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Abstract

Large Language Models (LLMs) have demon-
strated exceptional proficiency in language-
related tasks, but their deployment poses sig-
nificant challenges due to substantial mem-
ory and storage requirements. Weight-only
quantization has emerged as a promising so-
lution, significantly reducing memory and stor-
age needs without sacrificing too much per-
formance. In this study, we introduceSign-
Round, a method that leverages signed gra-
dient descent (SignSGD) to optimize round-
ing values and weight clipping in just 200
steps. SignRound integrates the advantages of
Quantization-Aware Training (QAT) and Post-
Training Quantization (PTQ), delivering excep-
tional results across 2 to 4 bits while mini-
mizing tuning costs and avoiding additional
inference overhead. For example, SignRound
achieved absolute average accuracy improve-
ments ranging from 6.91% to 33.22% at 2
bits, as measured by the average zero-shot ac-
curacy across 11 tasks. It also demonstrates
strong generalization in recent models, achiev-
ing near-lossless 4-bit quantization in most sce-
narios. The source code is publicly available at
https://github.com/intel/auto-round.

1 Introduction

In recent years, there has been a significant surge in
the adoption of Large Language Models (LLMs),
leading to their widespread deployment demand
even on devices with constrained resources. How-
ever, deploying LLMs on these devices poses sig-
nificant challenges due to their extensive memory
and storage requirements. Additionally, the com-
putational demands of these models create obsta-
cles for real-time applications. Therefore, studying
techniques such as quantization is crucial for en-
abling the efficient deployment of LLMs. Quanti-
zation techniques can be broadly categorized into
two main types: quantization-aware training (QAT)
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(Esser et al., 2020; Zhuang et al., 2021; Lee et al.,
2021; Liu et al., 2023b) and post-training quantiza-
tion (PTQ) (Nagel et al., 2019; Xiao et al., 2023;
Frantar et al., 2022; Nagel et al., 2020).

QAT involves training the model with quantiza-
tion in mind, using simulated lower-precision repre-
sentations to allow the model to learn and adapt to
the effects of quantization. This approach often re-
sults in better accuracy compared to PTQ. However,
QAT has drawbacks, including increased training
complexity, longer training times, and the need to
tune hyperparameters. The application of QAT
to LLMs can be particularly resource-intensive,
despite recent efforts (Hu et al., 2021; Dettmers
et al., 2023) to improve the efficiency of fine-tuning
LLMs.

On the other hand, PTQ directly quantizes the
model without any simulated training or fine-
tuning. While PTQ is a more straightforward ap-
proach, it is susceptible to significant accuracy
drops. This underscores the importance of further
advancements in PTQ methods to enhance their
accuracy preservation capabilities.

Quantization commonly applies to two types of
tensors: activations and weights. Quantizing acti-
vations for LLMs can be challenging (Wei et al.,
2023; Xiao et al., 2023; Bondarenko et al., 2024),
making weight-only quantization a more practical
option. Moreover, the main bottleneck in generat-
ing new tokens for LLMs often arises from memory
bandwidth limitations (Kim et al., 2023a), empha-
sizing the advantage of weight-only quantization.

This study focuses on weight-only quantiza-
tion. In quantizing weights, a critical step involves
rounding, primarily achieved through rounding-to-
nearest (RTN). RTN quantizes each weight inde-
pendently by rounding it to the nearest integer, but
it overlooks the relationships between weights and
between weights and activations. Adaptive Round-
ing (Nagel et al., 2020) explored the potential for
an enhanced rounding strategy to improve accuracy.
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They approached the rounding task by formulating
it as a quadratic unconstrained binary optimization
problem and approximating the loss using a Tay-
lor series expansion. However, relying solely on
the second-order term may not yield accurate re-
sults, as rounding can significantly modify weights,
making other order terms non-negligible.

We select SignSGD(Balles et al., 2020; Li et al.,
2023a; Safaryan and Richtárik, 2021) as our opti-
mization method to approach the optimal rounding
solution within a limited number of steps. The mo-
tivation behind this choice, which is elaborated in
Section 3, stems from the well-defined boundaries
of the solution space and the inherent simplicity of
the method that necessitates only minimal hyper-
parameter tuning. Figure 1 provides an overview
of our method. Our contributions primarily lie in
three aspects:

• We introduce a concise yet effective method
for optimizing the weight only quantization,
combining the strengths of both QAT and
PTQ. Our approach leverages SignSGD to
tune the rounding with the weight clipping,
without introducing any additional overhead
during inference.

• Our empirical results demonstrate a signifi-
cant performance enhancement compared to
recent works across various quantization con-
figurations, ranging from 2-bit to 4-bit.

• We demonstrate that SignRound’s perfor-
mance can be further enhanced by fine-tuning
model-specific hyperparameters within a con-
strained space. Moreover, our method demon-
strates strong generalization across various
models and delivers nearly lossless results
across the majority of scenarios using 4-bit
quantization.

2 Related Work

Quantization Aware Training. QAT methods
have gained widespread popularity in model com-
pression, as they enable the fine-tuning process
(Esser et al., 2020; Zhuang et al., 2021; Lee et al.,
2021), often leading to superior accuracy compared
to the PTQ method.

Post-training Quantization (PTQ). PTQ meth-
ods simplify the quantization process without the
need for additional training. (Nagel et al., 2019;

Liu et al., 2021; Frantar and Alistarh, 2022; Has-
sibi et al., 1993; Yao et al., 2021). Given its low
resource requirement, PTQ is particularly suitable
for the quantization of Large Language Models.

Large Language Models Quantization. Signif-
icant strides have been made in addressing the
pressing need for quantizing large language mod-
els (LLMs). GPT3.int8() (Dettmers et al., 2022)
introduces a mixed-precision approach to preserve
crucial channels in high precision. AQLM (Mao
et al., 2024) builds upon Additive Quantization, a
classic algorithm from the Multi-Codebook Quan-
tization family, adapting it to LLM quantization.
ZeroQuantV2 (Yao et al., 2024) employs low-rank
matrices to enhance model quality recovery. RPTQ
(Yuan et al., 2023) addresses range differences be-
tween channels by rearranging and quantizing them
in clusters. LLM-QAT (Liu et al., 2023b) employs
QAT to enhance performance. Some other methods,
such as SPIQ (Yvinec et al., 2023b), SmoothQuant
(Xiao et al., 2023), and Outlier Suppression+ (Wei
et al., 2023), utilize handcrafted equivalent trans-
formations to mitigate quantization errors. These
methods rely on the model architecture to fuse the
equivalent transformation operations. LRQ (Lee
et al., 2024) only needs to learn significantly fewer
parameters while enabling the individual scaling of
weights, thus boosting the generalization capability
of quantized LLMs.

Weight Only Quantization. Weight-only quan-
tization reduces the memory footprint and band-
width demands by quantizing only the weights
while retaining activations in floating-point pre-
cision, offering a promising balance between ac-
curacy and compression. GPTQ (Frantar et al.,
2022) optimizes weights using the Optimal Brain
Surgeon technique (Hassibi et al., 1993), achiev-
ing low-bit quantization on LLMs with minimal
tuning overhead. AWQ (Lin et al., 2023) follows
the equivalent transformation approach with addi-
tional tuning in a constrained space, sharing similar
limitations with SmoothQuant (Xiao et al., 2023).
TEQ (Cheng et al., 2023) and OmniQuant (Shao
et al., 2023) both utilize a trainable equivalent trans-
formation, while OmniQuant employs extra weight
clip tuning. HQQ (Badri and Shaji, 2023) acceler-
ates quantization for large models by eliminating
the need for calibration data, making the quanti-
zation process extremely fast. Some other works
have incorporated optimization methods with ex-
tra inference overhead to improve quantization ac-
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Figure 1: An illustration of SignRound. Unlike the direct rounding in RTN, SignRound performs signed gradient
descent to fine-tune the rounding and weight clipping through block-wise output reconstruction. After lightweight
forward and backward steps, WINT4 has been well optimized. Note that Quant and Dequant are two standard
operations for quantization and dequantization respectively.

curacy, such as dense-and-sparse decomposition
techniques in SqueezeLLM (Kim et al., 2023a) and
EasyQuant (Tang et al., 2023), as well as nonuni-
form quantization methods in NUPES (Yvinec
et al., 2023a), QuIP# (Tseng et al., 2024),(Gong
et al., 2024), AQLM (Mao et al., 2024), etc. Ad-
ditionally, FineQuant (Kim et al., 2023b) intro-
duces a straightforward heuristic weight quanti-
zation approach that adaptively determines quan-
tization granularity. In this work, we focus on ap-
proaches that do not introduce overhead during
inference.

Rounding Methods. Adaptive Rounding (Nagel
et al., 2020) has already showcased the potential of
an advanced rounding strategy to enhance accuracy
(Li et al., 2021; Wei et al., 2022). They used the
rounding task as a quadratic unconstrained binary
optimization problem by approximating the task
loss through a Taylor series expansion. However,
considering only the second-order term may not
yield accurate results. This is because the round-
ing value gets multiplied by a scaling coefficient
during de-quantization, potentially introducing sig-
nificant weight changes that make other order terms
non-negligible. FlexRound (Lee et al., 2023) in-
troduces a more flexible approach to rounding by
incorporating element-wise division. However, it’s
not easily scalable to apply to LLMs due to the
needs of specialized hyperparameters for each spe-
cific model and task. Furthermore, Oscillation-free
(Liu et al., 2023a) suggests that the introduction of
learnable parameters might result in weight oscilla-
tion problems. AQuant (Li et al., 2022) introduced
a dynamic approach where the border becomes a
function dependent on the activation value to re-
duce the quantization error of activation.

Signed Gradient Descent. Signed gradient de-
scent is not commonly utilized and is typically ap-
plied in specific scenarios, such as reducing com-
munication costs. This is because signed gradient
carries significantly less information compared to
original gradient. Recent studies have shed light on
the advantages of sign-based methods over gradient
descent in certain conditions. Balles et al. (Balles
et al., 2020) found that sign-based methods are
preferable when the Hessian matrix is concentrated
on its diagonal and the maximal eigenvalue is much
larger than the average eigenvalue. Li et al. (Li
et al., 2023a) investigated a variant of sign-based
gradient descent that exhibits faster convergence.
Safaryan et al. (Safaryan and Richtárik, 2021) pro-
posed a stochastic sign descent with momentum,
which converges under the standard bounded vari-
ance assumption with the optimal asymptotic rate.
These findings contribute to a better understanding
of the potential benefits and applications of signed
gradient descent methods.

3 Methodology

We begin with an overview of quantization before
delving into the specifics of our approach. The
following operations can be utilized to quantize
and dequantize the weights W:

W̃ = s ∗ clip(
⌊
W

s
+ zp

⌉
, n,m), n,m ∈ N (1)

where the rounding operation ⌊·⌉ is typically per-
formed using the RTN method. Although RTN is
a straightforward approach, it quantizes each ele-
ment independently, which results in the loss of
the ability to model the correlation among differ-
ent weights or activations. The s represents the
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Algorithm 1 SignRound
Input: Calibration Data D, learning rate lr, total
steps T , Model M , block module mw with weights
w, batch size bs
Output: best_V , best_α, best_β

1: V ← 0, α ← 1.0, β ← 1.0 , best_l ←
maximum

2: for i← 0 to T do
3: d← draw bs samples
4: x←M(d)m ▷ get the inputs of m
5: yf ← mw(x) ▷ get the output of original

module
6: w̃ ← qdq(w,α, β, V ) ▷ quantize and

dequantize w via Eq.3
7: yq ← mw̃(x) ▷ get the output of quantized

module
8: loss← mse(yq, yf ) ▷ get the loss via

Eq.5
9: loss.backward()

10: if loss < best_l then
11: best_V, best_α, best_β ← V, α, β
12: best_l← loss
13: end if
14: update α, β and V via SignSGD optimizer
15: end for

quantization scale, which can be obtained using the
following equation, and zp is the zero point.

s =
max(W)−min(W)

2bit − 1
(2)

In order to improve the efficacy of the round-
ing quantization operation, we build upon prior
research (Nagel et al., 2020) by introducing a train-
able parameter V to adjust the rounding values.

W̃ = s ∗ clip(
⌊
W

s
+ zp+V

⌉
, n,m), n,m ∈ N

(3)
Additionally, following recent works (Lin et al.,

2023; Shao et al., 2023), we introduce two addi-
tional trainable parameters, denoted as α ∈ [0, 1]
and β ∈ [0, 1], to fine-tune the scale of weight clip-
ping. These parameters are incorporated into the
equations as follows:

s =
max(W) ∗ α−min(W) ∗ β

2bit − 1
(4)

These modifications enable a more adaptable quan-
tization process. We utilize block-wise output re-
construction to train these parameters via optimizer,
thus framing the optimization as follows.

min
α,β,V

∥WX− W̃X∥2F (5)

where X is the input of the block and || · ||F denotes
the Frobenius norm.

Our method distinguishes itself primarily by
leveraging SignSGD, which optimizes parameters
based on the sign of the gradients as follows:

Wt+1 = Wt − lrt ∗ sign(gt) (6)

where t represents the step, lr is the learning rate
and g denotes the gradient. The motivation is de-
tailed below. Firstly, the optimal values for up
and down rounding typically reside in a large re-
gion rather than a single float, as only the threshold
for altering the rounding value is significant. This
eliminates the necessity for the gradient magnitude
to converge precisely to a single point. Secondly,
due to the confined boundaries, i.e.[−0.5, 0.5] for
rounding and [0, 1] for weight clipping, SignSGD
allows efficient navigation of this space within a
limited number of steps. In contrast, optimizers
like Adam (Kingma and Ba, 2014) may struggle
due to significant variations in gradient magnitude,
making it challenging to converge to the optimal
value within a restricted number of steps. Thirdly,
SignSGD is inherently intuitive, facilitating easy
adjustment of the step size (learning rate). For
example, we employed the same optimizer hyper-
parameters across all experiments unless explicitly
stated, consisting of 200 steps and a learning rate
of 5e-3 with linear weight decay. Based on Eq.
6, the maximum adjustment for each parameter is
the sum of the learning rates over all steps, that is,
200 × 0.005/2 = 0.5. As a result,the adjustment
can cover a range of [-0.5,0.5] when initialized
at 0 for rounding, and a range of [0.5,1.0] when
initialized at 1 and clipped to ≤ 1.0 for weight
clipping, which works well in practice. Fourth,
SignSGD distinguishes itself by its lightweight de-
sign, demanding fewer memory and computational
resources than optimizers like Adam(Kingma and
Ba, 2014).

Figure 1 provides an illustration of our approach.
And the Pseudocode 1 presents more details of
SignRound.

4 Experiments

This section presents a comprehensive evaluation
of SignRound from multiple perspectives. We be-
gin with a brief overview of the LLM architectures
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Config Method Mistral-7B V2-7B V2-13B V2-70B
16 bits 63.30 57.98 61.42 66.12

W4G-1

RTN 58.84 55.49 60.46 65.22
GPTQ 61.37 56.76 59.79 65.75
AWQ 61.36 57.25 60.58 66.28
HQQ 58.40 46.05 46.82 57.47
Omni 60.52 56.62 60.31 65.80
Ours 62.33 57.48 61.20 66.27
Ours* 62.64 57.52 61.23 66.27

W4G128

RTN 62.36 56.92 60.65 65.87
GPTQ 62.32 56.85 61.00 66.22
AWQ 62.16 57.35 60.91 66.23
HQQ 62.75 57.41 60.65 66.06
Omni 62.18 57.30 60.51 66.02
Ours 62.62 57.57 60.85 66.39
Ours* 62.87 57.97 60.90 66.41

Config Method Mistral-7B V2-7B V2-13B V2-70B
16 bits 63.30 57.98 61.42 66.12

W3G128

RTN 58.20 53.81 58.57 64.08
GPTQ 59.91 54.14 59.58 65.08
AWQ 59.96 55.21 58.86 65.12
HQQ 59.33 54.31 58.10 64.80
Omni 58.53 54.72 59.18 65.12
Ours 60.43 56.68 59.44 65.31
Ours* 60.96 56.68 59.78 65.59

W2G128

RTN 30.52 29.94 33.51 38.14
GPTQ 39.61 35.37 42.46 28.47
AWQ 30.06 30.10 32.16 32.23
HQQ 31.41 29.87 35.28 37.42
Omni 32.17 40.74 46.55 51.31
Ours 52.71 48.64 53.46 61.69
Ours* 53.01 50.34 54.16 61.77

Table 1: Average accuracies (↑) across 11 tasks, as detailed in Section 4.1, for LLaMA and Mistral models at
W2-W4. ’Our*’ denotes the highest accuracy achieved among the 8 hyperparameter choices, outlined in Section
4.2, whereas for the 70B model, we tested only a few options.

Config Method Mmlu Lamb. Hella. Wino. Piqa Truth. Open. Boolq RTE ARC-e ARC-c. Avg.

W4G-1

16 bits 61.35 75.68 61.27 74.03 80.79 28.03 32.80 83.67 67.51 80.81 50.34 63.30
RTN 55.92 66.10 59.01 71.35 80.14 24.85 29.00 79.17 57.76 77.95 45.99 58.84
GPTQ 58.22 73.45 59.47 74.03 80.20 26.93 31.00 81.50 64.98 78.24 47.01 61.37
AWQ 57.20 71.45 59.21 73.64 79.43 25.34 30.40 82.69 68.95 79.25 47.44 61.36
HQQ 52.65 66.58 59.09 70.56 79.60 23.13 27.80 80.03 59.57 77.02 46.33 58.40
Omni 57.52 70.00 60.27 72.93 79.87 23.99 30.80 81.53 63.90 78.54 46.42 60.52
Ours 59.52 73.76 60.75 73.32 80.09 27.17 33.00 82.02 66.07 80.47 49.49 62.33
Ours* 60.00 73.30 60.57 74.35 80.09 27.91 32.20 83.52 67.51 79.92 49.66 62.64
16 bits 61.35 75.68 61.27 74.03 80.79 28.03 32.80 83.67 67.51 80.81 50.34 63.30
RTN 23.45 0.14 27.43 49.64 54.30 24.24 15.20 38.69 51.99 29.08 21.59 30.52
GPTQ 25.23 30.47 38.28 53.83 64.91 24.11 17.40 58.29 50.90 47.77 24.57 39.61

W2G128 AWQ 25.38 0.00 25.71 52.01 51.58 23.99 17.60 37.83 47.29 26.98 22.27 30.06
HQQ 23.35 0.85 27.77 51.62 56.69 26.68 15.80 40.55 53.43 28.62 20.14 31.41
Omni 23.24 5.38 29.38 49.72 56.09 26.32 16.60 41.99 52.71 32.11 20.39 32.17
Ours 40.46 58.61 50.87 62.90 75.84 24.85 22.80 78.56 57.04 70.88 37.03 52.71
Ours* 43.72 59.75 51.87 64.25 75.14 24.72 23.60 75.78 55.23 71.80 37.20 53.01

Table 2: Detailed accuracies(↑) across 11 tasks(0-shot) of Mistral models at W4G-1 and W2G128. ’Our*’ denotes
the highest accuracy achieved among the 8 hyperparameter choices, outlined in Section 4.2. Appendix C provides
more detailed data.

and tasks included in our assessment. Next, we
provide a detailed comparison between our method
and several existing approaches, emphasizing the
unique advantages of SignRound. Furthermore, we
conduct ablation studies to reinforce the efficacy
of our choices and investigate the sensitivity of hy-
perparameters. Lastly, we evaluate the generation
ability of our method across various recent mod-
els. The tuning cost comparisons are provided in
Appendix A.

4.1 Experimental Settings
Evaluation and Tasks. We evaluate multiple
language tasks to address the task-agnostic set-
ting. Specifically, we present the average accu-

racy results for 11 zero-shot tasks, including Hel-
laSwag (Zellers et al., 2019), WinoGrande (Sak-
aguchi et al., 2021), PIQA (Bisk et al., 2020),
LAMBADA (Paperno et al., 2016), TruthfulQA
(Lin et al., 2022), OpenBookQA (Mihaylov et al.,
2018), BoolQ (Clark et al., 2019), RTE (Dagan
et al., 2010), ARC-Easy, ARC-Challenge (Clark
et al., 2018), and MMLU (Hendrycks et al., 2020).
We use lm-eval-harness (Gao et al., 2023) for all
the above tasks. Furthermore, we complement our
evaluation with perplexity (PPL) analysis on Wiki-
text2 (Merity et al., 2016), PTB (Marcus et al.,
1993), and C4 (Raffel et al., 2020), following the
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Model Method Steps Mistral-7B V2-7B V2-13B

W4G-1

Flex
200 58.93 56.10 60.06
1000 60.62 56.98 60.29
5000 60.94 57.49 60.69

Ada
200 58.30 55.06 59.86
1000 58.38 55.05 59.92

Ours
200 62.33 57.48 61.20
200* 62.64 57.52 61.23

W2G128

Flex
200 30.10 30.01 30.66
1000 30.16 31.26 32.29

Ada
200 30.74 30.21 30.36
1000 30.84 30.30 30.02

Ours
200 52.71 48.64 53.46
200* 53.01 50.34 54.16

Table 3: Comparing with some other rounding methods,
the average accuracies (↑) across 11 tasks (detailed in
Section 4.1) for Mistral and LLaMA models at W4G-1
and W2G128.

implementation1 of GPTQ and Wikitext2 (Mer-
ity et al., 2016) using lm-eval-harness (Gao et al.,
2023). However, we argue that perplexity is no-
tably influenced by outliers, as illustrated in Ta-
ble 14 for different algorithms. This suscepti-
bility likely arises from the mathematical expres-
sion PPL(X) = exp

(
−1

t

∑t
i=1 log pθ(xi|x<i)

)
,

where assigning a low probability to even one to-
ken can significantly inflate the perplexity score.
Consequently, we prioritize the accuracy of the 11
tasks mentioned above as the primary metric, with
perplexity data serving as supplementary reference.

Quantization Configurations. In alignment
with GPTQ (Frantar et al., 2022), our focus is
specifically on weight-only quantization, targeting
the linear layers within transformer blocks. Lay-
ers such as the embedding layer and typically the
last linear layer like ’lm-head’ are excluded from
the quantization process. Our evaluation primar-
ily centers on W4G-1, W4G128, W3G128 and
W2G128 configurations, where W4 indicates quan-
tizing weights with 4 bits and G represents finer-
grained grouping as described in (Park et al., 2022;
Frantar et al., 2022). We adopt asymmetric quan-
tization. To mitigate overfitting on the WikiText
and C4 datasets, for all the methods that need cal-
ibration, we randomly select 512 calibration sam-
ples with the same seed from the readily available
pile-10k dataset 2 , which comprises the first 10k
samples from pile (Gao et al., 2020). We used a

1https://github.com/IST-DASLab/gptq
2https://huggingface.co/datasets/NeelNanda/

pile-10k

sequence length of 2048 for calibration, while for
other methods, we adhere to their official settings.

Large Language Models. We compare differ-
ent algorithms on commonly used models such as
LLaMA-V1 (Touvron et al., 2023a), LLaMA-V2
(Touvron et al., 2023b), and Mistral-7B-v0.1 (Jiang
et al., 2023). Our comparison covers a wide range
of LLM parameters, ranging from 7B to 70B, to
ensure comprehensive coverage and analysis.

SignRound Hyperparameters. Unless explic-
itly stated, the tuning process involved adjusting
each block for 200 steps with a learning rate of
5 × 10−3, a batch size of 8, and linear learning
rate decay. Additionally, we employed automatic
mixed precision (AMP) to accelerate the tuning.

4.2 Comparing With Recent Methods
In this section, we compare our methods with those
that have already demonstrated remarkable results
and impose no additional overhead on our tested
models in weight-only quantization for LLMs, in-
cluding GPTQ (Frantar et al., 2022), AWQ (Lin
et al., 2023), HQQ (Badri and Shaji, 2023), Om-
niQuant (Shao et al., 2023) with a naive method
RTN.

To ensure fair comparison as much as possible,
we enabled act-order and true-sequential in GPTQ
and also activated static_group in scenarios with
group_size. The notation GPTQ+ indicates that we
adjusted the random seed or data pre-processing
to address issues related to the non-positive def-
inite Hessian matrix or other issues. For Omni-
Quant(Shao et al., 2023), we adhere to the official
settings, which include running for 20 epochs in-
cluding W2G128 for saving time and disabling ’let’.
We conducted calibration tests using sample sizes
of 512 and 128, as well as a sample size of 512 with
a batch size of 4. Our findings show that using a
sample size of 512 typically results in comparable
or slightly higher performance for models less than
or equal to 13B. Therefore, we present the results
based on the sample size of 512. For 70B models,
due the the Not a Number (NAN) loss issue and to
reduce the tuning cost of OmniQuant, we adopted
128 samples for calibration.

We present the summary results of Mistral-7B
and LLaMAV2 in Table 1, detailed results of
Mistral-7B in Table 2, and additional detailed re-
sults are provided in Appendix C due to space
constraints. In summary, our approach demon-
strated superior performance compared to GPTQ
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Config Model 2.5e-3 5e-3 7.5e-3 1e-2 1.25e-2 1.5e-2 1.75e-2 2e-2 SignSGD

W4G-1
Mistral-7B 61.82 61.16 61.30 60.69 60.80 61.07 61.53 61.23 62.33
V2-7B 56.79 57.45 57.09 57.28 56.88 57.24 57.40 57.10 57.48
V2-13B 60.58 60.73 60.76 60.86 61.02 60.79 61.06 60.85 61.20

W2G128
Mistral-7B 37.12 40.37 41.11 42.02 42.86 43.55 43.44 42.44 52.71
V2-7B 42.26 44.64 45.08 45.04 45.15 43.13 38.71 35.73 48.64
V2-13B 47.81 50.01 49.55 50.80 48.67 51.94 38.28 34.67 53.46

Table 4: Comparison of Adam optimizer with various learning rates against the SignSGD optimizer.. The average
accuracies(↑) across 11 tasks (detailed in Section 4.1) for Mistral and LLaMA models at W4G-1 and W2G128.

Config Mistral-7B V2-7B V2-13B Mistral-7B V2-7B V2-13B
W4G-1 W2G128

RTN 58.84 55.49 60.46 30.52 29.94 33.51
Weight clip only 61.10 57.41 60.10 46.60 40.53 49.77
Rounding only 61.62 56.74 60.64 52.32 49.14 54.41
Default 62.33 57.48 61.20 52.71 48.64 53.46

Table 5: Ablation study of round tuning and weight clip tuning. The average accuracies(↑) across 11 tasks(detailed
in Section 4.1) for Mistral and LLaMA models at W4G-1 and W2G128.

(Frantar et al., 2022), achieving scores of 30/32,
AWQ (Lin et al., 2023) with 27/32, HQQ (Badri
and Shaji, 2023) with 15/16, and OmniQuant
(Shao et al., 2023) with a score of 29/32 across
LLaMAV1/LLaMAV2/Mistral-7B on various quan-
tization settings, including W4G-1, W4G128,
W3G128, and W2G128. These evaluations were
based on the average accuracies of 11 zero-shot
tasks.

It’s worth noting that as the bit depth decreases,
the advantages of SignRound become more notable.
For example, as shown in Table 2, SignRound
could yield absolute average accuracy improve-
ments ranging from 6.91% to 33.22% at W2G128.

Moreover, we can enhance the performance by
tuning the model’s hyperparameters from a selec-
tion of eight choices, denoted as ours*. These
choices include steps (200, 1000), weight clip learn-
ing rate (1.0/steps, 2.0/steps), and the option to
either enable or disable quantized inputs, which
refers to utilizing the output from the previous quan-
tized block or the previous original block.

4.3 Comparing with Rounding Methods

In this section, we conduct a comparative analysis
between SignRound, FlexRound(Lee et al., 2023),
and AdaRound(Nagel et al., 2020). Notably, during
the experiment, there is no formal official imple-
mentation available for FlexRound and AdaRound
for LLMs. Hence, we reference the implementa-

tions 3 4 for further details. However, it’s important
to highlight that due to the lack of AMP support
and other optimizations, the implementation is no-
tably slow, especially when adhering to the official
settings, which involve tuning 5000 steps, as pre-
sented in Table 9. Therefore, our comparison is
limited to models of size 13B or smaller. We set
the learning rate to 2e-4 for LLaMA-v2-7b and
Mistral-7B, and 1e-4 for LLaMA-v2-13b to align
with the official settings as closely as possible. As
shown in Table 3, SignRound achieves better re-
sults in just 200 steps compared to the 5000 steps
required by other rounding methods.

4.4 Ablation Studies
SignSGD versus Adam. To validate the effec-
tiveness of SignSGD, Table 4 compares it with the
Adam optimizer (Kingma and Ba, 2014). SignSGD
employs a fixed learning rate of 5e-3 throughout
all experiments, comprising 200 steps, with linear
weight decay. For Adam, we explored learning
rates ranging from 2.5e-3 to 2e-2. We choose to
quantize models of 13B or less with W4G-1 due
to the experiment’s cost. SignSGD demonstrated
a distinct advantage in average accuracy metrics
across 11 tasks, which demonstrate the unique ad-
vantage of signed gradient descent in this scenario.

Round and Weigh Clip Tuning. To validate the
contributions of rounding tuning and weight clip
tuning, we conducted ablation studies on three mod-

3https://openreview.net/forum?id=-tYCaP0phY_
4https://github.com/quic/aimet
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Model Seqlen_512 Samples_128 Batch_4 Steps_100 Steps_1000 LR_1e-2 Default
Mistral-7B 60.32 61.82 61.78 61.06 62.58 61.27 62.33
V2-7B 57.91 56.41 57.21 57.10 57.19 55.89 57.48
V2-13B 60.88 60.87 61.21 60.80 61.01 61.03 61.20

Table 6: Ablation study of hyperparameter sensitivity. The average accuracies(↑) across 11 tasks(detailed in Section
4.1) for LLaMA models at W4G-1.

Model Method Average Acc Variation %

Gemma-2b
BF16 53.69 -
Ours 53.40 -0.54%

Llama-2-7b-chat-hf
FP16 59.01 -
Ours 58.97 -0.07%

Llama-3-8B-Instruct
BF16 63.52 -
Ours 63.12 -0.63%

Mistral-7B-Instruct-v0.2
BF16 66.47 -
Ours 66.21 -0.39%

Mixtral-8x7B
BF16 66.98 -
Ours 66.33 -0.97%

Mixtral-8x7B-Instruct
BF16 70.00 -
Ours 69.77 -0.33%

Phi-3-mini-4k-instruct
BF16 66.62 -
Ours 66.33 -0.44%

Table 7: The average accuracies(↑) across 11 tasks(detailed in Section 4.1)) with 1000 steps for LLMs at W4G128.
Table 15 provides the detailed data.

els with two quantization configurations. As shown
in Table 5, each component provides benefits over
RTN, with rounding tuning offering greater advan-
tages. However, when combined, weight clip tun-
ing can sometimes result in lower accuracy in cer-
tain cases at W2G128.

Hyperparameters Sensitivity. To validate the
sensitivity of hyperparameters in SignRound, we
conducted ablation studies on sequence length for
calibration, the number of samples for calibration,
tuning batch size, tuning steps, and tuning learning
rate. The results are presented in Table 6. Over-
all, our default hyperparameters achieved balanced
results.

4.5 Generalization to Other Models

To assess the generalization of our method on
LLMs, we evaluate SignRound on various main-
stream LLMs such as Gemma (Team et al., 2024),
Phi (Li et al., 2023b), Mistral (Jiang et al., 2023),
Mixtral (Jiang et al., 2024) and Llama3 (Touvron
et al., 2024). Table 7 demonstrated that all int4
models maintained an accuracy drop within 1% of
FP16 or BF16 accuracy by employing 1000 tun-
ing steps and model wise hyperparameters among 4
choices detailed in Section 4.1. The detailed results

are provided in Appendix C. Notably, the gener-
alization experiments utilized an updated version
(0.4.0+) of lm-eval-harness (Gao et al., 2023) and
real quantized models, which may result in minor
discrepancies compared to other benchmark data.

5 Conclusions

In this paper, we introduce SignRound, an efficient
and concise approach for optimizing weight round-
ing in the quantization of large language models.
SignRound employs signed gradient descent for
tuning rounding value and weight clipping in 200
steps, completing the quantization of LLAMA-V2-
70B in approximately 2.5 hours. Our extensive ex-
periments show that SignRound outperforms other
quantization methods across various models and
weight bits in the majority of scenarios. Addition-
ally, SignRound shows promising generation ca-
pabilities in recent models and achieves enhanced
performance through model-specific hyperparame-
ter tuning.
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6 Limitations

Despite the advantages, we observed a notice-
able gap in accuracy performance for ultra-low bit
quantization, particularly with 2-bit quantization,
compared to the original model. This challenge
could potentially be addressed by exploring non-
uniform quantization and mixed-precision quanti-
zation, which we leave for future work.

7 Ethics Statement

Our research aims to advance knowledge in LLM
quantization. SignRound utilizes open-source mod-
els and publicly available datasets, and is not tied
to particular applications, requiring only minimal
fine-tuning steps on the original models. This en-
sures that the technical details of our method carry
no potential ethical implications. We acknowledge
the contributions of the creators and maintainers of
these resources and provide citations to the original
sources.
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A Quantization Cost

Table 8 compares the quantization costs of dif-
ferent methods, with all measurements conducted
on a single NVIDIA A100 GPU with 80GB of
memory. We ensure each evaluation process ex-
clusively occupies one GPU, but CPU and other
resources may be shared among different processes
due to limited resources. For SignRound, we dis-
abled low_gpu_mem_usage in our implementation
to achieve faster tuning, albeit with higher memory
usage. Despite this, LlaMA-2-70B was still able
to run on an A100 GPU with 80GB of memory.
Although HQQ is exceptionally fast, our methods
outperform others in terms of speed. Table 9 also
compares the costs between FlexRound, Adaptive
Round, and our method.

Model GPTQ AWQ HQQ Omni. Ours
Llama-2-7B 1821 1328 19 10255 1041
Llama-2-13B 3266 2630 30 18186 1918
Llama-2-70B 18517 13586 119 35694 9116

Table 8: Quantization cost in seconds at W4G-1 for
LLaMAV2. Align with the accuracy experiments, Omni-
Quant 70b is tested with 128 calibration samples, while
all the others are tested with 512 samples.

B View of distribution of tuned
parameters

Figure 2 illustrates the distribution of the magni-
tudes of V in Eq.3 and α, β in Eq. 4 for Mistral-
7B-v0.1 and Llama-2-7B at W4G-1. The results
indicate that the distribution is flat for most layers,
except for a few layers at the beginning and the
end.

Model FlexRound AdaRound Ours
Mistral-7B-V0.1 9369 9332 1045
Llama-2-7B 9628 9701 1041
Llama-2-13B 17583 17865 1918

Table 9: Quantization Time (seconds) of Rounding
Methods at W4G-1 with 200 steps for LLaMAV2 Mod-
els and Mistral-7B.

C More results

We present the detailed LLMs generalization re-
sults in Table 15, the accuracy is within 1% of
the 16 bit benchmark after simple fine tuning on
different types of models. The detailed accuracy
results for 11 tasks using the LLaMA and Mistral
models, ranging in size from 7B to 70B, at W2-W4
are provided in Tables 10, 11, 12 and 13. The de-
tailed perplexity (PPL) results are shown in Table
14. Overall, SignRound demonstrates a clear ad-
vantage in accuracy tasks, particularly in ultra-low
bit quantization, achieving state-of-the-art perfor-
mance compared to several popular weight quan-
tization methods. In terms of perplexity (PPL),
SignRound outperformed all other methods in 83
out of 124 scenarios, demonstrating its advantages.
However, we observed that several quantization al-
gorithms, including SignRound, exhibit sensitivity
across different models and tasks. The reason for
this sensitivity is detailed in Section 4.1.
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Model Method Mmlu Lamb. Hella. Wino. Piqa Truth. Open. Boolq RTE ARC-e ARC-c. Avg.

Mistral-7B

16 bits 61.35 75.68 61.27 74.03 80.79 28.03 32.80 83.67 67.51 80.81 50.34 63.30
RTN 55.92 66.10 59.01 71.35 80.14 24.85 29.00 79.17 57.76 77.95 45.99 58.84
GPTQ 58.22 73.45 59.47 74.03 80.20 26.93 31.00 81.50 64.98 78.24 47.01 61.37
AWQ 57.20 71.45 59.21 73.64 79.43 25.34 30.40 82.69 68.95 79.25 47.44 61.36
HQQ 52.65 66.58 59.09 70.56 79.60 23.13 27.80 80.03 59.57 77.02 46.33 58.40
Omni 57.52 70.00 60.27 72.93 79.87 23.99 30.80 81.53 63.90 78.54 46.42 60.52
Ours 59.52 73.76 60.75 73.32 80.09 27.17 33.00 82.02 66.07 80.47 49.49 62.33
Ours* 60.00 73.30 60.57 74.35 80.09 27.91 32.20 83.52 67.51 79.92 49.66 62.64

V2-7B

16 bits 42.69 73.90 57.15 68.90 78.07 25.21 31.40 77.74 62.82 76.35 43.52 57.98
RTN 36.87 67.96 55.63 68.51 76.82 26.19 30.60 73.64 58.84 74.07 41.30 55.49
GPTQ 39.66 71.92 55.89 68.03 77.58 25.09 30.20 76.67 62.09 75.55 41.72 56.76
AWQ 40.24 71.20 56.26 69.61 76.93 26.07 32.60 77.31 63.18 75.00 41.30 57.25
HQQ 28.94 43.96 48.43 59.43 71.82 23.62 24.80 52.11 53.79 64.90 34.73 46.05
Omni 39.82 71.45 55.76 67.56 76.88 25.09 30.80 76.15 64.98 74.12 40.19 56.62
Ours 39.97 71.63 56.52 68.43 77.91 25.70 31.60 76.18 65.70 76.01 42.58 57.48
Ours* 40.85 72.75 56.01 67.88 77.86 25.34 31.80 76.39 66.43 75.88 41.55 57.52

V2-13B

16 bits 52.86 76.77 60.04 72.14 79.05 25.95 35.20 80.55 65.34 79.38 48.38 61.42
RTN 50.37 74.35 59.12 71.98 79.00 24.85 33.00 81.77 64.98 79.08 46.59 60.46
GPTQ 51.14 75.37 59.14 72.06 78.02 25.34 32.20 80.46 62.09 77.36 44.54 59.79
AWQ 51.16 75.98 59.51 70.80 78.40 25.21 34.60 78.26 66.79 79.12 46.59 60.58
HQQ 35.92 49.54 46.27 58.01 72.47 23.99 19.80 61.77 51.26 62.84 33.19 46.82
Omni 51.01 75.45 59.48 71.74 78.94 24.60 33.20 77.37 66.07 78.75 46.76 60.31
Ours 52.30 75.96 59.79 72.30 78.84 25.58 34.00 80.15 66.79 79.38 48.12 61.20
Ours* 52.29 76.15 59.73 71.90 78.51 25.21 34.40 80.24 67.51 79.34 48.21 61.23

V2-70B

16 bits 66.23 79.64 64.77 77.98 82.15 30.60 37.20 83.70 67.87 82.70 54.44 66.12
RTN 63.85 77.62 63.38 76.72 81.50 28.89 37.80 83.39 68.23 81.99 54.10 65.22
GPTQ 64.81 79.27 63.86 76.87 81.61 31.46 36.40 82.23 70.04 82.53 54.18 65.75
AWQ 65.08 78.77 64.14 77.11 81.45 30.48 37.20 83.64 72.92 82.49 55.80 66.28
HQQ 56.45 66.74 53.67 73.32 76.50 25.58 33.40 67.95 61.73 72.90 43.94 57.47
Omni 64.40 79.20 63.91 76.95 81.94 31.70 37.60 82.35 69.31 82.24 54.18 65.80
Ours 65.43 79.55 64.47 78.06 82.10 30.60 36.40 83.91 71.12 82.53 54.78 66.27

V1-7B

16 bits 32.74 73.53 56.94 70.01 78.67 22.03 34.60 75.08 66.43 75.25 41.81 57.01
RTN 31.34 70.02 55.35 69.77 77.69 20.32 32.60 73.43 59.57 74.45 41.30 55.08
GPTQ 29.06 71.08 55.11 70.01 77.37 20.93 32.20 72.69 63.90 74.66 41.64 55.33
AWQ 33.33 70.81 55.98 68.27 78.07 21.18 31.40 74.37 64.62 74.03 41.21 55.75
Omni 32.52 72.13 55.87 70.17 78.35 22.77 32.80 75.05 66.07 75.13 40.19 56.46
Ours 31.80 71.96 56.57 69.53 79.00 21.91 33.20 75.72 66.79 74.83 43.09 56.76

V1-13B

16 bits 44.21 76.21 59.92 72.77 79.16 25.70 33.20 77.89 70.76 77.40 46.42 60.33
RTN 39.57 70.93 58.82 71.98 78.02 24.85 32.00 78.20 66.43 75.67 44.62 58.28
GPTQ+ 40.01 74.67 58.92 71.03 78.45 26.44 33.60 77.09 68.23 76.85 44.97 59.12
AWQ 44.56 74.13 59.13 71.27 78.94 25.83 33.20 76.42 66.06 76.89 46.67 59.37
Omni 43.66 75.59 59.36 72.38 78.89 25.34 32.20 75.99 69.68 77.10 45.65 59.62
Ours 43.94 75.82 59.51 72.22 78.78 25.70 32.80 77.34 67.51 76.47 46.67 59.71

V1-30B

16 bits 55.14 77.55 63.33 75.85 81.12 28.27 36.00 82.78 66.79 80.39 52.90 63.65
RTN 53.05 75.65 62.08 74.82 80.09 25.95 35.80 81.87 63.54 79.76 50.26 62.08
GPTQ 53.04 77.22 61.95 73.80 80.69 27.29 34.60 81.07 66.06 78.79 49.15 62.15
AWQ 54.13 76.77 62.78 74.11 81.07 27.78 35.00 82.66 67.15 79.97 51.71 63.01
Omni 53.43 77.64 62.73 75.30 80.58 26.56 35.40 82.51 67.87 79.76 50.51 62.93
Ours 54.72 77.84 62.91 75.06 80.69 26.68 36.40 82.60 66.79 80.13 52.13 63.27

V1-65B

16 bits 59.79 79.12 64.53 77.35 81.23 27.91 38.00 84.86 69.68 81.36 52.82 65.15
RTN 58.74 76.42 64.12 76.72 81.01 29.25 38.60 84.13 70.40 80.72 51.88 64.73
GPTQ+ 59.10 78.17 63.78 75.69 81.34 28.27 38.40 83.76 68.59 80.98 51.62 64.52
AWQ 58.86 77.37 63.86 76.56 80.85 28.27 35.20 83.94 71.48 78.75 50.94 64.19
Omni 59.59 79.16 64.03 75.93 81.99 27.05 36.80 84.65 71.48 80.98 51.79 64.86
Ours 59.21 79.16 64.37 76.64 81.34 26.81 37.80 84.40 69.68 80.98 51.79 64.74

Table 10: Accuracies(↑) across 11 tasks(0-shot) of LLaMA and Mistral models at W4G-1. The notation GPTQ+

indicates that we adjusted the random seed or data pre-processing to address issues related to the non-positive
definite Hessian matrix or other issues.
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Model Method Mmlu Lamb. Hella. Wino. Piqa Truth. Open. Boolq RTE ARC-e ARC-c. Avg.
16 bits 61.35 75.68 61.27 74.03 80.79 28.03 32.80 83.67 67.51 80.81 50.34 63.30
RTN 59.72 74.44 61.06 73.40 80.36 27.17 32.60 83.67 64.62 79.63 49.32 62.36
GPTQ 59.17 74.52 60.37 74.90 80.58 26.68 31.00 83.33 67.15 79.67 48.12 62.32

Mistral-7B AWQ 60.20 75.14 60.43 73.80 80.03 27.05 30.40 84.01 62.09 80.39 50.26 62.16
HQQ 60.02 75.41 60.79 74.11 81.01 27.29 32.60 82.97 66.79 79.92 49.32 62.75
Omni 59.71 73.94 60.62 73.56 80.36 26.68 30.80 83.58 65.70 80.01 49.06 62.18
Ours 60.47 75.59 61.03 73.88 80.09 27.54 31.60 83.09 66.07 79.97 49.49 62.62
16 bits 42.69 73.90 57.15 68.90 78.07 25.21 31.40 77.74 62.82 76.35 43.52 57.98
RTN 40.91 72.44 56.91 68.35 77.58 24.97 31.20 77.61 56.32 76.26 43.52 56.92
GPTQ 42.57 73.28 56.36 69.06 78.02 25.34 30.20 75.72 57.04 75.63 42.15 56.85

V2-7B AWQ 41.00 72.60 56.40 68.98 77.31 25.70 31.60 78.75 58.48 76.14 43.86 57.35
HQQ 41.79 73.20 56.21 68.43 77.58 25.83 31.60 76.09 62.82 75.84 42.15 57.41
Omni 41.72 73.04 56.59 68.98 77.91 24.97 30.80 75.81 61.37 75.76 43.34 57.30
Ours 41.82 72.75 56.79 68.67 78.13 25.58 30.20 77.49 63.54 75.76 42.58 57.57
16 bits 52.86 76.77 60.04 72.14 79.05 25.95 35.20 80.55 65.34 79.38 48.38 61.42
RTN 52.10 76.27 59.77 72.14 78.62 24.72 34.20 80.24 62.09 79.00 47.95 60.65
GPTQ 52.66 76.54 59.76 72.14 78.35 25.70 34.00 79.33 66.43 78.58 47.53 61.00

V2-13B AWQ 52.39 76.89 59.97 73.24 79.00 25.21 32.60 80.40 63.54 79.04 47.70 60.91
HQQ 52.09 75.74 59.46 72.14 78.45 24.36 33.60 79.17 66.06 79.00 47.01 60.65
Omni 52.01 76.17 59.53 72.06 78.35 23.87 33.40 80.80 66.07 78.37 47.18 60.51
Ours 51.92 76.46 59.87 71.67 79.00 25.83 35.20 79.60 63.54 79.25 47.01 60.85
16 bits 66.23 79.64 64.77 77.98 82.15 30.60 37.20 83.70 67.87 82.70 54.44 66.12
RTN 64.91 79.06 63.93 78.14 81.66 30.11 37.00 83.61 68.59 82.79 54.78 65.87
GPTQ 65.63 79.22 64.45 78.22 81.88 31.09 37.00 84.19 69.31 82.79 54.61 66.22

V2-70B AWQ 65.79 79.76 64.48 77.58 82.32 30.72 38.00 83.06 68.95 82.70 55.12 66.23
HQQ 65.34 79.14 64.56 77.35 81.56 30.48 37.20 83.67 69.31 82.83 55.20 66.06
Omni 65.30 79.39 64.52 77.51 81.88 30.60 37.40 83.39 68.23 82.91 55.12 66.02
Ours 65.65 79.49 64.60 78.30 82.05 31.58 37.40 84.83 68.95 82.87 54.52 66.39

V1-7B

16 bits 32.74 73.53 56.94 70.01 78.67 22.03 34.60 75.08 66.43 75.25 41.81 57.01
RTN 32.63 72.31 56.26 70.01 78.45 20.93 33.60 74.74 64.26 74.71 42.75 56.42
GPTQ 31.16 72.40 55.85 70.09 78.13 22.28 30.40 74.65 64.26 74.20 40.19 55.78
AWQ 33.42 72.95 56.30 68.75 77.97 21.42 32.80 74.89 62.09 75.00 41.21 56.07
Omni 31.15 72.35 56.25 69.22 78.35 21.42 33.80 74.74 65.70 74.87 42.06 56.36
Ours 32.15 72.85 56.45 70.17 78.51 22.28 32.80 75.14 67.87 75.13 41.89 56.84

V1-13B

16 bits 44.21 76.21 59.92 72.77 79.16 25.70 33.20 77.89 70.76 77.40 46.42 60.33
RTN 42.71 75.26 59.30 72.53 79.54 25.95 32.60 76.76 65.34 76.98 45.82 59.34
GPTQ+ 42.65 75.41 59.51 72.93 79.33 24.97 32.40 77.49 68.23 76.89 45.56 59.58
AWQ 42.66 75.76 59.50 72.77 78.89 26.56 33.60 77.46 68.59 76.94 45.48 59.84
Omni 43.99 76.29 59.53 73.56 79.43 25.83 33.20 77.58 67.15 76.64 45.48 59.88
Ours 42.27 76.17 59.53 73.56 79.33 25.70 32.80 78.20 70.04 76.94 46.25 60.07

V1-30B

16 bits 55.14 77.55 63.33 75.85 81.12 28.27 36.00 82.78 66.79 80.39 52.90 63.65
RTN 54.24 77.02 62.90 74.35 80.52 27.29 34.20 81.96 67.15 80.89 52.05 62.96
GPTQ 54.20 77.41 62.79 75.14 80.41 27.54 34.60 81.93 67.51 80.05 50.51 62.92
AWQ 55.14 77.49 63.08 75.77 80.52 27.29 34.20 82.87 67.15 80.43 52.90 63.35
Omni 55.22 77.80 63.09 75.14 80.30 28.52 36.00 82.20 69.31 80.81 52.82 63.75
Ours 54.68 77.90 62.93 74.82 80.47 28.15 35.80 82.39 66.79 80.13 51.11 63.20

V1-65B

16 bits 59.79 79.12 64.53 77.35 81.23 27.91 38.00 84.86 69.68 81.36 52.82 65.15
RTN 59.53 79.51 64.63 77.35 80.96 27.91 38.40 84.43 71.48 81.48 52.22 65.26
GPTQ+ 60.47 78.79 64.45 76.24 81.18 28.03 37.40 83.85 68.95 81.57 53.07 64.91
AWQ 59.45 79.31 64.67 76.72 81.56 28.15 38.00 84.43 71.12 81.10 52.13 65.15
Omni 59.27 78.65 64.48 76.87 81.23 27.78 39.00 84.13 70.76 81.57 53.07 65.17
Ours 58.93 79.22 64.48 77.03 81.28 27.91 38.60 84.31 70.76 81.19 52.22 65.08

Table 11: Accuracies(↑) across 11 tasks(0-shot) of LLaMA and Mistral models at W4G128. The notation GPTQ+

indicates that we adjusted the random seed or data pre-processing to address issues related to the non-positive
definite Hessian matrix or other issues.
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Model Method Mmlu Lamb. Hella. Wino. Piqa Truth. Open. Boolq RTE ARC-e ARC-c. Avg.
16 bits 61.35 75.68 61.27 74.03 80.79 28.03 32.80 83.67 67.51 80.81 50.34 63.30
RTN 53.49 68.74 58.12 68.27 79.33 24.60 29.60 79.97 57.40 76.89 43.77 58.20
GPTQ 55.84 73.04 57.61 70.24 78.67 24.85 30.80 81.44 63.54 77.27 45.65 59.91

Mistral-7B AWQ 55.61 73.69 57.86 71.27 79.82 26.07 29.00 81.10 59.21 79.00 46.93 59.96
HQQ 53.97 68.66 58.59 72.22 78.73 25.70 30.00 80.24 63.90 76.81 43.86 59.33
Omni 54.79 69.34 58.42 68.51 79.38 24.85 28.80 80.15 56.68 77.74 45.14 58.53
Ours 57.54 73.01 59.60 72.85 79.54 25.70 31.60 81.74 58.12 78.70 46.33 60.43
16 bits 42.69 73.90 57.15 68.90 78.07 25.21 31.40 77.74 62.82 76.35 43.52 57.98
RTN 34.22 65.96 54.90 67.56 76.28 24.48 30.80 71.68 54.51 72.98 38.57 53.81
GPTQ 36.11 69.61 53.66 68.59 76.01 21.91 27.80 73.43 54.51 73.74 40.19 54.14

V2-7B AWQ 35.82 69.90 54.98 67.40 76.01 25.21 29.80 74.68 57.76 74.07 41.64 55.21
HQQ 34.40 66.64 53.27 67.01 75.46 25.46 28.80 73.58 61.37 72.94 38.48 54.31
Omni 34.51 69.75 54.42 66.69 76.77 24.24 31.40 73.21 56.68 74.37 39.85 54.72
Ours 40.13 71.01 55.33 68.27 76.82 25.34 32.80 75.32 60.29 75.25 42.92 56.68
16 bits 52.86 76.77 60.04 72.14 79.05 25.95 35.20 80.55 65.34 79.38 48.38 61.42
RTN 48.01 72.33 57.74 70.72 78.07 25.21 32.00 77.28 60.65 77.69 44.62 58.57
GPTQ 49.56 75.24 57.83 70.88 78.56 24.97 33.40 78.44 62.82 77.99 45.65 59.58

V2-13B AWQ 49.77 75.22 58.58 71.82 77.75 24.11 34.20 79.97 53.43 77.95 44.62 58.86
HQQ 48.40 73.22 57.66 69.77 77.31 24.11 30.60 76.97 60.29 77.15 43.60 58.10
Omni 47.25 73.67 58.46 70.01 78.40 24.36 33.60 79.79 64.62 77.86 46.16 59.18
Ours 49.64 75.20 59.11 71.59 78.29 24.85 34.20 78.47 58.12 78.58 45.82 59.44
16 bits 66.23 79.64 64.77 77.98 82.15 30.60 37.20 83.70 67.87 82.70 54.44 66.12
RTN 61.15 77.95 61.98 77.90 80.79 29.74 36.00 81.28 64.62 81.10 52.39 64.08
GPTQ 63.15 79.06 62.94 77.66 81.45 30.72 36.20 81.53 67.87 81.65 53.67 65.08

V2-70B AWQ 64.09 79.47 63.75 76.48 81.77 29.74 37.20 82.69 66.06 81.40 53.67 65.12
HQQ 63.45 78.05 63.12 77.03 81.01 29.38 36.60 82.23 66.43 81.78 53.67 64.80
Omni 63.18 78.63 63.54 76.48 81.50 30.35 35.80 82.57 70.40 81.02 52.82 65.12
Ours 64.94 78.89 63.83 76.56 81.50 31.21 37.20 81.41 68.59 81.73 52.56 65.31

V1-7B

16 bits 32.74 73.53 56.94 70.01 78.67 22.03 34.60 75.08 66.43 75.25 41.81 57.01
RTN 28.00 67.67 53.43 66.38 76.50 21.42 31.20 72.72 59.21 70.92 38.31 53.25
GPTQ 30.16 66.31 53.92 67.48 76.82 21.42 29.60 71.31 59.21 72.22 38.74 53.38
AWQ 30.33 70.19 54.53 68.98 76.71 20.81 31.60 74.68 64.62 73.23 38.91 54.96
Omni 28.35 70.54 54.48 68.27 77.48 21.05 29.40 72.29 66.07 72.73 37.12 54.34
Ours 25.85 70.95 55.45 69.69 77.37 21.66 32.00 73.88 60.29 73.48 39.33 54.54

V1-13B

16 bits 44.21 76.21 59.92 72.77 79.16 25.70 33.20 77.89 70.76 77.40 46.42 60.33
RTN 34.87 69.65 57.25 70.48 77.31 26.93 32.00 71.44 62.82 75.63 43.94 56.57
GPTQ 35.51 73.08 57.89 70.80 77.37 24.48 31.40 77.52 62.82 74.41 43.26 57.14
AWQ 40.53 73.94 57.89 69.53 78.94 26.68 33.40 74.83 65.34 75.93 45.05 58.37
Omni 38.35 74.42 57.79 70.80 78.07 26.68 33.20 75.81 65.34 75.88 43.69 58.18
Ours 39.16 75.22 58.64 71.59 78.94 25.95 35.20 76.30 65.34 76.52 45.39 58.93

V1-30B

16 bits 55.14 77.55 63.33 75.85 81.12 28.27 36.00 82.78 66.79 80.39 52.90 63.65
RTN 52.41 75.08 61.45 74.27 79.87 25.95 33.00 81.38 65.34 79.12 48.89 61.52
GPTQ 51.39 74.97 60.35 75.30 79.60 26.93 34.80 82.75 64.62 78.11 48.46 61.57
AWQ 53.84 76.71 61.94 75.14 80.03 25.34 34.40 81.90 67.15 79.59 50.77 62.44
Omni 53.67 76.95 61.82 74.51 80.14 25.95 34.40 81.10 66.07 79.76 48.21 62.05
Ours 54.39 77.49 62.13 74.03 80.47 27.30 35.00 79.76 68.59 79.46 48.98 62.51

V1-65B

16 bits 59.79 79.12 64.53 77.35 81.23 27.91 38.00 84.86 69.68 81.36 52.82 65.15
RTN 57.47 77.43 63.23 75.93 80.41 28.64 38.40 82.69 66.43 80.22 51.19 63.82
GPTQ+ 57.92 78.69 62.98 76.87 80.63 27.66 37.60 84.16 68.95 80.89 51.19 64.32
AWQ 58.87 77.94 63.77 75.37 80.96 27.66 36.80 85.02 71.12 81.10 50.34 64.45
Omni 57.19 77.00 63.15 75.53 80.90 28.15 37.60 83.18 69.68 80.18 50.51 63.92
Ours 58.30 78.11 63.60 76.56 80.85 29.50 37.80 84.80 70.04 80.22 50.68 64.59

Table 12: Accuracies(↑) across 11 tasks(0-shot) of LLaMA and Mistral models at W3G128. The notation GPTQ+

indicates that we adjusted the random seed or data pre-processing to address issues related to the non-positive
definite Hessian matrix or other issues.
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Model Method Mmlu Lamb. Hella. Wino. Piqa Truth. Open. Boolq RTE ARC-e ARC-c. Avg.
16 bits 61.35 75.68 61.27 74.03 80.79 28.03 32.80 83.67 67.51 80.81 50.34 63.30
RTN 23.45 0.14 27.43 49.64 54.30 24.24 15.20 38.69 51.99 29.08 21.59 30.52
GPTQ 25.23 30.47 38.28 53.83 64.91 24.11 17.40 58.29 50.90 47.77 24.57 39.61

Mistral-7B AWQ 25.38 0.00 25.71 52.01 51.58 23.99 17.60 37.83 47.29 26.98 22.27 30.06
HQQ 23.35 0.85 27.77 51.62 56.69 26.68 15.80 40.55 53.43 28.62 20.14 31.41
Omni 23.24 5.38 29.38 49.72 56.09 26.32 16.60 41.99 52.71 32.11 20.39 32.17
Ours 40.46 58.61 50.87 62.90 75.84 24.85 22.80 78.56 57.04 70.88 37.03 52.71
16 bits 42.69 73.90 57.15 68.90 78.07 25.21 31.40 77.74 62.82 76.35 43.52 57.98
RTN 23.98 0.02 26.04 49.49 52.50 24.85 15.20 41.01 49.10 27.48 19.71 29.94
GPTQ 23.65 11.72 32.59 55.17 58.32 25.95 15.80 52.14 51.99 40.45 21.25 35.37

V2-7B AWQ 25.38 0.00 25.69 49.96 52.34 23.75 17.80 37.83 52.71 24.62 21.08 30.10
HQQ 24.51 0.02 26.06 49.49 53.26 24.72 13.80 37.92 50.90 26.52 21.33 29.87
Omni 22.97 35.53 40.28 55.88 65.13 22.89 15.60 63.24 53.07 50.13 23.46 40.74
Ours 27.20 55.25 47.35 61.01 72.96 24.85 25.60 68.07 54.51 65.99 32.25 48.64
16 bits 52.86 76.77 60.04 72.14 79.05 25.95 35.20 80.55 65.34 79.38 48.38 61.42
RTN 23.77 7.47 33.08 49.01 57.94 26.19 16.00 47.74 53.43 32.03 21.93 33.51
GPTQ 24.69 45.20 41.06 55.80 67.08 23.26 19.80 54.40 52.35 55.60 27.82 42.46

V2-13B AWQ 27.04 0.00 25.80 51.85 52.99 23.62 13.60 62.17 47.29 26.22 23.12 32.16
HQQ 23.48 8.17 31.27 52.17 61.86 24.85 17.20 50.46 54.51 42.85 21.25 35.28
Omni 25.53 49.84 46.23 57.93 70.13 24.60 21.80 66.85 55.60 63.22 30.29 46.55
Ours 34.33 63.92 53.35 64.33 76.17 25.70 26.00 72.75 61.73 71.17 38.57 53.46
16 bits 66.23 79.64 64.77 77.98 82.15 30.60 37.20 83.70 67.87 82.70 54.44 66.12
RTN 24.20 20.18 40.88 54.85 63.87 24.11 17.60 43.06 53.07 50.51 27.22 38.14
GPTQ 23.12 0.00 25.04 49.57 49.51 0.00 27.60 37.83 52.71 25.08 22.70 28.47

V2-70B AWQ 24.46 0.00 25.46 51.38 52.50 23.50 14.20 62.17 52.71 25.76 22.35 32.23
HQQ 23.16 19.46 35.45 56.67 66.00 22.52 20.00 40.46 52.71 52.06 23.12 37.42
Omni 33.84 61.83 52.44 64.33 74.10 24.48 28.20 71.68 53.07 67.21 33.28 51.31
Ours 54.04 72.97 59.65 74.90 79.00 29.01 34.80 79.63 69.68 78.37 46.59 61.69

V1-7B

16 bits 32.74 73.53 56.94 70.01 78.67 22.03 34.60 75.08 66.43 75.25 41.81 57.01
RTN 24.36 0.52 27.24 49.25 54.24 24.24 15.20 39.63 57.40 27.86 21.84 31.07
GPTQ 22.95 12.75 33.36 51.70 60.07 23.99 13.40 48.62 53.07 40.82 21.50 34.75
AWQ 23.12 0.00 25.37 53.28 52.56 25.21 13.80 37.83 52.71 25.63 22.53 30.18
Omni 23.58 44.23 42.39 58.48 68.82 21.54 20.40 60.80 53.07 59.55 27.56 43.68
Ours 24.46 13.53 42.16 56.99 70.02 24.60 25.20 62.91 47.29 60.90 31.74 41.80

V1-13B

16 bits 44.21 76.21 59.92 72.77 79.16 25.70 33.20 77.89 70.76 77.40 46.42 60.33
RTN 24.66 4.97 29.67 49.33 57.24 25.58 12.40 44.10 53.79 32.07 22.01 32.35
GPTQ+ 26.43 40.48 39.47 58.25 66.97 23.50 18.60 52.78 50.54 51.52 25.00 41.23
AWQ 27.04 0.00 25.59 50.36 53.05 24.11 15.60 62.17 47.29 25.97 23.21 32.22
Omni 26.93 56.41 47.67 61.17 73.23 23.38 24.60 68.75 53.07 67.00 33.79 48.73
Ours 31.87 59.65 51.25 67.64 76.28 25.58 27.80 69.11 58.48 70.71 37.12 52.32

V1-30B

16 bits 55.14 77.55 63.33 75.85 81.12 28.27 36.00 82.78 66.79 80.39 52.90 63.65
RTN 23.24 5.55 27.22 53.99 56.80 21.79 18.20 51.65 53.07 36.74 21.33 33.60
GPTQ 30.47 49.93 45.05 61.88 68.88 23.26 22.60 68.29 51.99 60.69 30.72 46.70
AWQ 27.04 0.00 25.41 50.20 52.94 24.48 16.60 62.17 47.29 24.71 23.38 32.20
Omni 26.89 63.03 52.23 64.64 74.27 23.87 29.20 70.86 54.51 70.45 36.18 51.47
Ours 40.83 67.92 56.73 68.90 76.17 24.36 31.60 75.54 62.45 74.92 42.41 56.53

V1-65B

16 bits 59.79 79.12 64.53 77.35 81.23 27.91 38.00 84.86 69.68 81.36 52.82 65.15
RTN 24.48 32.78 43.59 57.85 67.52 22.89 22.80 61.53 50.54 52.10 28.24 42.21
GPTQ+ 37.06 67.44 53.97 69.46 76.44 24.36 28.00 73.64 60.29 71.34 38.57 54.60
AWQ 25.38 0.00 25.58 49.96 53.10 24.24 11.00 37.83 52.71 24.96 22.44 29.75
Omni 27.36 65.94 55.53 68.11 76.99 25.21 29.60 75.69 59.21 69.82 35.07 53.50
Ours 47.21 72.07 60.06 73.24 78.62 25.46 34.20 80.64 62.82 77.48 46.76 59.87

Table 13: Accuracies(↑) across 11 tasks(0-shot) of LLaMA and Mistral models at W2G128. The notation GPTQ+

indicates that we adjusted the random seed or data pre-processing to address issues related to the non-positive
definite Hessian matrix or other issues.
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Mistral-7B, alpha values Llama-2-7B, alpha values

Mistral-7B, beta values Llama-2-7B, beta values

Mistral-7B, V values Llama-2-7B, V values

Figure 2: The distribution of the magnitude of V in Eq. 3 and α, β in Eq. 4 for Mistral-7B-v0.1 and Llama-2-7B at
W4G-1, each color in the distribution represents a specific layer index in the models, with blue indicating shallow
layers closer to the data layer, and red representing deeper layers.
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LLaMA-V2 Wiki2. Ptb C4 Wiki.

7B

16 bits 5.47 37.92 7.26 8.79

W4G-1

RTN 6.12 82.85 8.16 10.06
GPTQ 5.84 1246 7.82 9.59
AWQ 5.81 57.09 7.70 9.42
Ours 7.85 3005.52 7.71 10.34

W4G128

RTN 5.72 65.35 7.58 9.22
GPTQ 5.60 246.28 7.48 9.05
AWQ 5.61 42.67 7.44 9.03
Ours 8.96 473.78 7.50 9.01

W3G128

RTN 6.66 55.10 8.98 11.21
GPTQ 6.32 2245 8.55 10.37
AWQ 6.24 66.57 8.27 10.18
Ours 8.09 164.90 8.12 9.76

W2G128

RTN 4270 9646 4807 1.8e5
GPTQ 25.56 9429 34.87 79.65
AWQ 2.3e5 2.1e5 1.7e5 1.1e7
Ours NAN NAN NAN NAN

13B

16 bits 4.88 50.93 6.73 7.90

W4G-1

RTN 5.20 60.69 7.14 8.65
GPTQ 5.12 55.99 7.04 942.3
AWQ 5.07 55.39 6.96 8.39
Ours 5.00 51.71 6.89 8.33

W4G128

RTN 4.98 53.69 6.87 8.12
GPTQ 4.98 52.43 6.85 10.86
AWQ 4.97 54.18 6.84 8.08
Ours 4.96 51.62 6.83 8.14

W3G128

RTN 5.52 64.85 7.58 9.27
GPTQ 5.39 72.96 7.47 334.2
AWQ 5.30 57.66 7.30 8.81
Ours 5.23 53.82 7.18 8.68

W2G128

RTN 122.5 1212 131.8 1054
GPTQ 11.30 410.9 15.11 270.6
AWQ 1.2e5 1.1e5 9.7e4 5.5e6
Ours 7.64 4250 11.73 57.52

70B

16 bits 3.32 24.25 5.71 4.54

W4G-1

RTN 3.67 23.56 6.01 5.18
GPTQ 3.57 23.76 5.89 5.00
AWQ 3.48 24.93 5.85 4.81
Ours 3.44 24.33 5.81 4.78

W4G128

RTN 3.46 24.20 5.83 4.78
GPTQ 3.42 24.01 5.78 4.71
AWQ 3.41 24.36 5.77 4.70
Ours 3.40 23.69 5.77 4.68

W3G128

RTN 3.98 23.59 6.27 5.77
GPTQ 3.83 24.78 6.09 5.50
AWQ 3.73 25.68 6.03 5.31
Ours 3.68 24.26 5.99 5.23

W2G128

RTN 27.01 758.9 47.57 298.3
GPTQ NAN NAN NAN NAN
AWQ 7.2e4 8.1e4 NAN 2.5e6
Ours NAN NAN NAN NAN

Mistral Wiki2. Ptb C4 Wiki.

7B

16 bits 5.25 35.00 8.38 OOM

W4G-1

RTN 5.99 44.88 9.47 OOM
GPTQ 5.57 54.45 8.86 OOM
AWQ 5.75 42.21 9.14 OOM
Ours 5.43 81.67 8.66 OOM

W4G128

RTN 5.42 34.08 8.62 OOM
GPTQ 5.37 37.53 8.56 OOM
AWQ 5.37 37.12 8.55 OOM
Ours 5.34 36.36 8.51 OOM

W3G128

RTN 6.16 49.97 9.68 OOM
GPTQ 5.90 49.50 9.30 OOM
AWQ 5.90 51.01 9.27 OOM
Ours 5.66 44.50 8.96 OOM

W2G128

RTN 1375 2351 1015 OOM
GPTQ 16.59 269.2 22.38 OOM
AWQ 3.7e4 3.4e4 3.7e4 OOM
Ours 8.70 86.08 12.54 OOM

LLaMA-V1 Wiki2. Ptb C4 Wiki.

7B

16 bits 5.68 41.15 7.34 9.49

W4G-1

RTN 6.29 48.65 8.12 10.62
GPTQ 6.13 47.18 7.93 10.32
AWQ 5.97 48.25 7.73 10.11
Ours 5.93 54.84 7.62 9.91

W4G128

RTN 5.96 42.33 7.70 10.00
GPTQ 5.90 42.36 7.66 9.91
AWQ 5.80 44.00 7.50 9.75
Ours 5.79 56.45 7.49 9.74

W3G128

RTN 7.01 56.28 9.18 12.11
GPTQ 6.60 53.75 8.72 11.46
AWQ 6.32 49.27 8.21 10.81
Ours 6.28 47.57 8.09 10.55

W2G128

RTN 1847 6574 936.2 1.3e4
GPTQ 28.52 638.3 37.85 128.0
AWQ 2.6e5 2.8e5 2.9e5 2.1e7
Ours 641.8 824.9 2533 1876

13B

16 bits 5.09 28.10 6.80 14.06

W4G-1

RTN 5.53 29.45 7.23 37.17
GPTQ 5.34 30.23 7.09 13.09
AWQ 5.25 30.34 7.01 12.36
Ours 5.21 27.81 6.93 113.24

W4G128

RTN 5.26 28.36 6.94 25.34
GPTQ 5.19 29.36 6.91 13.33
AWQ 5.19 28.34 6.90 15.25
Ours 5.18 27.80 6.88 59.09

W3G128

RTN 5.88 33.10 7.86 44.06
GPTQ 5.56 32.52 7.48 95.24
AWQ 5.53 29.63 7.34 22.26
Ours 5.45 28.13 7.21 15.44

W2G128

RTN 797.7 1695 449.1 1.5e4
GPTQ 12.13 185.8 NAN 546.1
AWQ 2.8e5 2.6e5 2.4e5 1.6e7
Ours 8.36 48.93 10.64 1773

30B

16 bits 4.10 23.51 6.13 6.89

W4G-1

RTN 4.54 25.49 6.54 8.03
GPTQ 4.41 24.22 6.40 8.50
AWQ 4.30 24.20 6.30 6.88
Ours 4.23 27.97 6.24 6.90

W4G128

RTN 4.23 23.90 6.26 7.05
GPTQ 4.24 23.92 6.23 7.73
AWQ 4.22 23.98 6.21 7.29
Ours 4.18 31.38 6.20 7.39

W3G128

RTN 4.87 26.99 6.85 NAN
GPTQ 4.72 25.14 6.73 8.44
AWQ 4.61 25.05 6.56 7.84
Ours 4.50 67.01 6.47 7.90

W2G128

RTN 68.40 566.8 114.2 1192
GPTQ 9.21 59.75 12.50 21.21
AWQ 2.3e5 2.2e5 2.4e5 1.5e7
Ours 7.13 55.40 12.02 118.7

LLaMA-V1 Wiki2. Ptb C4 Wiki.

65B

16 bits 3.53 25.07 5.81 4.96

W4G-1

RTN 3.92 28.07 6.07 5.60
GPTQ 3.79 34.82 6.00 5.46
AWQ 3.72 44.83 5.96 5.30
Ours 3.65 22.42 5.89 5.19

W4G128

RTN 3.67 25.61 5.90 5.21
GPTQ 3.64 33.81 5.88 5.17
AWQ 3.62 24.46 5.87 5.14
Ours 3.61 35.87 5.87 5.13

W3G128

RTN 4.25 50.00 6.33 6.25
GPTQ 4.05 32.64 6.21 6.03
AWQ 3.95 23.48 6.14 5.83
Ours 3.90 29.15 6.08 5.69

W2G128

RTN 15.21 276.7 20.03 29.39
GPTQ 6.85 37.79 NAN 12.25
AWQ 7.3e4 6.7e4 7.4e4 NAN
Ours 5.52 NAN NAN 9.25

Table 14: Perplexity(PPL) (↓) of Wikitext2, PTB, C4 and Wikitext tasks for LLaMA and Mistral models. we follow
the source code of GPTQ for wikitext2, PTB and C4 PPL evaluation, while for wikitext, we adopt lm-eval-harness
(Gao et al., 2023). NAN indicates not a number, while OOM denotes out of memory.
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Model Method Mmlu Lamb. Hella. Wino. Piqa Truth. Open. Boolq RTE ARC-e ARC-c. Avg.

Gemma-2b
BF16 32.87 63.44 52.73 65.04 76.71 22.03 29.80 69.27 64.26 74.20 40.19 53.69
Ours 32.97 63.07 51.59 65.43 76.12 22.03 30.00 69.39 63.90 73.53 39.33 53.40

Llama-2-7b-chat-hf
FP16 46.40 71.05 57.80 66.38 76.39 30.23 33.40 79.76 69.68 73.82 44.20 59.01
Ours 45.45 70.37 57.06 66.14 76.33 30.35 32.60 80.64 72.92 73.36 43.52 58.97

Llama-3-8B-Instruct
BF16 63.86 71.82 57.69 71.43 78.67 36.23 34.00 82.97 67.51 81.52 52.99 63.52
Ours 63.06 72.00 56.99 72.38 77.97 35.37 33.00 83.09 68.59 80.89 51.02 63.12

Mistral-7B-Instruct-v0.2
BF16 59.06 71.41 66.02 73.95 80.52 52.51 36.00 85.35 70.40 81.61 54.35 66.47
Ours 58.72 71.41 65.57 73.64 80.47 51.53 34.20 85.41 71.48 81.65 54.35 66.21

Mixtral-8x7B
BF16 68.02 78.27 64.90 76.48 82.48 34.27 35.40 85.23 70.76 84.30 56.66 66.98
Ours 66.93 78.25 64.59 75.14 82.10 32.19 35.60 84.74 69.31 84.30 56.48 66.33

Mixtral-8x7B-Instruct
BF16 68.85 77.18 67.67 76.87 83.51 49.69 36.80 88.50 71.84 86.99 62.20 70.00
Ours 68.24 77.90 67.45 77.19 83.35 48.84 37.20 87.83 70.04 87.12 62.29 69.77

Phi-3-mini-4k-instruct
BF16 67.97 68.08 60.64 74.03 80.30 39.53 38.80 86.21 77.98 83.54 55.72 66.62
Ours 66.59 67.71 59.70 74.59 79.33 37.45 38.80 85.66 79.06 82.70 56.83 66.33

Table 15: The detail accuracies(↑) across 11 tasks(detailed in Section 4.1) with 1000 steps for LLMs at W4G128
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