, MALLM demonstrates a marked
improvement over existing models in multi-audio
processing across both speech and sound domains,
which suggests promising directions for further re-
search and development.

5.4 Discussion

Single-audio performance: Alongside multi-
audio processing, we also evaluate the single-audio
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Model Sound comparison
(F1/Acc)

Caption retrieval
(Acc)

Event retrieval
(Acc)

Sound detection
(Acc)

Story generation
(Acc)

Avg.
(Acc)

ESC-50 UrbanSound Clotho AudioCaps ESC-50 UrbanSound AudioSet ESC-50 UrbanSound

LTU 19.2 / 51.3 42.0 / 50.0 51.6 51.4 49.7 50.3 50.0 25.7 27.5 45.3
LTU-AS 43.3 / 50.5 6.4 / 50.5 50.5 52.8 49.4 50.0 50.0 23.3 22.6 44.4
Pengi 3.1 / 50.0 2.0 / 49.8 50.3 52.7 50.3 50.3 50.0 0.9 0.3 39.4
SALMONN-7B 66.7 / 50.0 66.7 / 50.0 53.3 55.6 50.8 50.8 50.7 6.2 13.4 42.3
SALMONN-13B 3.9 / 50.5 10.3 / 51.0 51.3 50.4 54.8 53.1 53.2 25.3 47.5 48.6
NextGPT-7B 4.2 / 50.3 2.4 / 50.1 50.4 52.2 50.4 50.3 50.0 1.0 0.8 39.5
PandaGPT-7B 66.7 / 50.0 66.7 / 50.0 51.1 54.9 51.3 52.0 52.1 4.3 3.5 41.0
PandaGPT-13B 45.5 / 48.7 44.6 / 52.7 50.8 49.1 51.1 51.0 52.8 2.6 1.7 40.1
XInstructBLIP-7B 47.3 / 51.0 44.6 / 51.7 50.8 52.8 49.7 50.3 50.0 3.4 3.9 40.4
XInstructBLIP-13B 2.7 / 50.1 9.7 / 49.5 50.8 53.2 50.0 49.5 49.7 7.0 4.5 40.5
Qwen-Audio 0.4 / 50.1 17.7 / 50.0 58.8 55.2 83.1 74.3 68.5 30.6 42.0 57.0

MALLM 80.7 / 76.6 69.7 / 65.7 81.3 65.0 95.5 80.4 72.0 59.2 70.8 74.1

Table 3: The performance of various ALLMs on MAE-Sound. The best performance among ALLMs are bold.

processing ability of the MALLM compared to
the backbone model, Qwen-Audio, with results
for ASR and event classification in Tab. 4. Our
MALLM not only demonstrates superior multi-
audio understanding but also maintains competi-
tive, sometimes superior, single-audio performance.
These findings underscore the MALLM’s broad
applicability and validate the effectiveness of our
synthetic training schema, which equips the model
to handle a wide range of scenarios.

Model Librispeech ASR
(WER)

Event Classification
(Acc)

dev-clean test-clean ESC-50 UrbanSound

Qwen-Audio 2.0 2.3 70.0 74.9
MALLM 2.0 2.2 77.2 73.5

Table 4: Comparison of single-audio performance be-
tween Qwen-Audio and our MALLM.

Case study: In addition to quantitative results,
we show a case study in Tab. 5 to illustrate the qual-
ity of generated responses from different ALLMs.
We leave more case studies in APPX. D. In the
example, the models need to generate a story with
sounds of both keyboard typing and water dropping.
While both generate coherent narratives, Qwen-
Audio focuses only on keyboard typing, neglecting
the water sound. On the contrary, MALLM in-
corporates both sounds and demonstrates a more
comprehensive understanding of the task require-
ments, demonstrating its superior capabilities in
handling complex multi-audio inputs compared to
other models.

Human validation of automatic metrics: For
open-ended tasks in MAE, we employ an LLM
evaluator to automatically assess the correctness of
responses from ALLMs. To validate the reliability
of this evaluator, we manually annotate responses

Model Response

Qwen-Audio In a dimly lit room, a person sat at a desk
typing furiously on a keyboard. The
sound of the keys clacking against the
keys filled the room. Suddenly, the person
stopped typing and listened to the sound
of their own typing. It was a soothing,
calming sound that brought them a sense
of peace. They closed their eyes and took
a deep breath, letting the sound wash over
them. They felt a sense of accomplish-
ment and satisfaction, knowing that they
had just typed out a masterpiece.

MALLM In a quiet, dimly lit room, there was a con-
stant sound of typing on a keyboard. As
the sound filled the air, drops of water
began to fall from a faucet. The rhythmic
clicking of the keyboard mixed with the
rhythmic splashing of the water, creating
a unique and soothing atmosphere. The
combination of sounds brought a sense of
calm and focus to the environment. The
keyboard clicking was steady and consis-
tent, much like the dripping water, and
both sounds seemed to blend together, cre-
ating a harmonious and tranquil scene.

Table 5: Case study: ALLMs are instructed to generate
a story containing the sound of water and keyboard.
The occurrence of ’keyboard’ and ’water’ in the model
response is in bold.

from Qwen-Audio and MALLM, which exhibit the
best performance among open-source models. We
randomly selected 50 responses from each model
across six datasets within three tasks: speech com-
parison, dialogue response generation, and story
generation. For each sample, we ask three anno-
tators to annotate the binary label of the ALLM
response.

We observe a high inter-annotator agreement of
0.81 for the story generation task, and a moder-
ate inter-annotator agreement of 0.39 and 0.38 for
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dialogue response generation and speech compari-
son respectively, which validates the reliability of
our human study. The accuracy computed from
LLM annotated labels and human annotated ones
are summarized in Tab. 6. Across all tasks, particu-
larly in story generation, the LLM evaluator shows
a high correlation with human judgments, affirm-
ing its reliability as a tool in our MAE benchmark.
Note that the evaluation of speech comparison and
dialogue response are subjective and challenging.
Even different human annotators exhibit different
perceptions, as highlighted in the inter-annotator
agreement. Therefore, despite the slightly lower
accuracy, the LLM evaluator still serves as a robust
tool for providing reliable assessments.

Speech comparison Dialogue generation Story generation

71.5 78.5 88.5

Table 6: The accuracy of LLM evaluator against human
annotators.

6 Conclusion

In this paper, we introduce the first multi-audio
evaluation benchmark, MAE, to examine the multi-
audio processing ability of ALLMs. Extensive eval-
uations across 15 ALLMs reveal generally unsat-
isfactory performance among current open-source
models in handling multi-audio scenarios. To this
end, we develop a simple and effective discrimi-
native training framework that leverages synthetic
data. The resulting model, MALLM, significantly
surpasses all existing open-source ALLMs with-
out incurring additional costs for human annota-
tion. This work lays a robust foundation for future
research aimed at enhancing ALLM capabilities
in multi-audio processing. Future work includes
introducing more complex multi-audio tasks that
involve more than two audios and expanding the
MALLM training dataset to cover more scenarios.

Limitations

In this paper, we propose the first benchmark to
evaluate the multi-audio analysis ability of ALLMs.
We also develop a novel MALLM, which outper-
forms existing ALLMs on multi-audio process-
ing. Yet, there are several limitations to this work.
Firstly, considering the large performance gap be-
tween open-source and proprietary models, we de-
liberately design the tasks in MAE with a simple na-
ture to obtain meaningful results from open-source

ALLMs. Therefore, while MAE poses large chal-
lenges to various open-source ALLMs, some tasks
are too simple for proprietary ALLMs like Gem-
ini. In future work, we plan to explore more com-
plex tasks, such as speech recognition (Gao et al.,
2024b; Yue et al., 2024a), compositional reason-
ing (Ghosh et al., 2024), speech synthesis (Gao
et al., 2024a) and lyrics transcription (Gao et al.,
2023b). Secondly, the proposed MAE benchmark
currently covers English data. Extending the MAE
to the multilingual scenario is also an important
future direction to ensure that it’s comprehensive
and applicable across diverse linguistic contexts.
Thirdly, the proposed MALLM is currently trained
on a relatively small scale of synthetic data due to
computational resource constraints. We aim to fur-
ther enhance the MALLM with large-scale, diverse
training data, enabling its application to more chal-
lenging domains like singing (Gupta et al., 2019)
and music (Gao et al., 2023a) in future work.
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A Evaluation Prompt

We utilize GPT-4 to automatically give binary qual-
ity labels for open-ended generation tasks. To get
more stable and consistent predictions from GPT-4,
we produce 3 predictions from GPT-4 through re-
peatedly sampling and take the majority vote as the
final prediction. The GPT-4 automatic evaluation
prompts for different tasks are listed:

• Speech comparison:

Given the transcriptions of two
speeches.
Speech 1: [[Speech 1]]
Speech 2: [[Speech 2]]
Determine whether the below response
correctly captures the difference
between speech 1 and speech 2.
[[Response]]
Your answer should be a single "Yes"
or "No". Do not output anything else.

• Dialogue response generation:
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Given the first two utterances from
a conversation between speaker 1 and
speaker 2.
Speaker 1: [[Speech 1]]
Speaker 2: [[Speech 2]]
For the question:
What would be the possible utterance
3 from speaker 1 as a response to
utterance 2 from speaker 2?
Determine whether the below response
correctly answers the question.
[[Response]]
Your answer should be a single "Yes"
or "No". Do not output anything else.

• Story generation:

Given the story:
[[Response]]
Determine whether the below two sounds
are presented in the story.
Sound1: [[Speech 1]]
Sound2: [[Speech 2]]
Answer "Yes" if both sounds are
presented in the story. Otherwise,
answer "No".
Your answer should be a single "Yes"
or "No". Do not output anything else.

For all tasks, "No" indicates that the ALLM’s
response is inappropriate, while "Yes" indicates
that the response is suitable.

B MALLM Data

In Tab. 7, we provide the example responses of
possible input audio pair combinations. In the first
four cases, the ALLM is asked to describe the dif-
ferences between two audios. For the last cases,
where there’s a common sound event occur in both
audios, we also ask the ALLM to answer the com-
mon sound event in two audios.

The data statistics of the final MALLM training
data is listed in Tab. 8. We use the test split of
data source for all tasks in MAE benchmark, and
use the train split of data source to construct our
training data. For human validation of the LLM
evaluator, we provide the human annotators with
the same instructions given to the LLM evaluator.
In addition, both raw audios and ground truth labels
are provided to the human annotators.

C Data Synthesis Prompt

We utilize LLM to obtain sentence pairs with the
below four different prompts:

• Add word:

Audio Pair Example Response

A1 vs. A2 Both audios have the same sound
event of [barking].

A1 vs. A3 Audio1 has sound of [barking],
while Audio2 has sound of [rain-
ing].

A1 vs. A1+A3 Both audios have sound of [bark-
ing], while Audio2 has additional
sound of [raining].

A1+A3 vs. A1+A4 Both audios have sound of [bark-
ing], while Audio1 has additional
sound of [raining] and Audio2 has
additional sound of [clapping].

A1+A3 vs. A1+A4 The common sound event in two
audios is [barking].

Table 7: Example response output for audio discrimina-
tive training. The A1,A2,A3,A4 refer to audio clips in
Fig. 3. The [x] is the ground truth sound event label.

Data Source # Samples

Speech pairs BookCorpus (Zhu et al., 2015) 24K
Sound pairs VGGSound (Chen et al., 2020) 26.9K

Speech recognition Librispeech (Panayotov et al., 2015) 28.5K
Sound classification VGGSound (Chen et al., 2020) 20.7K
Audio caption AudioCaps (Kim et al., 2019) 5K

Total 105.1K

Table 8: MALLM training data statistics. The first block
shows the synthetic multi-audio data, and the second
block shows the single-audio data.

Given the below sentence:
[[Sentence]]

You need to modify this sentence to a
new one by adding several words. The
number of added words should be less
than 3.
Note that adding is the only operation
you can do.
The new sentence needs to be
semantically correct without error.
Try to be creative.
Your output should be the new sentence
only without anything else.
If you cannot generate a new sentence
meeting the above criteria (less
than 3 added words and semantically
correctness), output a single word
"None".

• Delete word:
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Given the below sentence:
[[Sentence]]

You need to modify this sentence to
a new one by deleting several words.
The number of deleted words should be
less than 3.
Note that deletion is the only
operation you can do.
The new sentence needs to be
semantically correct without error.
Try to be creative.
Your output should be the new sentence
only without anything else.
If you cannot generate a new sentence
meeting the above criteria (less
than 3 deleted words and semantically
correctness), output a single word
"None".

• Modify word:

Given the below sentence:
[[Sentence]]

You need to modify this sentence to
a new one. The edit distance between
the generated sentences and the old
one needs to be less than 5.
The new sentence needs to be
semantically correct without error.
Try to be creative.
Your output should be the new sentence
only without anything else.
If it’s impossible to have a new
sentence meeting the above criteria
(edit distance and semantically
correctness), output "None".

• Change structure:

Given the below sentence:
[[Sentence]]

You need to derive a new sentence by
altering the structure of the given
sentence.
Remember to keep the wording usage
unchanged.
The difference between two sentences
need to be less than 5 words.
The new sentence needs to be
semantically correct without error.
Try to be creative.
Your output should be the new sentence
only without anything else.
If it’s impossible to have a new
sentence meeting the above criteria
(less than 5 words difference and
semantically correctness), output
"None".

D Case Study

We compare the generated responses from Qwen-
Audio and MALLM on dialogue response gener-
ation and speech comparison in Tab. 9. Similar
to our findings from Tab. 5, the Qwen-Audio fails
to combine the context from two input speeches
to infer the correct response. On the contrary, the
proposed MALLM can handle the multi-audio sce-
narios.

DailyTalk Response Generation

Speech1 I want to buy some jewellery.
Speech2 What kind of jewellery do you like to

have?

Qwen-Audio I want to buy some jewelry
MALLM I like to have a diamond ring.

LibriSpeech Speech Comparison

Speech1 creatures attacked each other
Speech2 huge creatures attacked each other

Qwen-Audio The content difference between speech 1
and speech 2 is that in speech 1, "crea-
ture" is mentioned, in speech 2, "huge" is
mentioned.

MALLM The difference between Speech 1 and
Speech 2 lies in the adjective used to de-
scribe the creatures. In Speech 1, the crea-
tures are simply mentioned without any
specific description, implying they could
be of any size or type. In Speech 2, the
adjective "huge" is used to specifically de-
scribe the creatures, suggesting that they
are very large. This additional detail in
Speech 2 emphasizes the size of the crea-
tures, potentially altering the reader’s per-
ception of the scene’s intensity or the crea-
tures’ capabilities.

Table 9: Case study on dialogue response generation
and speech comparison.
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