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Abstract

In the Minecraft Collaborative Building Task,
two players collaborate: an Architect (A) pro-
vides instructions to a Builder (B) to assemble
a specified structure using 3D blocks. In this
work, we investigate the use of large language
models (LLMs) to predict the sequence of ac-
tions taken by the Builder. Leveraging LLMs’
in-context learning abilities, we use few-shot
prompting techniques, that significantly im-
prove performance over baseline methods. Ad-
ditionally, we present a detailed analysis of the
gaps in performance for future work.

1 Introduction

Accurate action prediction is fundamental in de-
veloping interactive agents. These agents need to
anticipate and respond effectively by interpreting
the environment, including its contextual cues (Roy
and Reiter, 2005; Goodrich and Schultz, 2007). A
key part of this process is the interpretation of in-
structions and intentions in dialogues to predict
appropriate subsequent actions (Chen and Mooney,
2011; Matuszek et al., 2012; Schlangen, 2023).
As agents continuously predict actions based on
the evolving context, precise action prediction be-
comes essential for ensuring seamless interaction
and coordination (Winograd, 1971; Thomaz and
Breazeal, 2008; Tellex et al., 2020; Ichter et al.,
2022).

Building on these principles, our research fo-
cuses on modeling the Builder’s sequence of ac-
tions (see Figure 1) in the Minecraft Collaborative
Building Task (Narayan-Chen et al., 2019). This
task requires close coordination between an Archi-
tect (A) and a Builder (B). The Architect provides
instructions to the Builder, who assembles a speci-
fied structure using 3D blocks. This setup provides
an ideal testbed for investigating how advanced
computational models can interpret and predict ac-
tions based on natural language instructions.

A: place a blue and purple 
block next to each other
B: (places blue …)
A: Now place a yellow block 
on top of the left block
B: (places yellow …)

place(color='blue',x=1,y=1,z=-1)
place(color='purple',x=1,y=1,z=0)
place(color='yellow',x=1,y=2,z=-1)

LLM

Initial World View

Updated World View

Action Prediction

Instructions

Figure 1: Illustration of the LLM interpreting block
placement instructions. The initial world view is empty.
The LLM receives instructions from User A and gener-
ates action predictions.

Prior works (Jayannavar et al., 2020; Shi et al.,
2022; Kiseleva et al., 2022) proposed end-to-end
neural models for modeling builder actions predic-
tion. However, achieving high accuracy for this
task remains challenging. A key challenge lies in
effectively utilizing richer dialogue history when
modeling action sequence prediction. Meanwhile,
LLMs have demonstrated impressive performance
in various natural language processing tasks, pri-
marily due to their in-context learning (Brown et al.,
2020) capabilities. Few-shot prompting techniques,
in particular, allow these models to generalize from
a limited number of examples (Liu et al., 2023;
Wei et al., 2022; Wu et al., 2023). This makes
LLMs well-suited for tasks that require a nuanced
understanding of longer contexts and action predic-
tion (Xi et al., 2023; Liang et al., 2023; Singh et al.,
2023; Driess et al., 2023; Vemprala et al., 2024).

In this work, we explore the application of LLMs
to predict the Builder’s actions. Taking advan-
tage of their in-context learning capabilities, we
prompted LLMs to predict these actions. To cap-
ture the nuances of this task, we adopted a retrieval-
augmented approach (Lewis et al., 2020). This
enhances the LLM’s ability to predict action se-
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quences that are not only syntactically correct but
also contextually appropriate. Consequently, these
predictions can be expressed either as textual de-
scriptions or code-based commands. Leveraging
the code-generation capabilities of LLMs (Chen
et al., 2021), we frame the action prediction task as
a code-generation problem. Specifically, we model
the task as predicting a series of pick() and place()
commands for the Builder.

While the proposed work focuses on a specific
task within Minecraft, the underlying principles
can be extended to more complex domains. Mod-
eling action prediction across multiple dialogue
turns as a code-generation task is well-suited for
structured, repetitive workflows, such as those in
industrial automation and robotics, where automa-
tion through code can streamline tasks that require
precise coordination and context understanding.

2 Related Work

Minecraft Collaborative Building Task:
Narayan-Chen et al. (2019) sourced human-
to-human conversations for building structures
in the Minecraft world. Building on this
dataset (Jayannavar et al., 2020) modeled builder
action sequences using an encoder-decoder
architecture with dialogue history and world state
representation. Further advancing this task (Shi
et al., 2022) proposed a joint learning task for
collaborative building and asking clarification
questions. However, their approach focuses on
generating action sequence of length one, rather
than a series of actions. Despite these efforts, the
task is far from being fully solved.

IGLU - Multi Turn Dataset: Mohanty et al.
(2023) features a human collaborating with an AI
agent to build target structures, using 31 out of 150
original Minecraft building tasks. Since we focus
on action generation for human-human interactions,
this dataset falls out of scope for our evaluation.

LLMs for Instruction Translation to a Code
Snippet: Several research works (Chen et al.,
2021; Huang et al., 2022; Zeng et al., 2023; Zhao
et al., 2023) utilize LLMs for translating input nat-
ural language instructions to executable code snip-
pets. These efforts span domains such as program
synthesis (Wang et al., 2021; Touvron et al., 2023;
Rozière et al., 2023; Hou and Ji, 2024), ground-
ing dialogue (Chiu et al., 2023; Wu et al., 2024)
and robot instruction generation (Liang et al., 2023;

Singh et al., 2023; Driess et al., 2023; Vemprala
et al., 2024; Kim et al., 2024). This capability of
LLMs motivates us to formulate the builder action
prediction task as a code generation task.

LLMs for Minecraft Collaborative Building
Task Madge and Poesio (2024) use LLMs with
text representation for action prediction, aligning
closely with our proposal. However, we represent
builder actions as code snippets and experiment
on the Minecraft Dialogue dataset (Narayan-Chen
et al., 2019), providing a detailed analysis of action
prediction performance.

3 Dataset

Minecraft is used for studying collaborative tasks in
a 3D voxel grid, with agents following architect’s
natural language instructions to build structures.
The collaborative dialogue dataset (Narayan-Chen
et al., 2019) has conversations for 150 target struc-
tures with varying levels of abstractions and com-
plexity, grouped into 547 dialogue games, split into
train (309 games, 3,792 turn-code pairs), develop-
ment (101 games, 1,335 turn-code pairs) and test
sets (137 games, 1,615 turn-code pairs). We used
the test set for our evaluation.

3.1 Builder Action Transformation

Since the builder action prediction task is framed
as a code-generation task, we convert the conver-
sation from the format in the corpus (i.e., dialogue
+ action) into instruction + pseudo code. All the
utterances of the builder and architect before each
builder’s action are aggregated into a single instruc-
tion. Builder actions involving puts down are con-
verted to place() function, and actions involving
picks up are converted to pick() function. The fol-
lowing is a sample representation of this conver-
sion.1

INSTRUCTION: One block away from the edge, place
a green block

BUILDER ACTION: Builder puts down a green block at
X:0 Y:1 Z:4

CODE-REPRESENTATION: place(color=‘green’,
x=0, y=1, z=4)

INSTRUCTION: remove the middle block
BUILDER ACTION: Builder picks up a red block at X:0

Y:2 Z:0
CODE-REPRESENTATION: pick(color=‘red’,

x=0, y=2, z=0)

1The transformed pseudo code representations of
Builder’s actions are available at: https://github.com/
clp-research/situatedactiongen-coderep
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4 Experimental Setup

Task Formulation Formally, given a dialogue
d with m turns (x1, ...,xm), the task is to gener-
ate the sequence of code snippets (y1, ...,ym) that
corresponds to each turn in a dialogue.

Few-shot Prompting Following standard
prompting approaches (Brown et al., 2020; Liu
et al., 2023; Wei et al., 2022; Wu et al., 2023),
we adopt few-shot prompting to probe LLMs.
Our prompt (see Figure 3 in Appendix) includes
environment information such as the voxel grid
size, available colors for the blocks and the
quantity of each color. This is followed by
dynamically adapted in-context examples suitable
to the current turn instruction from the training set.

Ablation Study We first investigate how the
building blocks of the prompt structure shown in
Figure 3 (in Appendix) impact overall task perfor-
mance. Using the validation set of the Minecraft
Dialogue dataset for our ablation study, we ob-
serve that the prompt structure with all components
is optimal for the action prediction task and the
LLMs in our experiments, as demonstrated in Ta-
ble 2. Specifically, omitting in-context examples
results in poor performance, while excluding en-
vironment information reduced the score slightly.
Consequently, we use the prompt featuring all com-
ponents with three in-context examples to ensure
the best performance.

Model Variants For this study, we utilized three
advanced LLMs: GPT-4-o 2, Llama-3-8b 3, and
Llama-3-70b 3. These models are instruction-tuned,
enabling them to generate code snippets based on
input text instructions. GPT-4-o and Llama-3-70b
were accessed via their respective APIs, incurring
a cost of $12 for usage. For the Llama-3-8b model,
experiments were conducted locally on a single
A100 GPU with 80GB of memory, taking 10 hours
in total. All models are queried with temperature 0
and max_new_tokens = 500.

We also experimented with CodeLlama-34b 4

model. However, the results were not satisfactory
because the generated response contained new in-
structions generated by model (hallucinations) and
it was impossible to evaluate the closeness of the

2https://platform.openai.com/docs/models/
gpt-4o

3https://ai.meta.com/blog/meta-llama-3/
4https://ai.meta.com/blog/

code-llama-large-language-model-coding/

prediction to the ground truth, and hence this model
is excluded from the experimental results.

Retrieval-Augmented In-context Samples We
use the pre-trained all-MiniLM-L6-v2 model from
Sentence Transformers (Reimers and Gurevych,
2019) to compute the similarity between the current
turn instruction and all turns in the training set. We
use the cosine similarity to identify the top k most
relevant examples. Based on the ablation study
results (see Table 2 in Appendix), the top three
turns and their corresponding builder actions are
selected as in-context examples. The following is
an example representation of this approach.

TEST INSTRUCTION: start with a column of 5 purple
bricks

IN-CONTEXT EXAMPLES:
INSTRUCTION: add two lines of purple bricks

place(color=‘purple’, x=0, y=1, z=4)
place(color=‘purple’, x=0, y=1, z=5)
...

INSTRUCTION: place three yellow blocks in last row
place(color=‘yellow’, x=4, y=1, z=0)
place(color=‘yellow’, x=4, y=1, z=1)
...

INSTRUCTION: start with a column of 5 red bricks
place(color=‘red’, x=-2, y=1, z=0)
place(color=‘red’, x=-2, y=2, z=0) ...

LLM Fine Tuning In addition to few-shot
prompting, we explored fine-tuning the Llama-3-
8b model on the Minecraft building task to improve
its generation of builder action sequences. We use
the training set for the fine-tuning experiments. Ad-
ditional details about the fine-tuning process are
available in Appendix B.

Evaluation metrics We follow the same evalu-
ation strategy as BAP (builder action prediction)
baseline model (Jayannavar et al., 2020). The base-
line model predicts action sequences in sentence
form and, for evaluation purposes, converts these
sequences into tuples of actions. Each tuple con-
tains an action type (pick or place), color, and x,
y, and z values. These tuples are generated for
both the ground truth and the predicted action se-
quences. The net action tuples are then compared to
compute the F1-Score. Similarly, in our approach,
each dialogue turn prompts the LLM to generate
action sequences (code) that provide information
about a single block. These predicted sequences
are compared against net ground truth by checking
command type (pick or place), block color and X,
Y, Z coordinates. This procedure is applied to all
action sequences. We report the micro-averaged F1
on all dialogue turns.
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5 Results & Analysis

5.1 Overview

The results compared to the baseline Builder Ac-
tion Prediction (BAP) model by Jayannavar et al.
(2020), are presented in Table 1. GPT-4 achieved
the best result (0.39) closely followed by Llama-3-
70b (0.33). The fine-tuned version of Llama-3-8b
showed a ∼ 6% improvement over the vanilla ver-
sion. Even though GPT-4 significantly outperforms
the fine-tuned baseline, the upper bound for this
task remains low. To understand this, we analysed
the dialogues and identified references to spatial re-
lations, real-world/geometric shapes, and anaphora.
We then show how the models perform in these
categories. Additionally, we identified two more
factors complicating the interpretation of architect
utterances, which may further impact action predic-
tion performance.

5.2 Error Analysis

Spatial Prepositions: These are cases where the
architect’s utterances include prepositions that re-
fer to a specific position in the grid, e.g. “put an-
other blue block on top of it” or “two blocks on
the ground, and one above on the left”. Using
Stanza (Qi et al., 2020) and spaCy 5 we extract
phrases with the Part-of-Speech (POS) tags: ad-
verb (ADP), noun (NN), and preposition (IN), then
manually filter out non-spatial phrases resulting in
135 words. Examples include “left”, “right”, “top”,
“bottom”, “down”, “front“, “back”, “towards”, “be-
tween”, “behind”, “opposite”, “parallel”, and “in-
verse”. In the test set, 75.42% of the utterances
include a spatial preposition, but GPT-4 correctly
generates code for only 26.03% of them. Llama-3-
70b closely follows by correctly predicting 22.66%,
while Llama-3-8b achieves only 9.44%, highlight-
ing significant challenges in interpreting spatial
prepositions and a need for improvement.

Geometric and Real-World Shapes: Architect’s
utterances often include noun phrases referring to
geometric shapes or real-world objects. Using the
same procedure as above, we extracted 148 relevant
nouns, including “trident”, “chair”, “pitchfork”,
“circle”, and “rectangle”. In the test set, 29.85% of
utterances include one of these shapes, but GPT-
4 correctly generated code for only 18.26% of
them. Llama-3-70b generated 14.11% action se-
quences correctly, while Llama-3-8b managed to

5https://spacy.io/

Model F1
GPT-4 0.39
Llama-3-70b 0.33
Llama-3-8b 0.18
Llama-3-8b (fine-tuned) 0.19
BAP (fine-tuned) 0.21

Table 1: Micro-Average F1-score for the builder action
prediction task. The BAP (fine-tuned) model results
are reported for H2 in game history and with 4x data
augmentation (Jayannavar et al., 2020)

generate only 6.22% correctly. This indicates that
while LLMs have extensive general knowledge,
they struggle with code generation for shape refer-
ences, necessitating further examination to address
these challenges.

Anaphora: Architect’s utterances often include
pronouns referring to previous concepts, e.g. “put
another block next to it”. Using the same pro-
cedure as above, we extracted and manually fil-
tered these pronouns, identifying 16 words such as
“that”, “this”, “those”, “it”. 46.81% of utterances
in the test set include one of these pronouns but
GPT-4 generated correct code only for 25.53% of
them. Llama-3-70b showed an accuracy of 20.5%,
while Llama-3-8b achieved an accuracy of 10.05%.
Unlike spatial and geometric references, not all
anaphora utterances indicate a reference to building
concepts. They can also include acknowledgments
or other types of information.

Builder Mistakes: These cases involve the
builder making mistakes during the structure build-
ing process. These mistakes occur when the builder
places a block and later removes it, leaving spuri-
ous action sequences—one place and one pick—in
the ground truth action sequences. E.g.“puts down
a red block at X:-2 Y:0 Z: -1 followed by picks up a
red block at X:-2 Y:0 Z:-1 (for a detailed example,
please refer to Figure 5 in Appendix). Such cases
cause evaluation mismatches. We filtered these by
identifying place commands followed by pick com-
mands at the same position and block color, finding
that 23.3% of turns contained such mistakes. These
inaccuracies in the ground truth lead to lower eval-
uation scores, as the model is penalized for errors
that are not indicative of its true performance.

Underspecified Instructions: These are cases
where the architect’s utterance is underspecified,
meaning it may lack specific details such as colour
or precise location, or it may have multiple pos-
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Utterance: place an orange block to the diagonal top right of it

Previous state Ground truth Generated

Utterance: add a 3x3 layer of orange bricks on top of the legs

G
eo

m
et

ric
 S

ha
pe

s Previous state Ground truth Generated

3x3 layer interpreted correctly

Utterance: then off the the top block, stack two on opposite sides. so 
the top row will have a total of five blue blocks across 

Previous state Ground truth Generated

opposite side interpreted correctly

S
pa

tia
l P

re
po

si
tio

ns

Utterance: you're duplicating this in a corner and i'll tell you the color yellow

Previous state Ground truth Generated

duplicate, this interpreted correctly

A
na

ph
or

a

Utterance: close, it should look like a ring

Previous state Ground truth Generated

ring/close were not interpreted 
correctly

Utterance: now five centered above that

Previous state Ground truth Generated

that was not interpreted correctly

top right is interpreted incorrectly.

Figure 2: Voxel representations for sample turns that correspond to spatial preposition, geometric shape, and
anaphora categories. Two samples for each category are given. Samples on the left side are generated correctly
while samples on the right hand side have mistakes that are highlighted.

sible interpretations. To give an example, in the
snippet shown in Figure 6 (in Appendix), there is
no explicit indication in the dialogue history to in-
terpret the instruction in a particular way, and the
builder is left to decide on their own. Cases like
this highlight the challenge of achieving a 100%
match with the ground truth.

5.3 Qualitative Analysis

In Figure 2, we provide qualitative examples for
GPT-4 that illustrate the scenarios for spatial prepo-
sitions, geometric shapes, and anaphora. We have
included two samples for each scenario: one where
the model response aligns with the ground truth
(left), and another where it does not (right). Er-
rors are marked by deviations in block position-
ing, color, or quantity, while correct interpretations
align with the ground truth in both structure and
placement. The model is able to handle spatial
references such as “opposite” (e.g., stacking two
blocks on opposite sides) and geometric shapes like
“3x3”. Additionally, the model correctly interprets
repetitions such as “duplication”, when the con-
text is clear. However, it encounters challenges in
accurately maintaining the exact count of blocks,
translating words such as “close”, “ring” into ac-

tions and resolving what “that” refers to. Overall
the model struggles to handle tasks requiring more
nuanced spatial reasoning, handling ambiguous ref-
erences, and interpreting abstract geometric shapes.

6 Conclusion

We investigate prompting LLMs to build complex
structures for the Minecraft building task. Predict-
ing suitable builder action sequences for a given
natural language instruction is challenging as these
LLMs need to accurately interpret language ab-
stractions, decode spatial co-references and reason
about repetitions solely based on the in-context
samples in the prompt. We compared multiple
instruction-tuned LLMs, both closed and open-
source. In addition to showcasing improved per-
formance over baseline results, we also conduct
an in-depth analysis of the generated responses
across multiple dimensions. Although these mod-
els demonstrated a strong ability to accurately cap-
ture the action structure (pick, place), they strug-
gled in dealing with spatial references, geometric
shapes and anaphora. In the future, we plan to in-
vestigate model architectures that can address the
shortcomings identified in the evaluated models.
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Limitations

Like all other prompting approaches, our approach
needs to be more robust to the usability of pre-
trained large language models. (i) Not all grounded
locations conform to the dimensions of the grid
(ii) Fails in interpreting instructions involving
agent’s perspective such as “towards your right”,
“behind you”, “away from you” etc. (iii) Strug-
gles in understanding abstractions in the dialogue
(iv) Since the study is carried out in a simulated
world, extending it to real-world agents may lead
to incorrect consequences..

Ethics Statement

The research uses an open-source dataset
(Minecraft dialogue corpus) and open-access,
closed-API based pre-trained large language
models. While these models are accessible, their
usage is subject to legal restrictions as outlined
in their respective terms of service and licensing
agreements. Minecraft dialogue corpus does not
include players’ personal, private information
and does not contain any offensive conversations.
However, the pre-trained LLMs, which inherit
biases from their training data, may lead to code
that favors certain styles and neglects others,
hindering code portability. Another concern is
the potential complexity of LLM-generated code,
which can hinder end-user refinement and reuse.
Moreover, it’s crucial to ensure LLM-generated
responses are free from harmful code, as their
direct execution could impact the entire system.
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A Prompt Structure

The proposed task aims to investigate the capability
of LLMs in accurately predicting actions based on
input instructions. To generate an accurate action
sequence, the models must understand the envi-
ronment, follow dialogue history, and interpret the
input instruction within the current context.

To achieve this, we construct a multi-part
prompt, as illustrated in Figure 3, to query the LLM.
This prompt includes several components: system
information, environment information, task infor-
mation, context information, and other guidelines.
The system information specifies the expected be-
havior for the LLM. The environment information
provides detailed information about the build re-
gion, its boundaries, and block properties. Specifi-
cally, the Minecraft dialogue corpus limits the build
region to an 11x9x11 grid, and the builder is pro-
vided with an inventory of 120 blocks in six colors
colour ∈ (red, blue, orange, purple, yellow, green).
The task information outlines the format of the ex-
pected outcome.

Following this, the context information includes
in-context examples relevant to the current test in-
struction. Adopting the approach recommended by
Song et al. (2023), we use adaptive prompts, dy-
namically retrieving examples from the training set
that are similar to the current test instruction. Fig-
ure 4 shows how the in-context examples change
based on the test instruction. This structure offers
detailed information for the LLM to generate ac-
tion sequences for the input instructions within the
given environment.

B Fine tuning

Since the out-of-the-box performance of the LLMs
sets a lower bound for the action prediction task, we
explore fine-tuning to see if it improves task perfor-
mance. We use the training set of the Minecraft Di-
alogue corpus and fine-tune the Llama-3-8b model.
This deliberate choice is made because it is the
smallest open-source model we have used and has
the lowest performance among all models. For the
fine-tuning process, we use Q-LORA (Dettmers
et al., 2023) to reduce the memory footprint dur-
ing fine-tuning by applying low-rank adaptations,
allowing efficient fine-tuning on limited hardware.

We experimented with hyperparameter changes
(number of epochs, learning rate) and finally chose
the optimal performance setting, which includes 15
epochs and a learning rate of 0.0002. The model is

configured using the Adam optimizer with a batch
size of 32. The training process spans 15 epochs,
with an early stopping condition based on evalu-
ation loss to prevent over-fitting. Specifically, if
the validation loss does not decrease for 5 consecu-
tive epochs, the training is stopped. The validation
set is used for evaluation during training to mon-
itor the model’s performance and guide the early
stopping mechanism. We experimented with hy-
perparameter changes (number of epochs, learning
rate) and finally chose the optimal performance
setting, which includes 15 epochs and a learning
rate of 0.0002. The model is configured using the
Adam optimizer with a batch size of 32. The train-
ing process spans 15 epochs, with an early stopping
condition based on evaluation loss to prevent over-
fitting. Specifically, if the validation loss does not
decrease for 5 consecutive epochs, the training is
stopped. The validation set is used for evaluation
during training to monitor the model’s performance
and guide the early stopping mechanism.

This fine-tuned model is then used for testing
on the test set and is indicated as the Llama-3-8b
(fine-tuned) model in Table 1. Compared to the
baseline (pre-trained) model, the fine-tuned model
shows an enhancement of ∼ 6% in the F1-score.
This improvement, although marginal, indicates
a potential to improve the model’s ability for the
action prediction task.
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TEMPLATE A.0.1

System Info

You are an expert at interpreting natural language instructions and translating them into
specific actions for placing colored blocks within a 3D grid.

Environment Info

The environment is structured as an 11x9x11 grid, with each cell representing a single
block. The grid is organized such that columns align along the X-axis and rows along the Z-axis,
employing Python indexing for cell identification. The X and Z axes range from -5 to 5, encompassing
length and width, while the Y-axis ascends from 1 to 9, indicating height. This grid, following an
XZY orientation, places X and Z as horizontal dimensions and Y as the vertical dimension. The ground
level is defined at Y=1, with higher Y-values signifying increased elevation, thereby representing
the vertical aspect of the environment. There are 20 blocks for each of the following colors: blue,
orange, red, green, yellow, and purple.

Please import the following functions for object interactions:
pick(color,x,y,z): This function picks the object at the specified location.
place(color,x,y,z): This function places the object at the specified location.

You should only use these specified functions and not create any hypothetical functions.

Please use the pick function only to select the pieces that you have previously placed on
the board. You can safely assume that the available blocks are automatically selected, and therefore,
you can directly use the "place()" function without needing to call the "pick()" function first.

Task Info

Your task is to interpret natural language instructions and generate the corresponding code
representation. For each instruction labeled "Instruction" please respond with code under the label
"Output" followed by a newline.

Context Info

$INCONTEXT_SAMPLES

Other Info

Do not generate any other text/explanations. Use python code to express the solution. Please keep
the solutions simple and clear. Do not use loops, comments in the solution. Do not generate the
instructions on your own. Stick to the given format. Think step by step.

Let’s get started.

$TEST_INSTRUCTION

Figure 3: Prompt template used for the action prediction task. The system information specifies system level
behavior, the environment information indicates the environment details of the user-agent environment, the context
information describes the in-context examples, task information indicates the specific response format to follow.
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TEMPLATE A.0.2

INCONTEXT_SAMPLES

The INCONTEXT_SAMPLES varies for each turn. Below is an example

Instruction

Mission has started.. This structure looks fun- nothing will touch the ground!. cool!.
We’ll start with a row of 4 purple bricks, a layer above the ground

Output

place(color=’purple’,x=1,y=1,z=1)
place(color=’purple’,x=1,y=2,z=1)
pick(color=’purple’,x=1,y=1,z=1)
place(color=’purple’,x=0,y=2,z=1)
place(color=’purple’,x=-1,y=2,z=1)
place(color=’purple’,x=-2,y=2,z=1)

Instruction

Mission has started.. we’ll start with two lines of purple bricks, parallel to one another.
seperated by an empty space

Output

place(color=’purple’,x=1,y=1,z=-2)
pick(color=’purple’,x=1,y=1,z=-2)

Instruction

Mission has started.. We’ll start with a column of 5 red bricks

Output

place(color=’red’,x=0,y=1,z=1)
place(color=’red’,x=0,y=2,z=1)
place(color=’red’,x=0,y=3,z=1)
place(color=’red’,x=0,y=4,z=1)
place(color=’red’,x=0,y=5,z=1)

TEST_INSTRUCTION

Mission has started.. hi again!. Hello! This structure will start with a column of 5
purple bricks. It’s all purple.

Figure 4: Retrieval of relevant in-context examples based on current test instruction
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Prompt F1
System Info + Env Info + Task Info + Context Info (Zero Samples) + Other Info 0.15
System Info + Env Info + Task Info + Context Info (One Sample) + Other Info 0.17
System Info + Env Info + Task Info + Context Info (Two Samples) + Other Info 0.18

System Info + Env Info + Task Info + Context Info (Three Samples) + Other Info 0.18
System Info + Env Info + Task Info + Context Info (Four Samples) + Other Info 0.18
System Info + Env Info + Task Info + Context Info (Five Samples) + Other Info 0.18

Env Info + Task Info + Context Info (Three Samples) + Other Info 0.19
System Info + Task Info + Context Info (Three Samples) + Other Info 0.17
System Info + Env Info + Context Info (Three Samples) + Other Info 0.17

System Info + Env Info + Context Info (Three Samples) 0.17

Table 2: Ablation study for the number of in-context examples and components of the prompt structre on validation
split of the Minecraft dataset using Llama-3-8b.

<Architect> now lets make the top part its 3 orange on each 
side all going in a stepwise manner
[Builder puts down a orange block at X:3 Y:2 Z:1]
[Builder puts down a orange block at X:2 Y:2 Z:1]
[Builder puts down a orange block at X:2 Y:3 Z:1]
[Builder picks up a orange block at X:2 Y:2 Z:1]
[Builder puts down a orange block at X:1 Y:3 Z:1]
[Builder puts down a orange block at X:1 Y:4 Z:1]
[Builder picks up a orange block at X:1 Y:3 Z:1]
[Builder puts down a orange block at X:-3 Y:2 Z:1]
[Builder puts down a orange block at X:-3 Y:3 Z:1]
[Builder puts down a orange block at X:-3 Y:3 Z:0]
[Builder puts down a orange block at X:-2 Y:3 Z:1]
[Builder picks up a orange block at X:-3 Y:3 Z:0]
[Builder puts down a orange block at X:-2 Y:4 Z:1]
[Builder puts down a orange block at X:-1 Y:4 Z:1]
[Builder picks up a orange block at X:-2 Y:4 Z:1]
[Builder picks up a orange block at X:-3 Y:3 Z:1]

place(color='orange',x=3,y=2,z=1)
place(color='orange',x=2,y=2,z=1)
place(color='orange',x=2,y=3,z=1)
pick(color='orange',x=2,y=2,z=1)
place(color='orange',x=1,y=3,z=1)
place(color='orange',x=1,y=4,z=1)
pick(color='orange',x=1,y=3,z=1)
place(color='orange',x=-3,y=2,z=1)
place(color='orange',x=-3,y=3,z=1)
place(color='orange',x=-3,y=3,z=0)
place(color='orange',x=-2,y=3,z=1)
pick(color='orange',x=-3,y=3,z=0)
place(color='orange',x=-2,y=4,z=1)
place(color='orange',x=-1,y=4,z=1)
pick(color='orange',x=-2,y=4,z=1)
pick(color='orange',x=-3,y=3,z=1)

Transforming dialogue to 
pseudo-code pair

(i) Dialogue-Action Snippet (ii) Pseudo-code

Figure 5: Excerpt of an utterance that contains the builder mistakes from the game-id: B29-A1-C151-
1524078449685. The action sequence pairs where an item is first placed and later picked up is highlighted
with the same colour.

<Architect> place 2 blue blocks 
on either side

<Builder> Mission has started.
<Architect> this is an actual 
trident
<Architect> 2D and vertical
<Architect> so place a stack of 
3 blue blocks vertically

Dialogue History

Current Turn

Underspecified It is not clear which block it is referred to

<Builder> Mission has started.
<Builder> hello

<Architect> so 3 colours
<Architect> 7 blocks long so 
leave space for that
<Architect> start with green

Starting location is not specified

(i) Excerpts from the dialogue B29-A34-C84-1524259510968 (ii) Excerpts from the dialogue B4-A20-C34-1522766997770

Figure 6: Examples utterances from the architect where the given command is underspecified
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