
Findings of the Association for Computational Linguistics: EACL 2024, pages 11045–11056
November 12-16, 2024 ©2024 Association for Computational Linguistics

Rethinking Code Refinement: Learning to Judge Code Efficiency

Minju Seo1 Jinheon Baek1 Sung Ju Hwang1,2

KAIST1, DeepAuto2

{minjuseo, jinheon.baek, sjhwang82}@kaist.ac.kr

Abstract
Large Language Models (LLMs) have demon-
strated impressive capabilities in understanding
and generating codes. Due to these capabilities,
many recent methods are proposed to automat-
ically refine the codes with LLMs. However,
we should rethink that the refined codes (from
LLMs and even humans) are not always more
efficient than their original versions. On the
other hand, running two different versions of
codes and comparing them every time is not
ideal and time-consuming. Therefore, in this
work, we propose a novel method based on the
code language model that is trained to judge
the efficiency between two different codes (gen-
erated across humans and machines) by either
classifying the superior one or predicting the
relative improvement. We validate our method
on multiple programming languages with mul-
tiple refinement steps, demonstrating that the
proposed method can effectively distinguish be-
tween more and less efficient versions of code.

1 Introduction

Large Language Models (LLMs) have shown sig-
nificant success across a wide range of tasks, ex-
tending from natural language understanding to
programming-related activities (Brown et al., 2020;
Chen et al., 2021; Achiam et al., 2023; Touvron
et al., 2023; Rozière et al., 2023; Abdin et al.,
2024). Specifically, thanks to their capabilities
in understanding and generating codes, LLMs are
able to allow developers to save time, reduce errors,
and boost their productivity (Shen et al., 2022).
For example, several recent studies have utilized
LLMs to optimize and refine the existing code
bases (Madaan et al., 2023; Chen et al., 2023b).
Also, more recent work has been proposed to iter-
atively refine the generated codes from LLMs by
judging them with LLMs (Zelikman et al., 2023).
Another noteworthy approach involves using LLMs
to check the functional correctness of the generated
codes from LLMs (Dong et al., 2023a).

However, despite huge advancements made in
the field of LLMs for code generation, the afore-
mentioned studies assume that the codes generated
and refined from LLMs are more efficient than their
originals. However, as shown in Figure 1, our ob-
servations contradict this assumption, showing that
LLM-generated and -refined codes do not always
perform better. To handle this issue, while one may
calculate the efficiencies of codes both before af-
ter modifications by actually executing them, this
process introduces unnecessary inefficiencies, and
may be very costly and time-consuming.

In this work, to overcome those challenges, we
introduce a new task of judging the efficiency of the
refined code over its original version. In addition,
not only LLMs but also human coders may degrade
the efficiency of codes during refinement; thus, our
task of judging the efficiency between two codes
involves all the possible pairs of code modification
sources, including human-human, human-machine,
and machine-machine. Then, to address this new
task, we propose a new model (based on the code
LM) that is trained to compare efficiencies between
two codes. Specifically, given a code pair (one is
original and the other is refined from it), the code
LM is trained to classify which one is more efficient
or predict how much the refined code is efficient.

We experimentally validate the effectiveness of
our efficiency judgement model on multiple code
refinement scenarios with multiple programming
languages. The results show that our judgement
model can identify the more efficient code among
two different versions, substantially outperforming
baselines. Our contributions are as follows:

• We point out that the refined codes from LLMs or
humans do not always improve their efficiency.

• We introduce a novel approach that judges the
efficiency of two different versions of codes.

• We validate our model on multiple code refine-
ment scenarios, demonstrating its effectiveness.

11045

(A) Existing Work (B) Our approach (C) Improvement Statistic

n = input()

total = 0
for i in range(2, n+1, 2):

total += i

n = input()

total = 0
for i in range(1, n+1):

if i % 2 == 0:
total += i

Original Refined

LLM 0.7Ori.

Which one is
more efficient?

How much has
it improved?

Original

Refined

Figure 1: (A) Existing code refinement approaches sometimes generate the code which has inferior efficiency to the original code.
(B) Our proposed approach identifies the efficient code among two different versions of codes (before and after modifications),
and further predicts its relative improvement. (C) We categorize the refined code according to its efficiency gain (%) compared
to the original into three classes: Degradation (less than 0.9), Non-Improvement (0.9 to 1.1), and Improvement (greater than 1.1).

2 Related Work
Large Language Models for Code Large Lan-
guage Models (LLMs), trained on extensive cor-
pora with multi-billion parameters, exhibit remark-
able performance across a broad spectrum of tasks
involving both text and code (Brown et al., 2020;
Li et al., 2022; Rozière et al., 2023; Li et al., 2023;
Achiam et al., 2023; Abdin et al., 2024; Guo et al.,
2024). These models, particularly those trained on
code-specific datasets, have opened up a new era
in software development by not only assisting with
basic programming tasks but also enabling more
complex activities such as code generation (Chen
et al., 2023a; Nijkamp et al., 2023), translation (Yin
and Neubig, 2018; Rozière et al., 2020; Cassano
et al., 2023), and refinement (Yu et al., 2023; Shira-
fuji et al., 2023). As such, these models are increas-
ingly integrated into development environments,
optimizing workflows, and reducing the time for de-
velopment (Shen et al., 2022; Dong et al., 2023b).

LLMs for Code Refinement Beyond basic code
generation, LLMs are widely used to refine the ex-
isting code bases. One of the early work in code
refinement aims to detect and fix bugs in the codes
by pre-training a transformer-based model on En-
glish and source code, and then fine-tuning it on
commits (relevant to the part fixing bugs and im-
proving performance) (Garg et al., 2022). In a
similar vein, another work proposes to refine the
code with a sequence-to-sequence model that is
trained to transform the original code to its opti-
mized version of the code (Chen et al., 2023b).
Additionally, recent work showcases that LLMs
are able to recursively improve their own generated
codes, progressively enhancing their outputs (Ze-
likman et al., 2023). Further, Madaan et al. (2023)
demonstrate that LLMs with sophisticated prompt-
ing strategies (to adapt LLM for code optimization)
can surpass human-level performance in code opti-

mization tasks. However, despite these substantial
achievements, prior studies have primarily focused
on code enhancement with limited attention to the
actual efficiency of the refined code. Meanwhile,
we focus on a different angle, proposing to judge
the efficiency of the refined codes in advance (with-
out executing them) based on our observation that
not all the refined codes have better efficiency.

LLM-Powered Code Evaluation The objective
of our work which aims to evaluate the efficiency
between two codes based on LLMs has a similar-
ity to work on LLMs for code evaluation. Early
work on it uses either a term-matching-based ap-
proach (similar to BLEU) or an embedding-based
approach (whose representations are obtained from
language models), to compare two codes (Ren et al.,
2020; Zhou et al., 2023). However, as collecting
ground-truth answers for every evaluation is diffi-
cult, recent work has shifted towards using LLMs
to judge the quality of the generated code, such
as its utility or functional correctness, without the
need for comparisons to the reference code (Dong
et al., 2023a; Zhuo, 2024). Yet, unlike these ap-
proaches evaluating the single instance of the code
other than the efficiency, we aim to compare effi-
ciency in the setting where the code pair is given.

3 Method

We first provide a general description of code re-
finement, and then introduce our approach.

3.1 Code Refinement
Let us assume that the existing code base is de-
fined as c, which consists of a sequence of tokens
as follows: c = {c1, ..., cn}. Then, the objective
of code refinement (in this work) is to transform
the existing code base c into its improved version
c′ = {c′1, ..., c′m}, where the execution time for
c′ should be faster than c, formalized as follows:

11046

Table 1: Main results on the task of judging the code efficiency,
where easy denotes the dataset containing only the code pairs
whose efficiency difference is more than 10%.

All Easy

Python C++ All Python C++ All

Zero-shot 50.87 45.30 46.55 47.04 51.21 49.70
Few-shot 51.21 51.17 51.18 49.16 48.22 48.56

Zero-shot CoT 50.35 51.69 51.39 48.94 52.10 50.95
Few-shot CoT 50.52 50.87 50.79 49.50 48.09 48.60

GPT-3.5 54.50 52.17 52.69 54.97 55.59 55.37
GPT-4o 63.67 56.03 57.75 66.03 60.48 62.49

Ours 72.49 62.08 64.42 77.65 70.14 72.86

Exec(c) > Exec(c′). Here, Exec is the code exe-
cution function that returns its runtime.

It is worth noting that, in this work, we consider
three different scenarios of code refinement. The
first scenario involves a human-human interaction,
where one developer revises the code originally
authored by another. The second scenario, termed
the human-machine scenario, consists of collabo-
rative efforts between humans and machines. This
practice has become increasingly prevalent in real-
world software development environments, thanks
to CodeLLMs (Chen et al., 2021; Rozière et al.,
2023). Lastly, the machine-machine scenario in-
volves autonomous code refinement by machines,
a process that has shown promise in various stud-
ies (Zelikman et al., 2023; Madaan et al., 2023).

Note that, despite the huge advancements made
in the field of code refinement, we find that modi-
fied codes from machines can occasionally reduce
the efficiency of the original codes. Similarly, hu-
man developers may diminish the efficiency of the
codes during refinement. On the other hand, execut-
ing the pair of original and modified codes at every
refinement step is inefficient and time-consuming.

3.2 Judging Code Efficiency

To overcome the aforementioned limitation, we aim
to predict the efficiency of the modified code over
its original code, without actually executing them.
This can be formulated by either the classification
problem (where we classify the superior code) or
the regression problem (where we predict the rel-
ative improvement of the modified code over the
original code), given a pair of original and modified
codes. Also, note that we operationalize classifica-
tion and regression problems with CodeLLMs, due
to their capabilities in understanding codes.

Specifically, given the code pair (e.g., c and c′),
we concatenate it and provide it with the CodeLLM,
formalized as follows: o = CodeLLM([c, c′]) where
[·] is the concatenation operation, and o is the pre-

1.0 1.02 1.12 1.31 1.72 4.06
Absolute Improvement Percentage Buckets (%)

60

70

80

90

100

Av
er

ag
e

Ac
c

(%
)

65.10

71.50 69.79 70.98

79.17

92.75

Figure 2: Results with bucketing the code pairs according to
their absolute relative improvement in efficiency, on Python.

diction output. Then, for the classification problem,
we formulate it as the next token prediction task:
LC = − log p(o′|[c, c′], o′ ∈ {A,B}), where o′

is ground truth that belongs to one of A or B, in
which A represents the improvement over the origi-
nal code and vice versa for B. Similarly, for the re-
gression problem, we train the model to predict the
relative improvement of the refined code over its
original code by minimizing this prediction value
with the actual relative improvement.

4 Experiment

We now describe experimental setups and results.
We provide our code at https://github.com/going-
doer/judge_code_efficiency, for reproducibility.

4.1 Experimental Setups

Dataset To validate the efficacy of our approach
to judge code efficiency, we should collect pairs
of two different versions of codes before and af-
ter modifications. Here, we consider three differ-
ent scenarios of code editing, and, for the cases
where humans refine the code, we use a dataset
of code edits made by humans from Madaan et al.
(2023). For the other scenarios where the machine
improves the human- or machine-generated codes,
we prompt the Code LLM (namely DeepSeek-
Coder-Instruct-7B) (Guo et al., 2024) to refine the
given codes for better efficiency. Specifically, start-
ing with the codes generated by humans from the
existing dataset, we generate the machine-refined
codes with the Code LLM. In addition, from those
machine-generated codes, we similarly prompt
the Code LLM to improve them. Through these
steps, we can obtain pairs of human-human, human-
machine, and machine-machine code versions.

Baselines and Our Model In this work, as we
tackle a novel problem of judging code efficiency,
there are no direct baselines available to compare.
Therefore, we turn to compare our approach against
the basic models powered by LLMs. Specifically,
given a code pair, we perform zero-shot and few-

11047

https://github.com/going-doer/judge_code_efficiency
https://github.com/going-doer/judge_code_efficiency

Table 2: Breakdown results for varying the code refinement
scenarios. ’H’ indicates Human and ’M’ indicates Machine.

Statistics Breakdown Acc

Scenarios Avg. Improve Degrade % Improve % Python C++ All

H-H 1.08 37.19 21.85 80.43 64.43 67.88
M-M 1.32 30.69 32.25 60.77 55.84 57.03
H-M 1.29 31.26 30.76 67.27 61.55 62.87

Table 3: Results with predicting the relative difference of the
modified code over its original code in efficiency. Corr denotes
the Spearman’s rank correlation coefficient, and Acc denotes
the accuracy where we convert prediction values into classes.

All Easy
Corr Acc Corr Acc

Python 0.66 76.38 0.64 82.88
C++ 0.50 66.69 0.63 80.16
Python & C++ 0.56 68.87 0.66 81.17

shot prompting with LLMs, to decide which one is
more efficient. In addition, we also enhance those
strategies with Chain-of-Thought prompting (Wei
et al., 2022), to elicit the reasoning ability of LLMs
with the instruction: "Let’s think step by step".
For our model, we use the classifier (predicting
the class of the efficient code) for main experi-
ments, and provide the performance of the regres-
sion model (predicting the relative improvement)
during analysis. We use DeepSeek-Coder-Instruct-
1.3B for all models, and also provide the results
with GPT-3.5, GPT-4o for benchmarking the per-
formance of stronger LLMs without finetuning.

4.2 Experimental Results

Main Results We report the main results in Ta-
ble 1, and, from this, we observe that our method
consistently outperforms all baseline models across
all settings. Surprisingly, we find that our approach
is substantially superior to GPT-3.5 and GPT-4o,
demonstrating the continued limitations of even
larger models in judging the code efficiency, which
further supports the efficacy of our training strategy
for it. In addition, our model is particularly effec-
tive in scenarios where there is a clear difference
in code efficiency — specifically, a difference ex-
ceeding 10% (the easy setting). To examine the per-
formance of our model more granularly based on
varying degrees of efficiency differences between
code pairs, we bucketize the code pairs based on
their efficiency differences. As shown in Figure 2,
the performance of our model increases when the
difference between two codes becomes larger.

Results with Varying Refinement Scenarios It
is worth noting that our code refinement scenario
is categorized as human-human, human-machine,

Table 4: Generalization results by varying the training data.

Training Datasets Python C++ All

Python 72.75 58.26 61.52
C++ 57.53 60.32 57.90

Python & C++ 72.49 62.08 64.42

Table 5: The performances of baselines and our model (trained
on Python and C++) to other low-resource programming lan-
guages (such as Ruby, Perl, and Rust).

All Easy

Ruby Perl Rust All Ruby Perl Rust All

Zero-shot 52.30 40.00 49.13 51.08 50.00 45.83 46.67 49.22
Few-shot 52.06 40.00 49.57 50.99 49.01 45.83 46.67 48.44

Zero-shot CoT 52.30 42.00 48.70 51.08 53.96 45.83 33.33 50.78
Few-shot CoT 52.06 40.00 49.57 50.99 49.01 45.83 46.67 48.44

Ours 58.47 70.00 55.22 58.32 71.78 66.67 60.00 69.92

and machine-machine, and we report their break-
down results in Table 2. From this, we first observe
that the percentage of efficiency improvement in
code refinement scenarios is low, which is around
20% to 30%, and it is similar to the percentage of
efficiency degradation. In addition, the average im-
provement made by machines is 30%, meanwhile,
the improvement by humans is around 10%. On the
other hand, as shown in the Breakdown Acc col-
umn, our model can more effectively identify the
code improved by humans (rather than machines).

Relative Improvement Prediction Results In
addition to classifying the efficient code given the
code pair, we can further predict how much it is
improved. For this task, we measure the perfor-
mance of our model, by ranking all the code pairs
based on their relative improvements and compar-
ing them with predicted improvements. Also, if the
prediction score exceeds 1.00, we classify this case
that there is an improvement during refinement. As
shown in Table 3, we observe both the high rank
correlation coefficient and high accuracy, demon-
strating the effectiveness of our approach even in
this actual improvement prediction setting.

Generalization on Different Languages To see
the generalization ability of our approach to dif-
ferent programming languages, we train the model
with Python, C++ or both, and measure the perfor-
mance on Python and C++ as well as relatively low-
resource programming languages (such as Ruby,
Perl, and Rust). As shown in Table 4 and Table 5,
we observe that the model trained on one language
can be generalizable to the other language, perhaps
due to the algorithmic similarities in their codes.
Also, this results confirm the broader applicability
of our approach to various programming languages.

11048

Table 6: With different Code LLMs, we report their average
relative improvement (Avg), as well as the percentage of their
degradation and improvement in efficiency. Acc (H) and (M)
denote the accuracy on human- and machine-generated codes.

LLM Avg Degrade % Improve % Acc (H) Acc (M)

DSC 1.30 31.22 31.51 80.43 65.49
CodeQwen 1.33 28.01 29.12 80.60 58.86
Granite 1.13 21.46 24.55 76.69 48.97
GPT-3.5 1.00 25.34 21.45 78.29 53.72

Results with Different Code LLMs To see the
performance of different Code LLMs in refining
the given codes (in terms of efficiency), and to see
the performance of our efficiency judgement model
trained with the code pairs constructed by different
LLMs, we change the code refinement model from
DeepSeekCoder (DSC) to recent CodeQwen (Bai
et al., 2023), Granite (Mishra et al., 2024), and GPT-
3.5. As shown in Table 6, we find that DSC and
CodeQwen are superior in improving the efficiency
of codes when refining them. Yet, the percentage of
improvement made by each model is comparable
to the percentage of degradation, which supports
again our motivation that we should rethink code
refinement. Lastly, our model is able to identify the
more efficient code among two different versions
of models made across different LLMs.

Results with Larger Models We conduct an
auxiliary analysis to see how the performance of
different methods changes if a model larger than
DeepSeek-Coder-Instruct-1.3B (that we use for
main experiments) is used. Specifically, we use
its 7B model as the base code LLM and then clas-
sify the efficient code given code pairs. As shown
in Table 7, we observe results similar to those ob-
tained from the smaller 1.3B model, where our
model is consistently superior to other baselines.

Visualization of Rank Correlation To visualize
how accurate the predicted results of relative im-
provements of code pairs from our model are, we
compare their ranks with the ground-truth ranks
calculated by actual relative improvements of code
pairs. As shown in Figure 3 where we present a
scatter plot of rank correlations along with their
coefficient value, we observe that the results from
our approach have a positive correlation with the
ground truth, demonstrating its effectiveness in pre-
dicting the relative improvement of code pairs.

5 Conclusion
In this work, we pointed out that the codes refined
by humans or machines are sometimes inferior than
originals, and to tackle this, we introduced a novel

Table 7: Results on the DeepSeek-Coder-Instruct-7B model.

All Easy

Python C++ All Python C++ All

Zero-shot 52.50 47.91 48.88 51.62 49.05 49.98
Few-shot 54.50 49.86 50.90 55.87 49.81 52.00
Zero-shot CoT 54.50 49.86 50.90 55.53 52.73 53.75
Few-shot CoT 53.11 49.99 50.69 47.04 52.16 50.3
Ours 73.44 62.90 65.27 78.88 72.68 74.93

0 200 400 600 800 1000 1200
Prediction Ranking

0

200

400

600

800

1000

1200

La
be

l R
an

ki
ng

Data points
Spearman s rank correlation coefficient value=0.66

Figure 3: Visualization of the Spearman’s rank correlation
between the ranks of the actual relative improvements and the
predicted relative improvements of code pairs, for our model.

approach to identify the more efficient code given
a pair of codes before and after modifications. We
validated our method on multiple code editing sce-
narios involving both humans and machines, show-
casing its substantial efficacy despite its simplicity.

Limitation
There are some areas that future work may im-
prove upon. First, we perform experiments with
two widely used programming languages, such as
Python and C++, and it may be promising to con-
sider other languages, particularly those used less
frequently. In addition, in terms of measuring the
code efficiency, we consider its execution time,
meanwhile, there may be additional factors to con-
sider, such as memory usage, I/O operations, and
the underlying OS environment. Future work may
incorporate these factors to perform a more holistic
assessment of program efficiency. Lastly, beyond
predicting the efficient code, future work may ex-
plore its interpretability, providing the reasons why
certain codes are more efficient than others at a
more fine-grained level (e.g., lines of codes).

Ethic Statement
We believe this work does not have particular con-
cerns about ethics. This is because, it strictly fo-
cuses on the technological aspect of comparing
code efficiency, which does not engage in the uneth-
ical use of LLMs for manipulating software codes,
user data, or any other sensitive information.

11049

References

Marah Abdin, Sam Ade Jacobs, Ammar Ahmad
Awan, Jyoti Aneja, Ahmed Awadallah, Hany Has-
san Awadalla, Nguyen Bach, Amit Bahree, Arash
Bakhtiari, Harkirat Singh Behl, Alon Benhaim,
Misha Bilenko, Johan Bjorck, Sébastien Bubeck,
Martin Cai, Caio C’esar Teodoro Mendes, Weizhu
Chen, Vishrav Chaudhary, Parul Chopra, Allison Del
Giorno, Gustavo de Rosa, Matthew Dixon, Ronen
Eldan, Dan Iter, Abhishek Goswami, Suriya Gu-
nasekar, Emman Haider, Junheng Hao, Russell J.
Hewett, Jamie Huynh, Mojan Javaheripi, Xin Jin,
Piero Kauffmann, Nikos Karampatziakis, Dongwoo
Kim, Mahoud Khademi, Lev Kurilenko, James R.
Lee, Yin Tat Lee, Yuanzhi Li, Chen Liang, Weishung
Liu, Eric Lin, Zeqi Lin, Piyush Madan, Arindam
Mitra, Hardik Modi, Anh Nguyen, Brandon Norick,
Barun Patra, Daniel Perez-Becker, Thomas Portet,
Reid Pryzant, Heyang Qin, Marko Radmilac, Corby
Rosset, Sambudha Roy, Olli Saarikivi, Amin Saied,
Adil Salim, Michael Santacroce, Shital Shah, Ning
Shang, Hiteshi Sharma, Xianmin Song, Olatunji
Ruwase, Xin Wang, Rachel Ward, Guanhua Wang,
Philipp Witte, Michael Wyatt, Can Xu, Jiahang Xu,
Sonali Yadav, Fan Yang, Ziyi Yang, Donghan Yu,
Cheng-Yuan Zhang, Cyril Zhang, Jianwen Zhang,
Li Lyna Zhang, Yi Zhang, Yunan Zhang, and Xiren
Zhou. 2024. Phi-3 technical report: A highly capa-
ble language model locally on your phone. ArXiv,
abs/2404.14219.

OpenAI Josh Achiam, Steven Adler, Sandhini Agarwal,
Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Alt-
man, Shyamal Anadkat, Red Avila, Igor Babuschkin,
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim-
ing Bao, Mo Bavarian, Jeff Belgum, Irwan Bello,
Jake Berdine, Gabriel Bernadett-Shapiro, Christo-
pher Berner, Lenny Bogdonoff, Oleg Boiko, Made-
laine Boyd, Anna-Luisa Brakman, Greg Brockman,
Tim Brooks, Miles Brundage, Kevin Button, Trevor
Cai, Rosie Campbell, Andrew Cann, Brittany Carey,
Chelsea Carlson, Rory Carmichael, Brooke Chan,
Che Chang, Fotis Chantzis, Derek Chen, Sully Chen,
Ruby Chen, Jason Chen, Mark Chen, Benjamin
Chess, Chester Cho, Casey Chu, Hyung Won Chung,
Dave Cummings, Jeremiah Currier, Yunxing Dai,
Cory Decareaux, Thomas Degry, Noah Deutsch,
Damien Deville, Arka Dhar, David Dohan, Steve
Dowling, Sheila Dunning, Adrien Ecoffet, Atty Eleti,
Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,
Sim’on Posada Fishman, Juston Forte, Isabella Ful-
ford, Leo Gao, Elie Georges, Christian Gibson, Vik
Goel, Tarun Gogineni, Gabriel Goh, Raphael Gontijo-
Lopes, Jonathan Gordon, Morgan Grafstein, Scott
Gray, Ryan Greene, Joshua Gross, Shixiang Shane
Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris,
Yuchen He, Mike Heaton, Johannes Heidecke, Chris
Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele,
Brandon Houghton, Kenny Hsu, Shengli Hu, Xin
Hu, Joost Huizinga, Shantanu Jain, Shawn Jain,
Joanne Jang, Angela Jiang, Roger Jiang, Haozhun
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo

Jun, Tomer Kaftan, Lukasz Kaiser, Ali Kamali, In-
gmar Kanitscheider, Nitish Shirish Keskar, Tabarak
Khan, Logan Kilpatrick, Jong Wook Kim, Christina
Kim, Yongjik Kim, Hendrik Kirchner, Jamie Ryan
Kiros, Matthew Knight, Daniel Kokotajlo, Lukasz
Kondraciuk, Andrew Kondrich, Aris Konstantini-
dis, Kyle Kosic, Gretchen Krueger, Vishal Kuo,
Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike,
Jade Leung, Daniel Levy, Chak Ming Li, Rachel
Lim, Molly Lin, Stephanie Lin, Mateusz Litwin,
Theresa Lopez, Ryan Lowe, Patricia Lue, Anna Ade-
ola Makanju, Kim Malfacini, Sam Manning, Todor
Markov, Yaniv Markovski, Bianca Martin, Katie
Mayer, Andrew Mayne, Bob McGrew, Scott Mayer
McKinney, Christine McLeavey, Paul McMillan,
Jake McNeil, David Medina, Aalok Mehta, Jacob
Menick, Luke Metz, Andrey Mishchenko, Pamela
Mishkin, Vinnie Monaco, Evan Morikawa, Daniel P.
Mossing, Tong Mu, Mira Murati, Oleg Murk, David
M’ely, Ashvin Nair, Reiichiro Nakano, Rajeev
Nayak, Arvind Neelakantan, Richard Ngo, Hyeon-
woo Noh, Ouyang Long, Cullen O’Keefe, Jakub W.
Pachocki, Alex Paino, Joe Palermo, Ashley Pantu-
liano, Giambattista Parascandolo, Joel Parish, Emy
Parparita, Alexandre Passos, Mikhail Pavlov, Andrew
Peng, Adam Perelman, Filipe de Avila Belbute Peres,
Michael Petrov, Henrique Pondé de Oliveira Pinto,
Michael Pokorny, Michelle Pokrass, Vitchyr H. Pong,
Tolly Powell, Alethea Power, Boris Power, Elizabeth
Proehl, Raul Puri, Alec Radford, Jack Rae, Aditya
Ramesh, Cameron Raymond, Francis Real, Kendra
Rimbach, Carl Ross, Bob Rotsted, Henri Roussez,
Nick Ryder, Mario D. Saltarelli, Ted Sanders, Shibani
Santurkar, Girish Sastry, Heather Schmidt, David
Schnurr, John Schulman, Daniel Selsam, Kyla Shep-
pard, Toki Sherbakov, Jessica Shieh, Sarah Shoker,
Pranav Shyam, Szymon Sidor, Eric Sigler, Maddie
Simens, Jordan Sitkin, Katarina Slama, Ian Sohl,
Benjamin D. Sokolowsky, Yang Song, Natalie Stau-
dacher, Felipe Petroski Such, Natalie Summers, Ilya
Sutskever, Jie Tang, Nikolas A. Tezak, Madeleine
Thompson, Phil Tillet, Amin Tootoonchian, Eliz-
abeth Tseng, Preston Tuggle, Nick Turley, Jerry
Tworek, Juan Felipe Cer’on Uribe, Andrea Val-
lone, Arun Vijayvergiya, Chelsea Voss, Carroll L.
Wainwright, Justin Jay Wang, Alvin Wang, Ben
Wang, Jonathan Ward, Jason Wei, CJ Weinmann,
Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian
Weng, Matt Wiethoff, Dave Willner, Clemens Win-
ter, Samuel Wolrich, Hannah Wong, Lauren Work-
man, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao,
Tao Xu, Sarah Yoo, Kevin Yu, Qiming Yuan, Woj-
ciech Zaremba, Rowan Zellers, Chong Zhang, Mar-
vin Zhang, Shengjia Zhao, Tianhao Zheng, Juntang
Zhuang, William Zhuk, and Barret Zoph. 2023. Gpt-
4 technical report.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenhang Ge, Yu Han,
Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang
Lin, Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang
Lu, K. Lu, Jianxin Ma, Rui Men, Xingzhang Ren,
Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong
Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang

11050

https://api.semanticscholar.org/CorpusID:269293048
https://api.semanticscholar.org/CorpusID:269293048
https://api.semanticscholar.org/CorpusID:257532815
https://api.semanticscholar.org/CorpusID:257532815

Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian
Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen
Yu, Yu Bowen, Hongyi Yuan, Zheng Yuan, Jianwei
Zhang, Xing Zhang, Yichang Zhang, Zhenru Zhang,
Chang Zhou, Jingren Zhou, Xiaohuan Zhou, and
Tianhang Zhu. 2023. Qwen technical report. ArXiv,
abs/2309.16609.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Process-
ing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual.

Federico Cassano, John Gouwar, Francesca Lucchetti,
Claire Schlesinger, Carolyn Jane Anderson, Michael
Greenberg, Abhinav Jangda, and Arjun Guha. 2023.
Knowledge transfer from high-resource to low-
resource programming languages for code llms.
ArXiv, abs/2308.09895.

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan,
Zeqi Lin, Jian-Guang Lou, and Weizhu Chen. 2023a.
Codet: Code generation with generated tests. In
The Eleventh International Conference on Learning
Representations, ICLR 2023, Kigali, Rwanda, May
1-5, 2023. OpenReview.net.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde, Jared Kaplan, Harrison Ed-
wards, Yura Burda, Nicholas Joseph, Greg Brockman,
Alex Ray, Raul Puri, Gretchen Krueger, Michael
Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin,
Brooke Chan, Scott Gray, Nick Ryder, Mikhail
Pavlov, Alethea Power, Lukasz Kaiser, Moham-
mad Bavarian, Clemens Winter, Philippe Tillet, Fe-
lipe Petroski Such, David W. Cummings, Matthias
Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel
Herbert-Voss, William H. Guss, Alex Nichol, Igor
Babuschkin, Suchir Balaji, Shantanu Jain, Andrew
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew M. Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluat-
ing large language models trained on code. ArXiv,
abs/2107.03374.

Zimin Chen, Sen Fang, and Monperrus Martin. 2023b.
Supersonic: Learning to generate source code opti-
mizations in c/c++. ArXiv, abs/2309.14846.

Yihong Dong, Ji Ding, Xue Jiang, Zhuo Li, Ge Li,
and Zhi Jin. 2023a. Codescore: Evaluating code
generation by learning code execution. ArXiv,
abs/2301.09043.

Yihong Dong, Xue Jiang, Zhi Jin, and Ge Li.
2023b. Self-collaboration code generation via chat-
gpt. ArXiv, abs/2304.07590.

Spandan Garg, Roshanak Zilouchian Moghaddam,
Colin B. Clement, Neel Sundaresan, and Chen
Wu. 2022. Deepperf: A deep learning-based ap-
proach for improving software performance. ArXiv,
abs/2206.13619.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai
Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Yu Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wen-
feng Liang. 2024. Deepseek-coder: When the large
language model meets programming - the rise of code
intelligence. ArXiv, abs/2401.14196.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim,
Qian Liu, Evgenii Zheltonozhskii, Terry Yue Zhuo,
Thomas Wang, Olivier Dehaene, Mishig Davaadorj,
Joel Lamy-Poirier, João Monteiro, Oleh Shliazhko,
Nicolas Gontier, Nicholas Meade, Armel Zebaze,
Ming-Ho Yee, Logesh Kumar Umapathi, Jian Zhu,
Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo
Wang, Rudra Murthy, Jason Stillerman, Siva Sankalp
Patel, Dmitry Abulkhanov, Marco Zocca, Manan
Dey, Zhihan Zhang, Nourhan Fahmy, Urvashi Bhat-
tacharyya, W. Yu, Swayam Singh, Sasha Luccioni,
Paulo Villegas, Maxim Kunakov, Fedor Zhdanov,
Manuel Romero, Tony Lee, Nadav Timor, Jennifer
Ding, Claire Schlesinger, Hailey Schoelkopf, Jana
Ebert, Tri Dao, Mayank Mishra, Alexander Gu,
Jennifer Robinson, Carolyn Jane Anderson, Bren-
dan Dolan-Gavitt, Danish Contractor, Siva Reddy,
Daniel Fried, Dzmitry Bahdanau, Yacine Jernite, Car-
los Muñoz Ferrandis, Sean M. Hughes, Thomas Wolf,
Arjun Guha, Leandro von Werra, and Harm de Vries.
2023. Starcoder: may the source be with you! ArXiv,
abs/2305.06161.

Yujia Li, David Choi, Junyoung Chung, Nate Kush-
man, Julian Schrittwieser, Rémi Leblond, Tom, Ec-
cles, James Keeling, Felix Gimeno, Agustin Dal
Lago, Thomas Hubert, Peter Choy, Cyprien de,
Masson d’Autume, Igor Babuschkin, Xinyun Chen,
Po-Sen Huang, Johannes Welbl, Sven Gowal,
Alexey, Cherepanov, James Molloy, Daniel Jaymin
Mankowitz, Esme Sutherland Robson, Pushmeet
Kohli, Nando de, Freitas, Koray Kavukcuoglu, and
Oriol Vinyals. 2022. Competition-level code genera-
tion with alphacode. Science, 378:1092 – 1097.

Aman Madaan, Alex Shypula, Uri Alon, Milad
Hashemi, Parthasarathy Ranganathan, Yiming Yang,
Graham Neubig, and Amir Yazdanbakhsh. 2023.
Learning performance-improving code edits. ArXiv,
abs/2302.07867.

Mayank Mishra, Matt Stallone, Gaoyuan Zhang, Yikang
Shen, Aditya Prasad, Adriana Meza Soria, Michele
Merler, Parameswaran Selvam, Saptha Surendran,
Shivdeep Singh, Manish Sethi, Xuan-Hong Dang,
Pengyuan Li, Kun-Lung Wu, Syed Zawad, Andrew

11051

https://api.semanticscholar.org/CorpusID:263134555
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://api.semanticscholar.org/CorpusID:261048815
https://api.semanticscholar.org/CorpusID:261048815
https://openreview.net/pdf?id=ktrw68Cmu9c
https://api.semanticscholar.org/CorpusID:235755472
https://api.semanticscholar.org/CorpusID:235755472
https://api.semanticscholar.org/CorpusID:262824943
https://api.semanticscholar.org/CorpusID:262824943
https://api.semanticscholar.org/CorpusID:256105296
https://api.semanticscholar.org/CorpusID:256105296
https://api.semanticscholar.org/CorpusID:258179537
https://api.semanticscholar.org/CorpusID:258179537
https://api.semanticscholar.org/CorpusID:250089308
https://api.semanticscholar.org/CorpusID:250089308
https://api.semanticscholar.org/CorpusID:267211867
https://api.semanticscholar.org/CorpusID:267211867
https://api.semanticscholar.org/CorpusID:267211867
https://api.semanticscholar.org/CorpusID:258588247
https://api.semanticscholar.org/CorpusID:246527904
https://api.semanticscholar.org/CorpusID:246527904
https://api.semanticscholar.org/CorpusID:256868633

Coleman, Matthew White, Mark Lewis, Raju Pavu-
luri, Yan Koyfman, Boris Lublinsky, Maximilien
de Bayser, Ibrahim Abdelaziz, Kinjal Basu, Mayank
Agarwal, Yi Zhou, Chris Johnson, Aanchal Goyal,
Hima Patel, Yousaf Shah, Petros Zerfos, Heiko Lud-
wig, Asim Munawar, Maxwell Crouse, Pavan Ka-
panipathi, Shweta Salaria, Bob Calio, Sophia Wen,
Seetharami R. Seelam, Brian M. Belgodere, Carlos
Fonseca, Amith Singhee, Nirmit Desai, David Cox,
Ruchir Puri, and Rameswar Panda. 2024. Granite
code models: A family of open foundation models
for code intelligence.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan
Wang, Yingbo Zhou, Silvio Savarese, and Caiming
Xiong. 2023. Codegen: An open large language
model for code with multi-turn program synthesis. In
The Eleventh International Conference on Learning
Representations, ICLR 2023, Kigali, Rwanda, May
1-5, 2023. OpenReview.net.

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie
Liu, Duyu Tang, M. Zhou, Ambrosio Blanco, and
Shuai Ma. 2020. Codebleu: a method for automatic
evaluation of code synthesis. ArXiv, abs/2009.10297.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle,
Sten Sootla, Itai Gat, Xiaoqing Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom
Kozhevnikov, I. Evtimov, Joanna Bitton, Manish P
Bhatt, Cristian Cantón Ferrer, Aaron Grattafiori, Wen-
han Xiong, Alexandre D’efossez, Jade Copet, Faisal
Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier,
Thomas Scialom, and Gabriel Synnaeve. 2023. Code
llama: Open foundation models for code. ArXiv,
abs/2308.12950.

Baptiste Rozière, Marie-Anne Lachaux, Lowik Chanus-
sot, and Guillaume Lample. 2020. Unsupervised
translation of programming languages. In Advances
in Neural Information Processing Systems 33: An-
nual Conference on Neural Information Processing
Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual.

Sijie Shen, Xiang Zhu, Yihong Dong, Qizhi Guo,
Yankun Zhen, and Ge Li. 2022. Incorporating do-
main knowledge through task augmentation for front-
end javascript code generation. In Proceedings of
the 30th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of
Software Engineering, ESEC/FSE 2022, Singapore,
Singapore, November 14-18, 2022, pages 1533–1543.
ACM.

Atsushi Shirafuji, Md. Mostafizer Rahman, Md.
Faizul Ibne Amin, and Yutaka Watanobe. 2023. Pro-
gram repair with minimal edits using codet5. In 12th
International Conference on Awareness Science and
Technology, iCAST 2023, Taichung, Taiwan, Novem-
ber 9-11, 2023, pages 178–184. IEEE.

Hugo Touvron, Louis Martin, Kevin R. Stone, Peter
Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava,

Shruti Bhosale, Daniel M. Bikel, Lukas Blecher, Cris-
tian Cantón Ferrer, Moya Chen, Guillem Cucurull,
David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin
Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami,
Naman Goyal, Anthony S. Hartshorn, Saghar Hos-
seini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor
Kerkez, Madian Khabsa, Isabel M. Kloumann, A. V.
Korenev, Punit Singh Koura, Marie-Anne Lachaux,
Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai
Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov,
Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew
Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan
Saladi, Alan Schelten, Ruan Silva, Eric Michael
Smith, R. Subramanian, Xia Tan, Binh Tang, Ross
Taylor, Adina Williams, Jian Xiang Kuan, Puxin
Xu, Zhengxu Yan, Iliyan Zarov, Yuchen Zhang, An-
gela Fan, Melanie Kambadur, Sharan Narang, Aure-
lien Rodriguez, Robert Stojnic, Sergey Edunov, and
Thomas Scialom. 2023. Llama 2: Open foundation
and fine-tuned chat models. ArXiv, abs/2307.09288.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022. Chain-of-thought prompting
elicits reasoning in large language models. In Ad-
vances in Neural Information Processing Systems 35:
Annual Conference on Neural Information Process-
ing Systems 2022, NeurIPS 2022, New Orleans, LA,
USA, November 28 - December 9, 2022.

Pengcheng Yin and Graham Neubig. 2018. TRANX:
A transition-based neural abstract syntax parser for
semantic parsing and code generation. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2018: Sys-
tem Demonstrations, Brussels, Belgium, October 31 -
November 4, 2018, pages 7–12. Association for Com-
putational Linguistics.

Zhaojian Yu, Xin Zhang, Ning Shang, Yangyu Huang,
Can Xu, Yishujie Zhao, Wenxiang Hu, and Qiufeng
Yin. 2023. Wavecoder: Widespread and versatile
enhanced instruction tuning with refined data genera-
tion. ArXiv, abs/2312.14187.

E. Zelikman, Eliana Lorch, Lester Mackey, and
Adam Tauman Kalai. 2023. Self-taught optimizer
(stop): Recursively self-improving code generation.
ArXiv, abs/2310.02304.

Shuyan Zhou, Uri Alon, Sumit Agarwal, and Graham
Neubig. 2023. Codebertscore: Evaluating code gen-
eration with pretrained models of code. In Proceed-
ings of the 2023 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2023, Sin-
gapore, December 6-10, 2023, pages 13921–13937.
Association for Computational Linguistics.

Terry Yue Zhuo. 2024. Ice-score: Instructing large lan-
guage models to evaluate code. In Findings of the
Association for Computational Linguistics: EACL
2024, St. Julian’s, Malta, March 17-22, 2024, pages
2232–2242. Association for Computational Linguis-
tics.

11052

https://api.semanticscholar.org/CorpusID:269614262
https://api.semanticscholar.org/CorpusID:269614262
https://api.semanticscholar.org/CorpusID:269614262
https://openreview.net/pdf?id=iaYcJKpY2B_
https://openreview.net/pdf?id=iaYcJKpY2B_
https://api.semanticscholar.org/CorpusID:221836101
https://api.semanticscholar.org/CorpusID:221836101
https://api.semanticscholar.org/CorpusID:261100919
https://api.semanticscholar.org/CorpusID:261100919
https://proceedings.neurips.cc/paper/2020/hash/ed23fbf18c2cd35f8c7f8de44f85c08d-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/ed23fbf18c2cd35f8c7f8de44f85c08d-Abstract.html
https://doi.org/10.1145/3540250.3558965
https://doi.org/10.1145/3540250.3558965
https://doi.org/10.1145/3540250.3558965
https://doi.org/10.1109/ICAST57874.2023.10359288
https://doi.org/10.1109/ICAST57874.2023.10359288
https://api.semanticscholar.org/CorpusID:259950998
https://api.semanticscholar.org/CorpusID:259950998
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://doi.org/10.18653/V1/D18-2002
https://doi.org/10.18653/V1/D18-2002
https://doi.org/10.18653/V1/D18-2002
https://api.semanticscholar.org/CorpusID:266521384
https://api.semanticscholar.org/CorpusID:266521384
https://api.semanticscholar.org/CorpusID:266521384
https://api.semanticscholar.org/CorpusID:263620781
https://api.semanticscholar.org/CorpusID:263620781
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.859
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.859
https://aclanthology.org/2024.findings-eacl.148
https://aclanthology.org/2024.findings-eacl.148

Table 8: Dataset statistics. The first two rows represent the
code statistics made by humans and the other rows are the ones
made by machines. PL denotes the programming language.

PL Training Validation Test

Human Python 14936 761 562
Human C++ 27005 1316 2038

DSC Python 17079 1046 594
DSC C++ 35666 1290 1949
gpt-3.5 Python 10674 1306 724
CodeQwen Python 14854 227 207
Granite Python 20783 650 315

Table 9: Average accuracy results for code improvement clas-
sification with order perturbation across multiple different
runs, where we report the variance in parentheses.

All Easy

Python C++ All Python C++ All

Zero-shot 50.26 (0.7) 47.02 (5.9) 47.75 (2.9) 48.49 (4.2) 49.94 (3.2) 49.42 (0.2)
Few-shot 50.43 (1.2) 50.00 (2.7) 50.10 (2.3) 49.61 (0.4) 48.32 (0.0) 48.79 (0.1)

Zero-shot CoT 49.70 (0.9) 50.53 (2.7) 50.34 (2.2) 48.94 (0.0) 50.29 (6.6) 49.80 (2.7)
Few-shot CoT 49.27 (3.2) 49.79 (2.3) 49.67 (2.5) 50.62 (2.5) 48.03 (0.0) 48.97 (0.3)

Ours 71.67 (1.3) 62.09 (0.0) 64.25 (0.1) 77.60 (0.0) 70.52 (0.3) 73.09 (0.1)

A Additional Experimental Setups

Dataset Details We report the dataset statistics
in Table 8. Note that, in order to obtain the stable
code execution result to decide which code is more
efficient than the other, we run every refined code
with its original code three times and then select the
one whose results are consistent across those three
runs. In addition, the code execution is performed
following the existing setup (Madaan et al., 2023).

Fine-tuning Details We provide details on fine-
tuning the efficiency judgment model: we fine-tune
the Code LLM (namely, DeepSeek-Coder-Instruct-
1.3B) over 10 epochs with a batch size of 16 and a
learning rate of 2e-5, and we select the best epoch
based on performance on the validation set.

Prompts In Table 11, we provide the prompts
used to elicit the Code LLM to refine the code and
to predict the code efficiency (in classification and
regression settings). For the efficiency prediction
problem, we randomly shuffle the sequence of the
original and its refined codes.

B Additional Experimental Results

Here, we provide additional experimental results.

Analysis on Bias for Code Sequence In our code
efficiency judgment task, we put a sequence of
two codes in the input of Code LLMs, and the
Code LLMs may have a bias in this sequence (e.g.,
predicting the code at the last more often). To
see whether they have such a bias, we conduct

Table 10: The performance difference between the cases of
two classes (Degrade and Improve) and three classes (Degrade,
Non-Improve, and Improve), with the regression model.

Training Datasets Two Classes Three Classes

Python 76.38 65.40
C++ 66.69 70.00

Python & C++ 68.87 68.97

an additional experiment, flipping the order of the
code pairs in the input. We report the results in
Table 9, and, from this, we observe that there are
no such the notable bias in the sequence of codes.

Qualitative Analysis We provide some example
codes in Python and C++ in Figures 4 and 5. From
these two examples, we observe that, despite the
difference in grammar across different program-
ming languages, code pairs from them can share
the same underlying algorithms. This result sup-
ports our finding on generalization ability that our
model trained on one programming language can
be generalizable to other languages (See Table 4).

Two Classes Analysis For an auxiliary analysis,
we measure the performance of the proposed re-
gression model on the dataset with three different
prediction classes of Degrade, Non-Improve, and
Improve, unlike the one with two classes of De-
grade and Improve in our main experiment. As
shown in 10, we observe that the overall perfor-
mance between two classes (Degrade and Improve)
and three classes (Degrade, Non-Improve, and Im-
prove) cases is similar. Furthermore, for Python,
the performance decreases with the case of three
classes, meanwhile, for C++, the performance in-
creases that may be due to the fact that most code
pairs for C++ belong to the Non-Improve class
(Figure 1) and our model accurately identifies this.

11053

Table 11: A list of prompts that we used for code refinement and efficiency predictions. It is worth noting that the variable inside
the parentheses {} is replaced with its actual code.

Types Prompts

Code Refinement Update the given code to make it more efficient. {Original code}

Efficiency Classification

Given a selection of code, determine which one is the most efficient in
computing.
A: {Original code or Refined code}
B: {Refined code or Original code}

Efficiency Regression

Given two sets of code, assess how much Code B has improved compared
to Code A.
A. {Original code}
B. {Refined code}

Python Example
N = int(eval(input()))
print (((N*(N-1))//2))

// C++ Example
#include <iostream >
using namespace std;
int main() {

long long int n;
cin >>n;
cout <<n*(n-1)/2<< endl;

}

Figure 4: Generated Python and C++ samples for the question "For an integer N, we will choose a permutation {P1, P2, ..., PN}
of {1, 2, ..., N}. Then, for each i = 1, 2, ..., N, let Mi be the remainder when i is divided by Pi. Find the maximum possible
value of M1 +M2 + · · ·+MN . Constraints N is an integer satisfying 1 ≤ N ≤ 109".

Python Example
from math import floor ,ceil

X = int(eval(input()))
cash = 100
count = 0
while cash < X:

cash=floor(cash *1.01)
count += 1

print(count)

// C++ Example
#include <bits/stdc ++.h>
using namespace std;
int main() {

long long X;
cin >> X;

int year =0;
long long s=100;

while(s<X){
s=s*1.01;
year ++;

}
cout << year << endl;

}

Figure 5: Generated Python and C++ codes for the question "Takahashi has a deposit of 100 yen (the currency of Japan) in
AtCoder Bank. The bank pays an annual interest rate of 1% compounded annually. (A fraction of less than one yen is discarded.)
Assuming that nothing other than the interest affects Takahashi’s balance, in how many years does the balance reach X yen or
above for the first time?".

11054

User

We compared the efficiency in computing of codes A and B. As a result, code A was more efficient than B. The
improvement fraction is 1.7. Explain why this might be the case.

1 # Code A
2 n = input()
3 total = 0
4 for i in range(2, n+1, 2):
5 total += i

1 # Code B
2 n = input()
3 total = 0
4 for i in range(1, n+1):
5 if i % 2 == 0:
6 total += i

Response

The efficiency comparison between Code A and Code B, and why Code A is 1.7 times more efficient than Code B, can
be explained based on how each code is structured to perform its task. The task here is to compute the sum of all even
numbers up to a given nnn. Here’s a breakdown of the differences:

1 # Code A
2 n = input()
3 total = 0
4 for i in range(2, n+1, 2):
5 total += i

• Range Function: This code utilizes the range() function with three arguments: the start, stop, and step. It starts at 2
and increments by 2 each iteration, effectively looping only over even numbers.

• Loop Count: The number of iterations in this loop is directly halved compared to Code B, because it increments by 2.
For a maximum number nnn, this loop executes approximately n/2n/2n/2 times.

• Conditional Checks: There are no conditional checks inside the loop. Each iteration unconditionally adds the loop
variable iii (which is guaranteed to be even) to total.

1 # Code B
2 n = input()
3 total = 0
4 for i in range(1, n+1):
5 if i % 2 == 0:
6 total += i

• Range Function: Here, the range() function is used with just the start and stop, defaulting to a step of 1. It iterates
over every integer from 1 to nnn.

• Loop Count: The loop iterates nnn times, which is twice as many as Code A for the same nnn.

• Conditional Checks: Inside the loop, there is a conditional check (if i % 2 == 0) to determine whether each
number is even before adding it to total. This conditional check adds computational overhead for each iteration.

Why Code A is More Efficient

1. Fewer Iterations: Code A runs fewer iterations—only about half as many as Code B. This reduces the number of
operations (additions and assignments) executed.

2. No Conditional Logic: Code A does not use any conditional logic inside its loop, which saves the time required for
evaluating the condition for each iteration in Code B.

3. Optimized Looping: Directly iterating over only the numbers of interest (even numbers) avoids unnecessary iterations
over odd numbers, which Code B does but doesn’t process.

The improvement fraction of 1.7 suggests that Code A is about 70% more efficient than Code B. This could be measured
in terms of execution time or the number of operations performed, and it results largely from the reduced number of
iterations and the elimination of conditional checks within each iteration.

Figure 6: A toy example of an explainability of our approach.

11055

User

We compared the efficiency in computing of codes A and B. As a result, code B was more efficient than A. The
improvement fraction is 3.02. Explain why this might be the case.

1 # Code A
2 from math import factorial as f
3 n = int(eval(input()))
4 print ((f(n) % (10 ** 9 + 7)))

1 # Code B
2 def factorial(n, mod =10**9 + 7):
3 f = [0]*(n+1)\n f[0] = 1
4 for i in range(1, n+1):
5 f[i] = (f[i-1]*i) % mod
6 return f[n]
7 n = int(input())
8 print(factorial(n))

Response

The improvement in efficiency from code A to code B by a factor of 3.02 can be attributed to several reasons, primarily
concerning how each code handles the calculation of the factorial and the management of large integers.

1. Handling of Large Numbers
Code A uses Python’s built-in factorial function from the math library. This function computes the factorial of n as a
single large integer, which can become extremely large as n increases. Only after calculating this massive number does
it apply the modulo operation. This approach is memory and computation-intensive because it deals with very large
numbers up to the final computation.
Code B takes a different approach by iteratively calculating the factorial and immediately applying the modulo operation
at each step. This significantly reduces the size of the integers the program must handle at any one time. By ensuring that
no intermediate value exceeds 10**9 + 7, Code B avoids the overhead associated with manipulating very large numbers.

2. Efficiency in Modulo Operation
Immediate Modulo Application: In Code B, by applying the modulo operation in each step (f[i] = (f[i-1]*i) %
mod), the size of the numbers involved in the calculations remains bounded by mod. This is a more efficient use of
space and typically faster to compute, as each operation is simpler and avoids the potential overhead of managing and
operating on very large integers.

3. Space Complexity
Code B also explicitly manages an array f which stores all the factorial values modulo mod up to n. This allows not only
for efficient calculation of n! % mod but potentially could be adapted to handle multiple queries more efficiently by
reusing precomputed factorials if needed.

4. Use of Python’s Built-in vs Custom Function
Optimization: Python’s built-in functions are highly optimized; however, when it comes to specific tasks like calculating
a factorial modulo a number, a custom-tailored approach like in Code B can outperform by optimizing for the particular
constraints (like the modulo operation being used after each multiplication).

5. Potential Overhead in Code A
The eval function used in Code A is generally slower and less safe than a direct input() function as used in Code B.
While the impact on performance here is minimal compared to the factorial calculation itself, it’s another aspect where
Code B is more optimized. In summary, Code B is more efficient due to its continuous management of number size
through the modulo operation, reducing the computational and memory overhead by avoiding the manipulation of
extremely large numbers. Additionally, the direct approach without the overhead of unnecessary functions (like eval)
contributes to its higher efficiency.

Figure 7: A toy example of an explainability of our approach.

11056

