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Abstract

In-context learning with large language models
(LLMs) is the current mainstream method for
text-to-SQL. Previous studies have explored se-
lecting relevant demonstrations from a human-
labeled demonstration pool, but these methods
lack diversity and incur high labeling costs. In
this work, we address measuring and enhancing
the diversity of the text-to-SQL demonstration
pool. First, we introduce a diversity metric and
present that the diversity of the existing label-
ing data can be further enhanced. Motivated
by these findings, we propose FUSED that iter-
atively fuses demonstrations to create a diverse
demonstration pool based on human labeling
or even from scratch with LLMs, reducing la-
beling costs. FUSED achieves an average im-
provement of 2.1% based on existing labeling
and 5.5% from scratch on several mainstream
datasets, demonstrating its effectiveness.1

1 Introduction

Text-to-SQL is a critical task that has garnered
widespread attention for its ability to reduces the
overhead of accessing databases by automatically
generating SQL queries in response to user ques-
tions (Qin et al., 2022). Recently, in-context learn-
ing based on large language models (LLMs) has
become the predominant method for this task, sig-
nificantly improving performance while minimiz-
ing the need for fine-tuning (Chen et al., 2024; Qu
et al., 2024a; Talaei et al., 2024). For the in-context
learning paradigm, besides the user question and
the database, the LLM is also provided with several
demonstrations, guiding the model to generate the
corresponding SQL queries accurately.

Currently, numerous works (Su et al., 2023; Ren
et al., 2024; Pourreza et al., 2024) explore how
to select question-relevant demonstrations from a

*Corresponding author.
1Our data and code are released in https://github.com/

zirui-HIT/Fused.

Database
TABLE wine (price, year, name, …)
TABLE grapes (color, grape, id, …)

Demonstration Pool (Database / Question / SQL)
{database} / The max price of wines? / SELECT max(price) FROM wine
{database} / Grapes per color? / SELECT count(*) FROM grapes GROUP BY color

Fused Demonstration Pool
… …
{database} / Max price per year? / SELECT 
max(price) FROM wine GROUP BY year

Answer
SELECT max(pop) FROM country

Answer
SELECT max(pop) FROM country GROUP 
BY code

Selected Demonstration
{database} / The max price of wines? / 
SELECT max(price) FROM wine

Selected Demonstration
{database} / Max price per year / SELECT 
max(price) FROM wine GROUP BY year

User Database / User Question
TABLE country (pop, code, …); …  / Most commonly used languages in each country?

SynthesizeLabel

Fuse

Select

Select

Lower-Cost

Higher-Diversity

Figure 1: The comparison between the baseline (left)
and FUSED (right) of obtaining the demonstration pool
for text-to-SQL. FUSED can synthesize the demonstra-
tion pool from scratch or enhance the diversity of the
existing labeling without additional human involvement.

human-labeled demonstration pool. However, re-
lying entirely on human labeling limits the perfor-
mance of text-to-SQL based on in-context learning
due to two main issues: (i) Low Diversity: Human-
labeled data could lack diversity since the data la-
beled by the same annotator could be somewhat
similar (Ramalingam et al., 2021; Guo, 2023); (ii)
High Cost: Human labeling requires significant
labor overhead. To address these issues, thereby
improving text-to-SQL performance, we discuss:
(i) Theoretical metric for measuring the diver-
sity of the demonstration pool (§2); (ii) Practical
method that builds a diverse demonstration pool
with existing labeling or even from scratch (§3).

First, we analyze that the diversity of the exist-
ing labeling can be further enhanced. We begin

1193

https://github.com/zirui-HIT/Fused
https://github.com/zirui-HIT/Fused


by discussing the necessity of demonstration pool
diversity and present a diversity metric called Di-
versity Measurement (DM). Using the metric,
we prove that the existing labeling diversity can
be further enhanced by showing that there exist
demonstration pools with significantly higher DM.

Based on this analysis, we present our method
called FUSing itEratively for Demonstrations
(FUSED), which iteratively synthesizes the demon-
strations using LLMs with existing labeling or from
scratch, as shown in Figure 1. To tackle the Low Di-
versity, FUSED fuses demonstrations from previous
iterations, ensuring that the new demonstrations are
distinct from the previous, thus enhancing diversity.
To address the High Cost of labeling, our method
employs LLMs to generate demonstrations, thereby
reducing the need for human labeling.

To validate the effectiveness of our method, we
apply FUSED to several mainstream text-to-SQL
datasets, including Spider (Yu et al., 2018) and
KaggleDBQA (Lee et al., 2021). We synthesize
demonstrations and compare performance with ex-
isting labeling and from scratch, where FUSED

achieves an average performance improvement of
2.1% and 5.5%, respectively, confirming its effec-
tiveness. Further analysis shows that FUSED sig-
nificantly enhances DM of the existing labeling,
demonstrating its capability to enhance the diver-
sity of the existing demonstration pool.

Our contributions are as follows:
• We present DM, a metric to measure the diversity

of a given demonstration pool for text-to-SQL,
revealing that the diversity of the existing human-
labeling data can be further enhanced.

• We propose FUSED, a method to build a high-
diversity demonstration pool iteratively through
human-free synthesis based on existing labeling
data or even from scratch.

• We validate FUSED on multiple mainstream text-
to-SQL datasets, achieving performance improve-
ments of 2.1% with existing labeling and ,

¯
5.5%

from scratch, demonstrating its effectiveness.

2 Analysis

In this section, we present that the diversity of
the existing labeled demonstration pool can be
further enhanced. First, we discuss the necessity
of high diversity for a demonstration pool. Then,
we introduce a metric to quantify the demonstration
pool diversity. Based on this metric, we discuss that
the diversity of the existing labeling data can be

Low Diversity (DM=0.12) High Diversity (DM=0.27)

1 / 0.12

1 / 0.27

Figure 2: Two demonstration pools with different DM.
• represents the encoded demonstration, and ✖ repre-
sents the encoded user questions, in which the darkest
denotes the user question with the least similarity to
the most similar demonstration. The Euclidean distance
between the user question and the most similar demon-
stration is indicated next to each line.

further enhanced. We compare the metric present
with the other existing metric in Appendix A.

Necessity of the Diversity Regarding in-context
learning, LLMs imitate the demonstration provided
to generate the answer (Brown et al., 2020). There-
fore, given a user question, previous works select
the most similar demonstrations from a demonstra-
tion pool to guide the LLMs in generating answers
(Luo et al., 2024). However, since user questions
are unpredictable, the demonstration pool should
be as diverse as possible to cover various user ques-
tions. The higher the diversity, the higher the simi-
larity between any user questions and the demon-
strations, thereby better guiding the answer gener-
ation; the lower the diversity, the more and more
user questions are less similar to the demonstra-
tions, decreasing the model performance.

Diversity Measurement Based on the preced-
ing discussion, we employ the user question with
the lowest similarity to the demonstration pool to
measure the diversity of the demonstration pool.
Formally, let D = {di} represent the demonstra-
tion pool, U = {u} denote the user questions, and
sim(u, d) as the similarity between u and d, cal-
culated as the reciprocal of the Euclidean distance
between their encoded vectors in this paper. We
utilize Equation 1 to measure the diversity of the
demonstration pool D, which is called Diversity
Measurement (DM). This metric corresponds to
the similarity of the user question with the least
similarity to the most similar demonstration in the
demonstration pool, compared with any other user
question. An illustration of the DM definition is
shown in Figure 2. The detailed definitions of U ,
sim, and the calculation process of DM are dis-
cussed in Appendix B.
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Demonstration Pool

⋯d1 d2 dndn-1 1.1 Cluster

Clusters Sampled Demonstrations

{database} / The max 
… / SELECT … 

di
{database} / Grapes 
of … / SELECT … 

dj
1.2 Sample

2 Demonstration Fuse
Fused Demonstration
{database} / Max price per year? / 
SELECT max(price) FROM wine ORDER 
BY year

Sampled Demonstrations

{database}  / Grapes per color? / SELECT 
* FROM grapes GROUP BY color

{database} / The max price of wines? / 
SELECT max(price) FROM wine 

Database

2. Fuse

1 Demonstration Sample

TABLE grapes(id, grape…)

TABLE wine(price, year, …)

⋅⋅⋅

Figure 3: The pipeline of FUSED, which consists of two steps: (i) Demonstration Sample: Sample demonstrations
to be fused from the demonstration pool; (ii) Demonstration Fuse: Fuse the sampled demonstrations with the
randomly sampled database. The representation of {database} is discussed in Appendix C.

DM = min
u∈U

max
di∈D

sim(u, di) (1)

Diversity of the Existing Labeling Can be Fur-
ther Enhanced With the metric present above,
we then measure the diversity of the existing text-
to-SQL labeling demonstration pool. The DM and
performance of the existing labeling demonstration
pool are depicted in Figure 4 and Figure 5. These
figures reveal other demonstration pools where DM
and performance are significantly higher than the
existing labeling data. Thus, although the existing
labeling exhibits relatively high diversity, it can
be further improved, thereby enhancing the perfor-
mance. Consequently, we next discuss the method
for synthesizing demonstrations to enhance the di-
versity of the demonstration pool.

3 Method

Our method focuses on how to synthesize new
demonstrations given databases with LLMs. Con-
sidering the poor diversity of directly generating
demonstrations only relying on the sampling gener-
ation (Cegin et al., 2024), we present to synthesize
by fusing different demonstrations iteratively, as
shown in Figure 3. In each iteration, we guide the
model to generate demonstrations that are not simi-
lar to the previous iterations, thereby enhancing the
diversity. We theoretically prove that our method
can enhance DM in Appendix D.

A simplified explanation of our method is that:
we first cluster the demonstrations based on the
SQL keywords (e.g., WHERE, ORDER BY). Then, we
sample and fuse demonstrations from each clus-
ter. The fused demonstration contains both WHERE
and ORDER BY that are different from the sampled
demonstrations, thereby enhancing the demonstra-
tion diversity. In practice, we use the encoded user

questions rather than SQL keywords for synthesis
since the user question has more semantic informa-
tion than the SQL (Qin et al., 2022).

3.1 Overview

The fusion process of FUSED starts with an initial
demonstration pool, which can be human-labeled
or synthesized from scratch (see Appendix E).
FUSED includes multiple iterations of fusion,
where the synthesis of each iteration is based on the
demonstration pool of the previous iteration. Each
iteration consists of demonstration sampling (§3.2)
and demonstration fusing (§3.3) two steps, which
sample and fuse the demonstrations of the demon-
stration pool separately. The fused demonstrations
of each iteration are then added to the demonstra-
tion pool, preparing for the next iteration.

After all iterations of fusion, we use the final
demonstration pool for the text-to-SQL based on
the in-context learning. We generate the SQL of
each user question with LLMs directly following
Chang and Fosler-Lussier (2023) since this is not
the main topic of this paper.

3.2 Demonstration Sampling

This step is designed to sample the demonstrations
to be fused, which consists of: (i) Clustering the
demonstrations into multiple clusters; (ii) Sampling
demonstrations from clusters to be fused.

3.2.1 Clustering
Before the fusion to get new demonstrations, it is
required that the demonstrations sampled for fus-
ing are not similar to ensure that the fused demon-
stration is not similar to the sampled demonstra-
tions, thereby enhancing the diversity. The pre-
vious work (Zhang et al., 2023b) has shown that
similar demonstrations are in the same cluster af-
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ter encoding and then clustering. That is because
the encoded vectors can reflect the semantics of
the demonstrations, where the closer the vector
distance, the more similar the semantics.

Inspired by this, we empirically employ an en-
coder model to encode the question of all demon-
strations in the pool into vectors, and then use K-
means to cluster encoded results into multiple clus-
ters. Compared with not using the cluster, FUSED

can ensure that the corresponding encoding vectors
of the sampled demonstrations from different clus-
ters are far away, leading to the demonstration used
for fusion is not similar, enhancing diversity.

3.2.2 Sampling
After obtaining different clusters of the demonstra-
tion pool, we then sample demonstrations from dif-
ferent clusters for fusing. Considering that even in
a single cluster, there also exist differences between
the demonstrations, since the encoded vector can
not accurately reflect the complete information of
the demonstration (Morris et al., 2023). To enhance
diversity, during the demonstration sampling, we
randomly choose several distinct clusters, and then
randomly sample demonstrations from each cluster
separately, making the fused demonstration reflect
the difference between different demonstrations.

3.3 Demonstration Fusing

We employ LLM to fuse demonstrations as the dis-
cussion in Appendix E, where we add the sampled
demonstrations to guide the synthesis of the new
demonstration as in-context learning, comparing
with the randomly sampled database. Adding the
sampled demonstrations comes up because LLMs
imitate the demonstrations to generate results with
the few-shot, whereas we let the LLM imitate both
sampled demonstrations at the same time to get the
fused demonstration. Thus, the fused demonstra-
tions can reflect the attributes of and be different
from all sampled demonstrations, thereby enhanc-
ing the diversity of the demonstration pool.

4 Experiments

4.1 Experiment Setup

Dataset We evaluate FUSED on two text-to-SQL
datasets: Spider (Yu et al., 2018) and KaggleD-
BQA (Lee et al., 2021). Spider, a multi-domain
text-to-SQL dataset, is one of the most widely used
datasets currently. KaggleDBQA2 is smaller in

2We call KaggleDBQA as Kaggle for simplicity.

scale but involves more complex database and SQL
structures, presenting higher hardness.

Metric Following previous works (Yu et al.,
2018; Pourreza and Rafiei, 2023; Li et al., 2023),
we employ execution match (EX) and test-suite ex-
ecution accuracy (TS) as our evaluation metric. EX
measures the accuracy by comparing the execution
results of the generated SQL on the database. TS
uses multiple test databases for evaluating, where
if the execution results on all databases are correct,
the generated SQL are considered correct. There
are two ways to evaluate TS: (i) directly using the
predicted SQL conditional value (w. value); (ii)
replacing the conditional value with that in the cor-
rect SQL (w/o. value).

Model In our experiments, we use SGPT-
125m (Muennighoff, 2022) to encode demonstra-
tions for clustering and use CodeLlama (Rozière
et al., 2023) and GPT3.53 to synthesize demon-
strations and convert user questions into SQLs.
We apply FUSED to the Vanilla method, ACT-
SQL (Zhang et al., 2023a) and ODIS (Chang and
Fosler-Lussier, 2023), where the detail of these
models and methods can be seen in Appendix F.

Implementation Details We study FUSED on
two types of synthesis: from scratch (w/o. Human)
and based on human labeling (w. Human). We
synthesize 8 SQLs for each given database, set the
generation temperature to 0.3, and synthesize in
turns of 3 (w/o. Human) and 1 (w. Human) based
on the analysis in § 4.4. About KaggleDBQA, we
synthesize the demonstrations with both Spider and
KaggleDBQA databases following the previous
work (Chang and Fosler-Lussier, 2023). The size of
demonstration pools of different settings is shown
in Appendix G. We employ the 5-shot for text-to-
SQL selected with BM-25 similarity, where the
prompts for text-to-SQL are shown in Appendix C.

4.2 Main Result

The text-to-SQL performance is shown in Table 1,
where FUSED brings 2.1% and 5.5% performance
improvement on average with and without human-
labeling across different settings, showing the ef-
fectiveness of our method. We further discuss the
performance under different SQL hardness in Ap-
pendix H. From Table 1, we can also see that:

3Document for GPT3.5.
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Dataset Method Label
CodeLlama GPT3.5 ∆

7b 13b 34b - -
EX TS EX TS EX TS EX TS EX TS

Spider

Vanilla

w/o. Human 55.3 48.5 61.3 54.9 60.1 56.9 71.9 57.9
+7.6 +3.4+ FUSED 61.9 54.4 68.1 58.8 72.7 59.7 76.4 58.7

w. Human 65.9 55.3 70.3 58.8 73.6 61.6 74.1 61.6
+2.6 +1.6+ FUSED 67.9 56.8 72.7 60.4 76.4 63.2 77.1 63.2

ACT-SQL† w. Human 62.1 51.3 67.5 57.7 71.0 60.8 75.8 65.4
+0.7 +1.5+ FUSED 60.3 50.3 68.4 59.2 74.6 65.8 76.0 65.8

ODIS† w. Human 69.1 58.2 73.7 61.9 77.3 64.3 78.3 63.9
+1.1 +0.8+ FUSED 68.6 58.0 76.2 62.9 78.6 65.6 79.3 64.8

Kaggle

Vanilla

w/o. Human 9.9 − 13.2 − 13.2 − 14.0 −
+6.1 −+ FUSED 22.8 − 19.1 − 18.0 − 14.7 −

w. Human 27.9 − 32.4 − 26.5 − 26.5 −
+4.3 −+ FUSED 35.3 − 34.6 − 32.4 − 32.4 −

ACT-SQL† w. Human 27.6 − 30.5 − 33.8 − 29.4 −
+0.4 −+ FUSED 27.6 − 30.5 − 33.8 − 30.9 −

ODIS† w. Human 33.8 − 34.6 − 31.6 − 34.6 −
+2.3 −+ FUSED 35.7 − 36.0 − 35.3 − 36.8 −

Table 1: The main experimental results on the Spider and KaggleDBQA dev sets. About the label setting, w/o.
Human denotes synthesis from scratch using zero-shot and w. Human denotes synthesis based on human labeling
with few-shot. About the metric, EX denotes execution match and TS denotes test-suite execution accuracy. †

denotes the reproduced results since the performance differences brought by the API version of GPT3.5. The
improved results led by FUSED are marked green, the degradation is marked in red, and unchanged results are
marked in black. The best results of different models and datasets are annotated in underline. ∆ denotes the average
improvement of different prompt methods leading by FUSED. We only adapt w/o. Human to the Vanilla method
since ACT-SQL and ODIS cannot be adapted to the zero-shot inference without labeling data.

Model Scale Our method brings significant per-
formance improvements on models of different
scales. However, our method brings performance
degradation with CodeLlama-7b, because of the
low quality of the synthesized demonstrations due
to the relatively poor performance of the 7b model,
while ACT-SQL and ODIS are more sensitive to
the demonstration quality since they employ the
demonstrations to guide the intermediate genera-
tion rather than only for the few-shot. However,
on KaggleDBQA, the performance does not in-
crease as the model scale increases, because the
demonstration pool used is synthesized or labeled
with Spider databases (as described in § 4.1), which
could mislead the generation for the KaggleDBQA.

Method Our method continues to improve per-
formance based on all experiment methods under
most settings, even improving performance based
on ODIS and ACT-SQL such two well-performed
baselines, proving the generalization and effective-
ness of FUSED. Compared to the Vanilla method,
our method shows relatively minor improvements
with ACT-SQL and ODIS. This is because ACT-
SQL and ODIS are more effective in helping the
model understand the reasoning process within

demonstrations, rather than merely imitating. This
reduces the dependency on the similarity between
demonstrations and user questions, making perfor-
mance improvements less sensitive to the diversity
of the demonstration pool compared to Vanilla.

Dataset FUSED brings significant performance
improvements on all experimental datasets and
even achieves results close to w. Human on Spi-
der under the w/o. Human setting, demonstrating
the effectiveness of our method under different do-
mains. Besides, our method significantly improves
KaggleDBQA more than Spider, showing that the
demonstrations synthesized by FUSED are more
effective for complex text-to-SQL questions.

4.3 Ablation Studies

To verify the effectiveness of the iteration and the
cluster designed by FUSED, we perform ablation
experiments on each part separately. The experi-
mental results are shown in Table 2. Based on such
results, we discuss the impact of different parts on
the performance of our method.
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Label Spider KaggleDBQA
7b 13b 34b 7b 13b 34b

FUSED w/o. Human 66.4 70.9 75.1 32.0 29.0 30.1
- Iteration 66.2(−0.2) 69.9(−1.0) 73.9(−1.2) 30.1(−1.9) 28.8(−0.2) 28.7(−1.4)
- Cluster 65.3(−1.1) 69.9(−1.0) 74.6(−0.5) 26.5(−5.5) 26.5(−2.5) 30.0(−0.1)

FUSED w. Human 69.0 74.2 78.4 47.1 46.0 45.6
- Iteration 67.6(−1.4) 71.9(−2.3) 76.6(−1.8) 38.6(−8.5) 44.1(−1.9) 38.6(−7.0)
- Cluster 67.7(−1.3) 70.5(−3.7) 75.4(−3.0) 41.2(−5.9) 40.4(−5.6) 35.7(−9.9)

Table 2: TS without values on CodeLlama ablating: (i) Iteration: synthesizing the same demonstration number of
FUSED in one single turn; (ii) Cluster: randomly sampling demonstration to be fused without clustering.

4.3.1 Ablation of Iteration
To demonstrate that iterations work by improving
the quality rather than quantity of the demonstra-
tions, we conduct experiments that generate the
same number of data as our method without iter-
ations. From Table 2, we can see that: (i) There
is a significant performance degradation after re-
moving iteration, proving that FUSED enhances
the performance by improving the demonstration
quality rather than quantity; (ii) For larger-scale
models, iteration has a more significant impact on
performance, indicating that larger-scale models
can more effectively synthesize diverse demonstra-
tions through multiple iterations; (iii) Compared
with w/o. Human, FUSED under the w. Human
setting has a more obvious decrease after remov-
ing iteration, because the quality of the synthesis
without labeling data is lower than the labeling
data, mixing which leads to a quality degradation
compared with the original labeling data.

4.3.2 Ablation of Cluster
To demonstrate the effectiveness of the cluster, we
perform ablation experiments on it. We compare
our method with randomly selecting demonstra-
tions during the demonstration sampling. From
Table 2, we can find: (i) synthesis without cluster-
ing brings performance degradation in all settings,
proving the effectiveness of the cluster; (ii) The
performance degradation of KaggleDBQA is more
obvious compared to Spider, indicating that the
more complex text-to-SQL questions are more sen-
sitive to the demonstration diversity.

4.4 Analysis
In this part, we discuss the impact of different pa-
rameters on the model performance. The analysis
experimental settings are shown in Appendix I.

Can Diversity Measurement Reflect the Diver-
sity of the Demonstration Pool? To prove that
the metric DM we proposed can reflect the diversity
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Figure 4: TS of 20 different demonstration pools with
different DM on the Spider dev set. Different points
denote different pools containing 100 demonstrations
randomly sampled from the Spider train set.

of the demonstration pool, we randomly sample
20 demonstration pools, where each pool has 100
demonstrations from the Spider train set with dif-
ferent diversities. Then we use the Vanilla method
to evaluate the performance of each pool on the
Spider dev set. The experiment results are shown
in Figure 4, from which we can see that: (i) With
the same demonstration pool size, as DM enhances,
the overall performance of the model is on the rise,
indicating that the higher DM, the higher quality of
the demonstration pool, denoting higher diversity;
(ii) Most of the results are concentrated around
73.3, because such randomly sampled pools could
not contain any demonstrations similar to the user
questions, resulting in consistent performance.

Does the Diversity and Performance of Synthe-
sized Data Continue to Rise with the Iteration
Turn Increasing? To analyze the effectiveness of
the iteration, we adapt experiments with different
iterative turns, which are summarized in Figure 5.
From the table, we can see that: (i) When the turn
is ≤ 3 (w/o. Human) or ≤ 1 (w. Human), as the
turn increases, DM and the performance of our
method improves steadily, indicating that multiple
iterations can enhance the diversity, thereby en-
hancing performance; (ii) When the turn is > 3

1198



0 1 2 3 4 5 6
0

0.1

0.2

0.3

Iteration Turn

D
M

w/o. Human DM w. Human DM
w/o. Human EX w. Human EX

72

75

78

81

E
X

w
/o

.v
al

ue
s

Figure 5: DM and TS without values on the Spider dev
set of CodeLlama-34b across different iterations with
FUSED. Turn 0 denotes the origin demonstration pool
without FUSED. The sizes of the demonstration pools
can be seen in Appendix G.
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Figure 6: The TS without values of CodeLlama-34b
with different synthesized scales. The X-axis denotes
the number of demonstrations randomly sampled from
the synthesized data, where ALL denotes 1947 and
10653 demonstrations under the w/o. Human and w.
Human respectively. The Y-axis on the left and right are
the results of Spider and KaggleDBQA respectively.

(w/o. Human) or > 1 (w. Human), with the num-
ber of turns increasing, diversity and performance
improvement brought by FUSED becomes less and
less, indicating the diversity can not be infinitely
enhanced. Based on the above discussion, we use
3 and 1 as the synthesized turns.

How Does the Synthesized Scale Effect the Per-
formance To verify the impact of different syn-
thesized scales on performance, especially the per-
formance under the small synthesized scale, we
adapt experiments on synthesizing different demon-
stration numbers. The experiment results are shown
in Figure 6, from which we can see that: (i) With
the small synthesized scale (≤ 100), FUSED can
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Figure 7: The TS without values of CodeLlama-34b
under different initial human labeling scales sampled
from the Spider train set. The X-axis represents the
number of labeled demonstrations used for synthesis.
The Y-axis on the left and right represent the results of
Spider and KaggleDBQA respectively.

also improve the performance, proving the effec-
tiveness under low synthesis overhead; (ii) With
the synthesized scale increasing, the performance is
continuously enhancing, indicating that the synthe-
sized scale has a significant impact on performance.

How Does the Initial Labeling Scale Effect Our
Synthesized Performance Although the main
experiments of Table 1 demonstrate the effective-
ness of our method on labeled data, the practical
applications could lack labeled data with the same
scale as the Spider training data. Therefore, to val-
idate the effectiveness of FUSED across varying
scales of labeling, we randomly sample and con-
duct experiments on initial labeling demonstrations
of different numbers from Spider training data.

The experiment results are shown in Figure 7,
from which we can see that: (i) Under most settings,
our method brings performance improvement, indi-
cating its widespread effectiveness under different
initial label scales; (ii) With the increase of the
initial label scale, the performance demonstrates a
consistent increase, suggesting that expanding the
labeling scale can reliably enhance performance.

Can FUSED Effectively Help LLMs Migrate to
the Domain without Labeling? In this part, we
evaluate that FUSED can improve the text-to-SQL
performance across different domains without hu-
man labeling. The experimental results are shown
in Table 3. From the table, we can see that: (i)
Compared with not synthesizing demonstrations,
FUSED can bring performance improvements when
only using KaggleDBQA databases, proving the ef-
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Database 7b 13b 34b

None 18.0 23.5 23.2
Kaggle 29.0 24.3 27.6
Kaggle + Spider 32.0 29.0 30.1

Table 3: TS without values of FUSED using CodeL-
lama evaluated on the KaggleDBQA dev set with the
data synthesized based on the databases of different
datasets under the w/o. Human setting. None denotes
no synthesis data, Kaggle denotes synthesis only with
the KaggleDBQA databases, and Kaggle + Spider de-
notes synthesis by mixing Spider databases.

Demonstration 1
SELECT t1.id, count(*) 
FROM stadium JOIN game

Demonstration 2
SELECT name FROM 
stadium WHERE capacity < 
(SELECT avg(capacity) 
FROM stadium)

SQL
SELECT count(*), max(
capacity) FROM concert

Fused Demonstration
SELECT count(*) FROM 
stadium WHERE capacity < 
(SELECT avg(capacity) 
FROM stadium)

SQL
SELECT count(*) FROM 

concert WHERE capacity = 
(SELECT max(capacity) 

FROM stadium)

Question
Find the number of concerts that happened in the stadium with the 
highest capacity.

Figure 8: The case study of demonstrations by human-
labeling (left) and FUSED (right) from Spider. The
corresponding SQL keywords between demonstrations
and the answer are annotated in bold.

fectiveness of our method adapted to a new domain
without labeling; (ii) Compared to using only Kag-
gleDBQA databases, the demonstrations obtained
by mixing Spider databases can bring greater per-
formance improvements, indicating that increasing
the diversity of databases can also enhance the di-
versity of synthesized demonstrations.

4.5 Case Study

Although the above analysis proves the effective-
ness of FUSED, how our method improves the
performance of the text-to-SQL using in-context
learning remains to be discovered. To analyze how
our method improves the model performance more
specifically, in this part, we conduct a case study. A
comparison between results based on labeled data
and the demonstrations obtained using FUSED is
shown in Figure 8. From the figure, we can see that
the results using only labeled data do not combine
the SQL keywords of the two demonstrations well.
The demonstration obtained with our method, on
the other hand, has already combined the SQL key-
words of the two demonstrations, which guides the
model to successfully generate the correct SQL.

5 Related Works

5.1 Text-to-SQL
Text-to-SQL is a vital task that generates SQL
based on the user question and the provided
databases. Recent research shows that text-to-
SQL based on LLMs can approach or exceed the
performance of fine-tuned models without fine-
tuning, which greatly advances research on this
task while reducing labeling overhead (Chang and
Fosler-Lussier, 2023; Zhang et al., 2023a; Li and
Xie, 2024). For example, DIN-SQL (Pourreza and
Rafiei, 2023) decomposes the text-to-SQL task into
multiple sub-tasks. DAIL-SQL (Gao et al., 2023)
evaluates different prompt formats to find the best
combination. MCS-SQL (Lee et al., 2024) consis-
tency the results generated with multiple prompts.

However, existing LLM-based methods entirely
rely on human-labeled demonstrations, demanding
high labeling costs be adapted to a new domain.
Therefore, we propose FUSED to synthesize text-
to-SQL demonstrations based on LLMs using pro-
vided domain databases without human labeling,
effectively reducing the labor cost.

5.2 In-Context Learning
In-context learning is an effective method to en-
hance the reasoning ability of LLMs by providing
several demonstrations to guide reasoning (Xun
et al., 2017; Wei et al., 2022). Some works propose
to automatically select relevant demonstrations for
each user question to improve the performance of
LLMs (Zhang et al., 2023b; Shum et al., 2023; Qu
et al., 2024b). Another kind of work enhances in-
context learning by synthesizing relevant data by
supervised fine-tuning (Wang et al., 2023; Yang
et al., 2024; Sun et al., 2023).

However, existing methods only demonstrate
that increasing the diversity of the demonstrations
can enhance performance but do not discuss if the
diversity of the existing labeling data is sufficient,
and how to increase the diversity of the demonstra-
tions (Su et al., 2023; Levy et al., 2023). Therefore,
we present DM to show that the existing labeling
data of the text-to-SQL is not diverse enough and
propose FUSED to enhance the diversity.

6 Conclusion

In this paper, we improve the performance of the
text-to-SQL task using in-context learning from
the perspectives of measuring and enhancing the
demonstration pool diversity. We first present DM
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to measure the diversity of the demonstration pool,
based on which we present that the diversity of
the existing labeling data can be further enhanced.
Based on the above analysis, we present FUSED,
which synthesizes demonstrations using LLMs,
lowering the labeling cost. Experiments show that
FUSED brings an average improvement of 3.2%
and 5.0% with and without labeling data on Spider
and KaggleDBQA, proving the effectiveness.

Limitations

FUSED has two limitations, including: (i) About
the encoding of the demonstration sample step, di-
rectly splice the user question and the SQL could
not fully reflect the attributes of them. In future
work, we will try to encode the question and SQL
according to the attributes separately; (ii) For the
synthesized demonstration pool, we only enhance
the diversity, while ignoring the effect of the scale
on the demonstration selection. Our future work
will filter the synthesis, reducing the scale of syn-
thesis under the premise of ensuring diversity.
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Eric W. Moore, Jake VanderPlas, Denis Laxalde,
Josef Perktold, Robert Cimrman, Ian Henriksen, E. A.
Quintero, Charles R. Harris, Anne M. Archibald, An-
tônio H. Ribeiro, Fabian Pedregosa, Paul van Mul-
bregt, and SciPy 1.0 Contributors. 2020. SciPy 1.0:
Fundamental Algorithms for Scientific Computing in
Python. Nature Methods, 17:261–272.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh
Hajishirzi. 2023. Self-instruct: Aligning language
models with self-generated instructions. In Proceed-
ings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 13484–13508, Toronto, Canada. Association
for Computational Linguistics.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed H. Chi, Quoc V Le,
and Denny Zhou. 2022. Chain of thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems.

Guangxu Xun, Xiaowei Jia, Vishrawas Gopalakrishnan,
and Aidong Zhang. 2017. A survey on context learn-
ing. IEEE Transactions on Knowledge and Data
Engineering, 29(1):38–56.

Zhaorui Yang, Tianyu Pang, Haozhe Feng, Han Wang,
Wei Chen, Minfeng Zhu, and Qian Liu. 2024. Self-
distillation bridges distribution gap in language
model fine-tuning. Preprint, arXiv:2402.13669.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, Zilin Zhang, and Dragomir
Radev. 2018. Spider: A large-scale human-labeled
dataset for complex and cross-domain semantic pars-
ing and text-to-SQL task. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 3911–3921, Brussels, Bel-
gium. Association for Computational Linguistics.

Hanchong Zhang, Ruisheng Cao, Lu Chen, Hongshen
Xu, and Kai Yu. 2023a. ACT-SQL: In-context learn-
ing for text-to-SQL with automatically-generated
chain-of-thought. In Findings of the Association
for Computational Linguistics: EMNLP 2023, pages
3501–3532, Singapore. Association for Computa-
tional Linguistics.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex
Smola. 2023b. Automatic chain of thought prompt-
ing in large language models. In The Eleventh Inter-
national Conference on Learning Representations.

1203

https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2023.acl-long.754
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://doi.org/10.1109/TKDE.2016.2614508
https://doi.org/10.1109/TKDE.2016.2614508
https://arxiv.org/abs/2402.13669
https://arxiv.org/abs/2402.13669
https://arxiv.org/abs/2402.13669
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/2023.findings-emnlp.227
https://doi.org/10.18653/v1/2023.findings-emnlp.227
https://doi.org/10.18653/v1/2023.findings-emnlp.227
https://openreview.net/forum?id=5NTt8GFjUHkr
https://openreview.net/forum?id=5NTt8GFjUHkr


A Comparison with Other Diversity
Metrics

To better explore the progress of the diversity met-
ric we proposed in §2, we compare it with the
past metric present by Nan et al. (2023): (i) Nan
et al. (2023) mainly focus on selecting demonstra-
tions, while the motivation of ours is to synthesize
demonstrations; (ii) Nan et al. (2023) does not give
a numerical measure of diversity, while our method
gives a numerical measure of diversity; (iii) Nan
et al. (2023) is based on clustering, and the granu-
larity of judging diversity is relatively coarse, while
our method is based on the entire demonstration
pool, which can more accurately measure the diver-
sity of demonstrations.

B How to Calculate Diversity
Measurement

min
u∈U

max
di∈D

sim(u, di)

:= min
u∈Convex(D)

max
di∈D

|u− di|−1 (2)

As the discussion in §2, given a demonstration
pool, the calculation process of DM can be formal-
ized as Equation 2, where sim(u, d) = |u − d|−1

is the reciprocal of the Euclidean distance between
the encoded vectors of u and d, and Convex(D)
denotes the convex hull of the demonstrations.

We use the Euclidean distance to represent sim
since the closer the distance between the embed-
ding question and the embedding demonstration,
the more similarity between the question and the
demonstration. The user question u should be in
the area surrounded by Convex(D) corresponds to
the question-related domain, and the user questions
are highly related to the domain and have a high
probability of locating in the convex.

We use SciPy (Virtanen et al., 2020) to solve
Equation 2, and use SGPT-125m (Muennighoff,
2022) to encode demonstrations. We first generate
the Voronoi diagram (Aurenhammer, 1991) and
compute the convex hull for the encoded demon-
stration points. For each point, we then calculate
the maximum distance to any vertex in its corre-
sponding Voronoi region confined within the con-
vex hull and use the greatest of these maximum
distances as the result.

C Text-to-SQL Prompts

The prompts of the SQL generation and the ques-
tion generation are shown in Table 4 and Ta-

ble 5, where the formats of {database} and
{demonstration} are same as Chang and Fosler-
Lussier (2023).

D Why FUSED can Enhance the Diversity
Measurement

In this section, we explain why the demonstra-
tion sampling (§3) in FUSED can enhance DM.
To increase Equation 1, it is required to maxi-
mum minu∈U maxdi∈D sim(u, di). Let u∗ =
argminu∈U maxdi∈D sim(u, di), then we aim to
update D to make maxdi∈D sim(u∗, di) as large as
possible.

We define that the cluster corresponding to di is
cdi , and let sim(u, ci) = maxd∈ci sim(u, d). We
denote di that maximum sim(u∗, di) as d∗. Then
we have maxdi∈D sim(u∗, di) = sim(u∗, cd†) =
|u∗ − cd∗ |−1 > (|u∗ − c|+ |c− cd∗ |)−1, where c
is any cluster. The above inequality holds because
cd† , c, u

∗ can be considered as the vertices of a
triangle, and the sum of the lengths of two sides is
greater than the length of the third side.

According to the discussion in Appendix B, it
is hard to precisely find u∗, so we maximize the
right-hand side of the inequality as much as pos-
sible to increase sim(u∗, cd∗). Therefore, as de-
scribed in §3.2, the demonstration sampling contin-
uously combines demonstrations to generate new
demonstrations between different clusters, thereby
reducing the distance between different clusters.
During the sampling, adding new results can also
decrease the distance between u∗ and c, so the right-
hand side of the inequality is continuously decreas-
ing. In summary, FUSED can continuously increase
maxdi∈D sim(u∗, di), thus increasing DM of the
results.

E Synthesize Text-to-SQL
Demonstrations with LLMs

In this section, we discuss how to employ LLMs to
obtain the initial demonstration pool with the given
database, lowering the labeling cost. The prompts
we used are shown in Appendix C.

SQL Synthesize Following the previous
work (Chang and Fosler-Lussier, 2023), we
synthesize SQL based on the linearized schema of
the given database with LLMs. During synthesis,
we ask LLMs to generate multiple SQLs for each
database to enhance the diversity of the results
with the sampling generation. The prompt we used
is shown in Table 4.
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SQL Synthesize
Synthesize one SQL query for the given database.

{database}
– Synthesize a new single SQL for the above database
imitating {SQL1} and {SQL2}.
SELECT

Table 4: The prompt for the SQL synthesis.

Question Synthesize
Using natural language, generate a question correspond-
ing to the given SQL.
Different examples are separated with ‘\n\n’.

{demonstration1}

...

{demonstration5}

{database}
– Using natural language, generate a question corre-
sponding to the given SQL: {SQL}.
Question:

Table 5: The prompt for the question synthesis.

Question Synthesize We synthesize the corre-
sponding questions of the generated SQL with the
linearized schema of the. We first synthesize SQL
instead of questions because LLMs could gener-
ate questions that are hard to answer using SQL
(Cheng et al., 2023), and it is harder to validate
the semantic consistency between the SQL and the
question for generating questions first. The prompt
of this step is shown in Table 5.

Validate Due to the limitation of the model per-
formance, it is hard to guarantee that the seman-
tics of all synthesized SQL-question pairs are com-
pletely consistent, resulting in a decrease in the
quality of the synthesized demonstration. To im-
prove the quality of the synthesized results, we
verify the semantic consistency between the synthe-
sized questions and SQL. We generate SQL based
on the question and then evaluate if the generated
SQL is the same as the synthesized SQL, for which
we use LLMs to reduce the cost of fine-tuning. The
prompts for text-to-SQL follow Chang and Fosler-
Lussier (2023).

F Baselines

F.1 Baseline Models
CodeLlama CodeLlama is a model based on
Llama2 (Touvron et al., 2023), which is fine-tuned
on a large amount of code data and can better solve

code-related problems (including SQL).

GPT3.5 GPT3.5 is an improved model based
on GPT3 (Brown et al., 2020), which further
enhances performance through additional task-
specific fine-tuning. We use Azure OpenAI API of
gpt-3.5-turbo of GPT3.5 for our experiments 4.

F.2 Baseline Methods

Vanilla Following the previous work (Chang
and Fosler-Lussier, 2023), we design the Vanilla
method that directly employs the few-shot to gen-
erate the answer, where the demonstrations are se-
lected by the BM-25 similarity between the user
question and the demonstration questions.

ACT-SQL ACT-SQL (Zhang et al., 2023a) is a
method to construct the chain-of-thought rationales
based on SQL automatically. This method syn-
thesizes reasoning steps with table names, column
names, and values used in the SQL.

ODIS ODIS (Chang and Fosler-Lussier, 2023)
is an automatic demonstration selection method
designed for the text-to-SQL task. This method se-
lects out-domain demonstrations from the labeled
data and synthesizes in-domain demonstrations
based on the databases related to the user question.

G Number of Synthesized Data

The synthesized demonstrations under different set-
tings are shown in Table 6. From the table, we can
see that gpt-3.5-turbo has less data than that syn-
thesized by CodeLlama, because the SQL synthe-
sized by gpt-3.5-turbo is more complex, which
makes it more difficult to pass the filter.

To find the best turn number of synthesis, we
synthesize more turns on CodeLlama-34b, and the
size of synthetic data is shown in Table 7.

H FUSED Performance under Different
SQL Hardness

To analyze the effectiveness of FUSED on ques-
tions with different complexity, we evaluate our
method on SQL categorized by different hardness.
The category criteria follows Yu et al. (2018). The
experimental results are shown in Table 8.

From the table, we can see that: (i) On most hard-
ness, our method can bring significant performance
improvements, which proves the effectiveness of

4https://azure.microsoft.com/en-us/products/
cognitive-services/openai-service
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Model Label Turn Total0 1 2 3

CodeLlama-7b w/o. Human 0 584 561 608 1753
w. Human 7000 1937 − − 8937

CodeLlama-13b w/o. Human 0 954 741 803 2489
w. Human 7000 3001 − − 10001

CodeLlama-34b w/o. Human 0 457 668 822 1947
w. Human 7000 3653 − − 10653

gpt-3.5-turbo
w/o. Human 0 803 643 502 1948
w. Human 7000 387 − − 7387

Table 6: Synthesized size under different settings.

Model Label Turn
0 1 2 3 4 5 6

CodeLlama-34b w/o. Human 0 457 668 822 854 981 897
w. Human 7000 3653 4243 4344 − − −

Table 7: More synthesized size of CodeLlama-34b for Figure 5.

Dataset Label Easy MediumHard Extra

Spider w/o. Human 88.7 80.7 57.5 40.4
+ FUSED 87.5 81.2 63.8 52.4

Kaggle w/o. Human 53.1 30.3 5.1 1.9
+ FUSED 59.4 32.9 11.4 1.9

Table 8: TS without values of CodeLlama-34b under
different SQL hardness with and without FUSED. The
best result of each setting is annotated in bold.

FUSED; (ii) On Spider, the more difficult SQL, the
more significant the improvement, showing that
synthesized demonstrations can more effectively
guide complex SQL generation; (iii) For the easy
questions of Spider, our method brings a slight per-
formance degradation because the model already
performs well under the w/o. Human setting for
this hardness, and the additional demonstrations
could mislead the model; (iv) On the extra ques-
tions of KaggleDBQA, our method does not bring
performance improvement, which could be because
it is too hard to synthesize too complex demonstra-
tions (harder than Spider extra questions), resulting
in the selected demonstrations being unable to ef-
fectively guide the generation of the extra hardness.

I Settings of Analysis Experiments

We adapt analysis experiments under the setting of:

CodeLlama-34b CodeLlama is one of the most
mainstream code generation models at present,
which achieves near the performance of the closed-
source model (as shown in Table 1) in the open-

Template (%)

SELECT * FROM * WHERE * <op> * (25.7)
SELECT * FROM * WHERE * <op> * AND * <op> * (13.9)
SELECT * FROM * JOIN * JOIN * WHERE * <op> * (5.2)
SELECT * FROM * JOIN * WHERE * <op> * (4.9)
SELECT * FROM * WHERE * IN (SELECT * FROM * WHERE
* <op> *) (4.3)

Table 9: Top five SQL templates synthesized by FUSED
using CodeLlama-34b. The numbers in the brackets
denote the proportion of each template.

source model with less inference cost (no need to
call API), of which CodeLlama-34b is the best per-
formance in this series of models.

Evaluating without values Regarding the text-
to-SQL task, current research mainly focuses on
how to generate SQL with the correct structure,
while paying less attention to extracting the condi-
tion values exactly, since this requires the memoriz-
ing ability rather than the semantic parsing ability.

J Synthesized Template

To guide future works in generating more diverse
demonstrations, in this part, we analyze the pro-
portion of demonstrations with different SQL tem-
plates synthesized by our method. We replace table
names, column names, and values with * and oper-
ators with <op> as the templates corresponding to
each SQL. Our method synthesizes 175 different
SQL templates, showing the diversity of the syn-
thesized demonstrations. The five most frequent
template types are shown in Table 9.
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From the table, we can find: (i) The current
model is most inclined to generate SELECT and
WHERE, which is nearly 40%, indicating that such
types of SQL occur more frequently in the pre-
training data of LLMs we use and, thereby, are
more frequently used in real-world scenarios; (ii)
Existing models hardly generate complex SQL that
contains nested SQL (less than 5% of synthetic
data), indicating that future methods should specif-
ically pay attention to guide the model to generate
results that contain two or more sub-SQLs or even
more complex structures.
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