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Abstract

In recent years, with the vast and rapidly in-
creasing amounts of spoken and textual data,
Named Entity Recognition (NER) tasks have
evolved into three distinct categories, i.e., text-
based NER (TNER), Speech NER (SNER) and
Multimodal NER (MNER). However, existing
approaches typically require designing separate
models for each task, overlooking the potential
connections between tasks and limiting the ver-
satility of NER methods. To mitigate these lim-
itations, we introduce a new task named Inte-
grated Multimodal NER (IMNER) to break the
boundaries between different modal NER tasks,
enabling a unified implementation of them. To
achieve this, we first design a unified data for-
mat for inputs from different modalities. Then,
leveraging the pre-trained MMSpeech model
as the backbone, we propose an Integrated
Multimodal Generation Framework (IMAGE),
formulating the Chinese IMNER task as an
entity-aware text generation task. Experimental
results demonstrate the feasibility of our pro-
posed IMAGE framework in the IMNER task.
Our work in integrated multimodal learning in
advancing the performance of NER may set
up a new direction for future research in the
field. Our source code is available at https://
github.com/NingJinzhong/IMAGE4IMNER.

1 Introduction

Named Entity Recognition (NER) (Li et al., 2020a)
is a fundamental and significant task in the field
of Natural Language Processing and has been ex-
tensively studied to address the challenges posed
by real-world text data. Chinese NER (CNER)
(Liu et al., 2022), a significant subdomain of NER,
specifically deals with challenges unique to Chi-
nese, such as no clear word boundaries and the am-
biguity from homophones and polyphones, draw-
ing significant academic focus (Zhang and Yang,
2018; Li et al., 2020b; Ma et al., 2020).
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Figure 1: Comparison of existing NER tasks with the
Integrated Multimodal NER (IMNER) task proposed in
this paper. In the figure, TNER represents text-based
NER, SNER stands for Speech NER, MNER denotes
multimodal NER, Pseudo Speech refers to meaningless
zero audio waveforms, and Pseudo Text indicates non-
sensical text sequences.

Traditionally, Named Entity Recognition (NER)
tasks have concentrated on text-based NER
(TNER) (Gui et al., 2019b; Li et al., 2020b, 2022).
However, as the volume of audio data increases,
there has been a growing interest in Speech NER
(SNER) (Yadav et al., 2020; Chen et al., 2022; Shon
et al., 2022), which focuses on extracting named en-
tities from speech, and Multimodal NER (MNER)
(Sui et al., 2021; Liu et al., 2023), which involves
extracting entities from both speech and text.

Currently, data on the internet often appears in
multiple modalities, such as user-generated con-
tent in social media and news reports in the media,
which may be in text or audio formats, or a com-
bination of both speech and its corresponding text.
The key information extracted by NER tasks, such
as persons and locations, can assist in search and
recommendation in the news domain, as well as
in analyzing trending topics and public opinion in
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social media. However, existing NER systems are
usually designed for a single mode, either solely
as SNER, TNER or MNER, as shown in Figure 1.
These approaches face two significant issues. Issue
1: Treating SNER, TNER and MNER as three sep-
arate tasks overlooks the potential interconnections
between them. Issue 2: The need to design distinct
models for each of the SNER, TNER and MNER
tasks limits the versatility and overall efficiency of
NER methods.

Beyond the above issues, significant advances in
speech processing have been achieved with Multi-
modal Pre-trained Models (MPMs) using data from
both text and speech (Zhou et al., 2022; Ao et al.,
2022). These models, trained on various tasks like
speech-to-text and text-to-text generation, highlight
the potential interconnections between different
modal tasks. However, these MPMs face a chal-
lenge, identified here as Issue 3: While MPMs ben-
efit from a unified pre-training architecture across
modalities, the need for task-specific fine-tuning
for various downstream applications, to some ex-
tent,restricts their universality.

To address these challenges, in this paper, we
introduce a new NER task named Integrated
Multimodal NER (IMNER). The IMNER task
aims to break the boundaries of traditional SNER,
TNER and MNER by presenting a unified Named
Entity Recognition (NER) framework capable of
handling inputs from various modalities (text,
speech, or both) to efficiently recognize Chinese
named entities, as illustrated in Figure 1. Moreover,
previous studies (Sui et al., 2021; Liu et al., 2023)
have shown that features like pauses in speech sig-
nals can reduce ambiguities in Chinese NER tasks,
which often arise from the lack of clear word de-
limitation or the presence of homophones. The
IMNER approach, leveraging data from the SNER,
TNER, and MNER tasks, possesses the potential
to overcome the difficulties associated with the
absence of natural word segmentation and the fre-
quent occurrence of homophones in Chinese text.

To solve the IMNER task, our approach begins
with an original design of a data format unifica-
tion method that transforms the data formats of
TNER, SNER and MNER tasks into a unified data
scheme. As illustrated in Figure 1, we treat TNER
and SNER tasks as MNER tasks with missing
speech and text modalities, respectively. For these
“missing” modalities, we substitute Pseudo Speech
and Pseudo Text. Based on the unified data for-
mat, and using the multimodal pretrained model

MMSpeech (Zhou et al., 2022) as backbone, we
introduce the Integrated Multimodal Generation
Framework (IMAGE), an encoder-decoder struc-
ture to execute the Chinese IMNER task. Specifi-
cally, inspired by the recent success of generative
methods in NER tasks, we formulate the IMNER
task as an entity-aware text generation task (Chen
et al., 2022; Wang et al., 2023). Unlike previous
works, our approach uniquely leverages the inter-
relations among the three different modalities of
TNER, SNER and MNER tasks, facilitating the
realization of the IMNER task.

The main contributions of this work can be sum-
marized as follows:

• We introduce a new task, Integrated Mul-
timodal NER (IMNER), aimed at breaking
the boundaries between TNER, SNER and
MNER tasks, enabling the model to uniformly
handle inputs from various modalities.

• From a novel perspective, we design a unified
data format for TNER, SNER and MNER,
establishing a bridge between these three tasks
and serving as the basis for IMNER.

• Utilizing the MMSpeech model as the back-
bone, we propose an Integrated Multimodal
Generation Framework (IMAGE), formulat-
ing the Chinese IMNER task as an entity-
aware text generation task. Notably, our IM-
AGE framework is capable of handling both
flat and nested entity scenarios.

• Experimental results reveal that the IMAGE
framework effectively exploits potential con-
nections among TNER, SNER and MNER
tasks, boosting their performance. IMAGE
achieves competitive performance in these
tasks, proving the viability of the IMNER task
and incidenting the advantages of the IMAGE
framework.

2 Related Work

2.1 Text-based Chinese NER (TNER)
In Chinese NER, the lack of natural word bound-
aries and the existence of homophones introduce
ambiguity in the text, posing challenges for Chi-
nese NER. Therefore, in recent years, incorporat-
ing external lexicon resources to enhance Chinese
NER performance has been proven to be an effec-
tive solution and has achieved significant success
(Zhang and Yang, 2018; Gui et al., 2019a,b; Li
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et al., 2020b; Liu et al., 2021). Additionally, for the
extraction of nested entities, recent work utilizing a
unified NER framework (Li et al., 2022; Yan et al.,
2021) to extract both flat and nested entities has
shown promising results.

2.2 Speech NER (SNER)

Speech NER (SNER), which is essential for Spo-
ken Language Understanding (SLU) (Caubrière
et al., 2020; Shon et al., 2022), initially adopts a
two-stage pipeline approach (Cohn et al., 2019):
converting speech to text with Automatic Speech
Recognition (ASR) and then tagging named enti-
ties in the generated text. To overcome the error ac-
cumulation inherent in this approach, End-to-End
(E2E) methods for languages like French (Ghan-
nay et al., 2018), English (Yadav et al., 2020), and
Chinese (Chen et al., 2022) have emerged, which
incorporate entity-aware ASR, directly integrating
entity tagging into the ASR decoding process.

2.3 Multimodal NER (MNER)

With the rapid growth of multimodal data on the
internet, leveraging multimodal information to en-
hance the performance of NER systems has at-
tracted increasing academic attention. In the field
of English NER, existing work has primarily fo-
cused on using data from text and image modali-
ties to improve the performance of NER systems
in social media contexts (Sun et al., 2021; Chen
et al., 2021; Xu et al., 2022; Jia et al., 2023). Sim-
ilarly, in the field of Chinese NER, Multimodal
NER (MNER) that combines text with audio sig-
nals (Sui et al., 2021; Liu et al., 2023) has been
introduced and achieved significant success.

2.4 MPMs Based on Text and Speech

Recently, Multimodal Pretrained Models (MPMs)
have received widespread attention in the field of
speech processing. In English, models such as
SpeechT5 (Ao et al., 2022) and STPT (Tang et al.,
2022), which propose encoder-decoder pre-training
using unlabeled text and speech data, have achieved
significant success. Following this, in the Chi-
nese Automatic Speech Recognition (ASR), MM-
Speech (Zhou et al., 2022) makes great improve-
ments through a multi-modal multi-task encoder-
decoder pre-training framework.

It is important to note that, in our work, al-
though MMSpeech serves as the backbone, our
model, named IMAGE, distinguishes itself from
the aforementioned MPMs by overcoming the need

for individual fine-tuning across different down-
stream tasks. Furthermore, while recent works like
SpeechGPT (Zhang et al., 2023) and Qwen-Audio
(Chu et al., 2023) have demonstrated the capability
to handle both speech and text inputs in conver-
sational tasks, to our knowledge, our work is the
first attempt to explore integrated modality input
capability within an NER system.

3 Methodology

In this section, we first introduce the IMNER task
definition. Then we detail the implementation of
IMAGE, including its overal structure as depicted
in Figure 2.

3.1 Task Definition
Given the input X , which may be text {xtext},
speech {xspeech}, or a combination of both
{xtext,xspeech}, the goal of IMNER is to find each
entity in X and then assign a label y ∈ Y , where Y
is a predefined label types (e.g., PER, LOC, etc.).

3.2 Formulating IMNER into Text Generation
Inspired by the success of generative methods in
TNER (Wang et al., 2023) and SNER (Chen et al.,
2022), we formulating the IMNER task as an entity-
aware text generation task. Illustrated by the sam-
ple in Figure 2, for the text “末阳市文联主席
张三” and its associated speech waveform, the
Entity-aware Text Generation Target is designated
as “<(末阳市)文联>主席[张三]”. Special tokens
are incorporated into the vocabulary to annotate
entities in the generated text, specifically, “[ ]” for
PER, “( )” for LOC, and “< >” for ORG. We chose
the entity-aware text generation task for generating
entities primarily because this method allows for
the simultaneous acquisition of entity span infor-
mation and entity text content.

3.3 Details of the IMAGE Framework
3.3.1 Backbone Model
In this paper, we employ a multimodal pre-trained
model with an encoder-decoder structure, MM-
Speech (Zhou et al., 2022), as our backbone model.
The original MMSpeech structure primarily con-
sists of: (1) a multi-layer Transformer-based MM-
Speech encoder shared by text and speech modal-
ities, equipped with a multi-layer convolutional
and Transformer-based speech feature extractor,
and a static word vector embedding for text fea-
ture extraction; (2) a decoder composed of multiple
Transformer layers.
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Figure 2: Overall structure of IMAGE. The figure illustrates with the example of the text “末阳市文联主席张
三”(Chairman Zhang San of the Moyang City Cultural Association) and its corresponding speech waveform. In the
figure, “<S>” denotes a special token indicating the start of the generated output, while “#” and “$” respectively
represent meaningless phoneme tokens and Chinese character tokens. The purple, green, and blue arrows at the
bottom right of the figure explain the composition of input data for the MNER, SNER, and TNER tasks within the
IMAGE framework, respectively.

Currently, MMSpeech is mainly used for down-
stream tasks with speech input, such as speech
recognition. Besides speech data, MMSpeech was
trained with a large volume (292GB) of text data,
giving it a strong ability to model text. However,
the capability of MMSpeech to handle text input
tasks or dual input tasks with speech and text has
been overlooked and not fully explored. This indi-
cates the significant potential for expanding MM-
Speech’s application across various modal scenar-
ios.

3.3.2 Unified Integrated Modal Data Format

The IMNER task comprises three sub-tasks: SNER,
TNER and MNER, each involving different modal
components in the input data. To transform the
integrated modal inputs of IMNER task into a uni-
fied data format, maintaining data consistency and
laying the groundwork for handling all three tasks
with a uniform model structure, we adopt a novel
perspective within the IMAGE framework. Here,

we treat TNER and SNER tasks as MNER tasks
with “missing” speech and text modalities, respec-
tively. For these “missing” modalities, we substi-
tute Pseudo Speech and Pseudo Text as illustrated
in Figure 2.

In the Unified Integrated Modal Data Format,
the Input Speech Waveform is denoted as Xs =
{xs1, · · · , xsNs}, where N s represents the length of
the speech waveform. When the speech modality
is missing from the input, Xs represents a fixed-
length sequence of all-zero signals. Because Chi-
nese characters and their corresponding sounds
are not tightly mapped to one another, the en-
coder in MMSpeech converts the original text in-
put Xt =

{
xt1, · · · , xtNt

}
into phoneme input

P = {p1, · · · , pNp}, where N t and Np denote
the sequence lengths of Xt and P , respectively.

3.3.3 Feature Extractors

Speech Feature Extractor: Consistent with MM-
Speech, we first convert the raw speech waveform
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into Mel-filterbank features, and then use a multi-
layer convolutional network followed by a Trans-
former encoder (comprising multiple transformer
layers with multihead self-attention (Vaswani et al.,
2017)) as the speech feature extractor. The speech
features F s for the input speech Xs are computed
as follows:

F s = SFE(Xs) (1)

where SFE (·) denotes the Speech Feature Ex-
tractor, F s ∈ RLFs×dh , LF s is the length of the
speech features, and dh is the dimension of the hid-
den features (consistent with all dh in this paper).

Text Feature Extractor: Consistent with the
pre-training phase of MMSpeech, we utilize static
embeddings in our model to obtain the feature rep-
resentation of the input phoneme sequence P :

F t = E(p)(P ) (2)

where E(p)(·) denotes the operation of static
phoneme embedding, and F p ∈ RNp×dh .

Modality Absence Feature: To enhance the
model’s ability to detect the absence of a modal-
ity, thereby encouraging it to focus on inputs from
present modalities and ignore inputs from missing
ones, we introduce a learned embedding to every
f t
i (1 ⩽ i ⩽ Np) and fs

i (1 ⩽ i ⩽ N s) to incident
whether that modality is missing:

f̄ t
i =

{
f t
i +mmissing, if text is missing
f t
i +mpresent, otherwise

(3)

f̄ s
i =

{
fs
i +mmissing, if speech is missing
fs
i +mpresent, otherwise

(4)

where mmissing ∈ Rdh and mpresent ∈ Rdh are
the learned embeddings indicating the absence or
presence of the modality, respectively. This ap-
proach allows the model to dynamically adapt its
processing based on the availability of each modal-
ity. Ultimately, we obtain the final speech feature
representation F̄ s =

{
f̄s
1 , · · · , f̄s

Ns

}
and the final

text feature representation F̄ t =
{
f̄ t
1, · · · , f̄ t

Np

}
.

3.3.4 Encoder and Decoder of MMSpeech
For F̄ s and F̄ t, we combine them through a con-
catenation operation to form the feature represen-
tation F̄ that is fed into the MMSpeech encoder-
decoder structure:

F̄ = F̄ t ⊕ F̄ s (5)

where F̄ ∈ R(Np+Ns)×dh , and ⊕ denotes the
concatenation operation.

Encoder: IMAGE feeds the concatenated text
and speech features representation F̄ into the MM-
Speech encoder, which is a multi-layer Transformer
encoder, to obtain the hidden representation of the
integrated modal input as follows:

He = Encoder
(
F̄
)

(6)

Decoder: Afterwards, He is fed into the MM-
Speech decoder, a multi-layer Transformer decoder,
to model the probability distribution of the output
text y. At the i-th step of decoding, the probability
distribution p (yi) ∈ R|V | of the i-th output token
yi in y is computed as follows:

hyi = Decoder (He, y<i) (7)

p (yi) = Softmax (Wlmhyi + blm) (8)

where hyi is the hidden representation at the i-th
decoding step, Wlm ∈ R|V |×dh and blm ∈ R|V | are
learnable parameters in the language model (LM)
head, and |V | represents the size of the vocabulary.

3.3.5 Training Strategy of IMAGE
Loss Function: During the training phase, the pa-
rameters of IMAGE are optimized by minimizing
the cross-entropy loss based on teacher forcing:

L = − 1

M

M∑

i=1

|V |∑

k=1

li,k log p (yi,k) (9)

where li ∈ R|V | represents the ground-truth la-
bel distribution for decoding the i-th token, and M
denotes the total number of tokens in the ground-
truth label sentence.

Training Data Creation: In this study, we uti-
lize MNER datasets, containing both speech and
text, to create training data for TNER and SNER
by artificially removing certain modality data. Dur-
ing training, each sample in a batch is randomly
assigned as an input for MNER, SNER or TNER.
These input variations are depicted in Figure 2,
illustrating the method for handling inputs with
varying modality presence.

4 Experiments

4.1 Dataset & Evaluation Metrics

In this study, we train and evaluate our IMAGE
framework on the IMNER task using three datasets:
the flat SNER dataset AISHELL-NER (Chen et al.,
2022) , the nested MNER dataset CNERTA (Sui
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Dataset Data Type
Entity Type

Num
Sentence Entity Type

train dev test total PER. ORG. LOC. total
CNERTA Text&Audio 3 34,102 4,440 4,445 42,987 8,034 12,047 16,876 36,957

AISHELL-NER Text&Audio 3 120,098 14,326 7,176 141,600 18,642 25,351 24,611 68,604

Table 1: Statistics of the Datasets.

et al., 2021). Both the AISHELL-NER and CN-
ERTA datasets contain Chinese text with corre-
sponding speech, where the Chinese text is anno-
tated with entity information. Detailed statistics
of these datasets are available in Table 1. Regard-
ing evaluation metrics, we use the F1 score (F1),
commonly employed in NER tasks, to assess the
model’s effectiveness.

4.2 Experimental Setting

During the training phase, we generate each train-
ing sample according to the Training Data Creation
method described in Section 3.3.5. In the evalu-
ation phase, we first manually remove the corre-
sponding modality information from the test set to
produce three versions of the test set for TNER,
SNER and MNER, allowing for a comprehensive
evaluation of the model’s performance.

Additionally, for the MSRA dataset, which
follows the same annotation guidelines as the
AISHELL-NER dataset and includes the same en-
tity types, we employ the entire MSRA training set
(46,539 samples) along with all the SNER train-
ing data from the AISHELL-NER dataset (120,098
samples) for training our model. Subsequently, we
evaluate the model’s performance on the TNER
task using MSRA’s test set and on the SNER task
using AISHELL-NER’s test set. The rationale be-
hind this experimental setup is to verify the effec-
tiveness of the unified cross-modal training strategy
in IMAGE on the widely used TNER dataset, i.e.,
MSRA.

For our IMAGE model, we initialize the
model parameters using the pre-trained MMSpeech
model, including components such as the Speech
Feature Extractor, Text Feature Extractor, MM-
Speech Encoder, and MMSpeech Decoder. We
trained IMAGE using the Large1 versions of the
MMSpeech pre-trained model weights, employing
teacher forcing and reported results for both. Dur-
ing the training phase, the training data for MNER,
SNER, and TNER were balanced with a ratio of
1:1:1. We used a batch size of 12 and a learning rate

1https://modelscope.cn/models/iic/ofa_
mmspeech_pretrain_large_zh

of 1e-5. During the decoding phase, we applied the
beam search method with a beam width of 5. Ad-
ditionally, we incorporated Pseudo Phoneme and
character equences of length 40 in our model. For
the pseudo speech input, we utilized a sequence
of zero values with a length of 10,000. We imple-
mented the training of the IMAGE model using
PyTorch on a GeForce RTX 4090 GPU, employing
the AdamW optimizer with a warm-up rate of 0.1,
and trained it for 50 epochs on each dataset.

4.3 Comparison Models

We compare the performance of several strong base-
line models on the TNER, SNER and MNER tasks
using the benchmark datasets employed in this
paper. The baseline models used fall into three
main categories: (1) methods that only use the text
modality (Text-only Methods), (2) methods that
only use the speech modality (Speech-only Meth-
ods), and (3) multimodal methods that use both
text and speech (Multimodal Methods). The intro-
ductions to the three categories of baseline models
selected for our comparison are as follows:

(1) Text-only Methods: We chose two types of
baselines in this category. The first type includes
State-of-the-Art (SOTA) methods based on Bert-
large2 (Cui et al., 2020), such as Bert-large-CRF,
FLAT (Li et al., 2020b), and W2NER (Li et al.,
2022). Bert-large-CRF and FLAT employ the same
Nested Structure Linearization method for annotat-
ing nested entities as in the M3T(Sui et al., 2021)
work. The second type consists of models with
an encoder-decoder structure for NER using an
entity-aware text generation task (ETG), including
Bart-large3 (407M) (Shao et al., 2021), MT5-base4

(582M) (Xue et al., 2021), and the original version
of MMSpeech.

(2) Speech-only Methods: We also chose two
types of baselines in this category. The first
type includes end-to-end methods based on an
encoder-decoder structure, where the encoder in-

2https://huggingface.co/hfl/
chinese-macbert-large

3https://huggingface.co/fnlp/
bart-large-chinese

4https://huggingface.co/google/mt5-base
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Modality Methods CNERTA(nested) AISHELL-NER
TNER SNER MNER TNER SNER MNER

Text-only
Methods

1.Bert-large-CRF(325M) 76.09ℏ - - 93.29ℏ - -
2.FLAT(Bert-large) 79.31‡ℏ - - 93.57‡ℏ - -
3.W2NER(Bert-large) 79.25‡ - - 93.72‡ - -
4.Bart-large-ETG(407M) 76.84 - - 92.82 - -
5.MT5-base-ETG(582M) 76.91 - - 92.94 - -
6.MMSpeech-ETG(613M) 77.34 - - 92.81 - -

Speech-only
Methods

7.Conformer-ETG(E2E)(Chen et al., 2022) - 60.36‡ - - 73.37℘ -
8.MMSpeech-ETG(E2E) - 69.82 - - 75.42 -
9.Conformer-ASR + Bert-large(Pipeline) - 60.92 - - 74.10 -
10.MMSpeech-ASR + Bert-large(Pipeline) - 69.76 - - 74.84 -

Multimodal
Methods

11.Bert-USAF(Bert-base)(Liu et al., 2023) - - 76.73℘ - - -
12.Bert-M3T(Bert-large) - - 79.51‡ℏ - - 93.75‡ℏ

13.IMAGE(only MNER data) - - 79.46 - - 93.34
IMNER Methods 14.IMAGE(MMSpeech-large,613M) 79.85 70.36 80.49 93.05 75.76 93.77

Table 2: F1-score (%) of the proposed IMAGE method and baselines on the TNER, SNER, MNER versions of
the test sets for two benchmark datasets. Here, “ETG” refers to models perform NER task using an entity-aware
text generation task. “(E2E)” and “(Pipeline)” respectively denote the end-to-end SNER methods and pipeline
SNER methods. Superscript ‡ indicates results obtained through official implementation. Superscript ℘ denotes
experimental results reported from the original paper. Superscript ℏ signifies the use of the same Nested Structure
Linearization method for annotating nested entities as in the M3T(Sui et al., 2021) work.

puts are speech, and the decoder annotates en-
tities using an entity-aware text generation task,
including Conformer-ETG (Chen et al., 2022)
and MMSpeech-ETG. The second type involves
Pipeline methods that first recognize speech into
text using ASR and then annotate entities using
Bert-large, such as Conformer-ASR + Bert-large
(Chen et al., 2022), MMSpeech-ASR5 + Bert-large.

(3) Multimodal Methods: We selected the
SOTA methods in Multimodal Named Entity
Recognition (MNER) based on speech and text,
including Bert-USAF (Sui et al., 2021) and Bert-
M3T (Liu et al., 2023). Additionally, we included
the IMAGE framework trained solely on MNER
data as a baseline method.

4.4 Results and Analysis

4.4.1 Main Results
We compare our proposed IMAGE model with
several strong Text-only Baselines, Speech-only
Baselines, and Multimodal Baselines, with the ex-
perimental results reported in Table 2. It is evi-
dent that, unlike existing baseline models that are
limited to solving single-modality tasks, IMAGE
not only breaks the boundaries between modalities
by simultaneously addressing TNER, SNER and
MNER tasks but also achieves highly competitive
performance across these tasks. From the experi-
mental results, we can further observe that:

5https://modelscope.cn/models/iic/ofa_
mmspeech_asr_aishell1_large_zh

TNER SNER MNER
IMAGE 79.85 70.36 80.48
w/o MAF 79.27 69.84 80.03
w/o PT 79.61 69.97 80.24
w/o PS 79.43 70.08 80.17
w/o PT&PS 79.38 69.89 79.94
w/o TNER 38.75 70.12 80.34
w/o SNER 79.61 34.76 80.27
w/o MNER 79.49 70.04 41.61

Table 3: An ablation study of the IMAGE (MMSpeech-
large). F1 scores (%) were evaluated on the test sets
of three different tasks in CNERTA. “MAF” represents
Modality Absence Feature. “PT” and “PS” respectively
denote Pseudo Text Input and Pseudo Speech Input.
The feature vectors corresponding to “PT” and “PS” are
masked out in the Transformer through the attention
mask to negate their influence. The acronyms “TNER”,
“SNER”, and “MNER” specifically refer to the training
data for the respective tasks.

(1) Compared to baselines using MMSpeech
trained on single task data (methods 6, 8, 13 in
Table 2), our proposed IMAGE method achieves
significant performance improvements on TNER,
SNER and MNER tasks. This demonstrates that
our IMAGE method can effectively leverage the
potential correlations among the three tasks across
different input modalities, facilitating complemen-
tary benefits and jointly enhancing performance
across all tasks.

(2) On the SNER and MNER tasks, the per-
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Figure 3: F1 Scores (%) of IMAGE on the three subtasks of the IMNER task in the CNERTA dataset with varying
numbers of training samples. For each method depicted above, under different training data sizes, we chose identical
hyperparameters and ran the experiments five times with different random seeds, averaging the F1 scores to obtain
the final results.

formance of IMAGE with the MMSpeech back-
bone surpasses all baseline methods. This indicates
that our proposed IMAGE framework can exploit
the complementarity between tasks across differ-
ent modalities, enhancing modeling capabilities
for both speech-only and speech-text multimodal
tasks.

(3) On the TNER task, our IMAGE method with
MMSpeech-large backbone achieves performance
comparable to the SOTA method W2NER. More-
over, the performance of the IMAGE framework
exceeds all baselines based on an encoder-decoder
structure using an entity-aware text generation task
for entity annotation. This suggests that the IM-
AGE framework can improve text information en-
coding capabilities through joint training and mod-
eling of tasks across different input modalities.

(4) The performance of the IMAGE method
on the MNER task surpasses its performance on
the TNER task, indicating that multimodal inputs
combining text and speech provide more effective
information than text-only data, thus enhancing
model performance on NER tasks. Additionally,
the SNER task not only requires entity annotation
but also the accurate transcription of speech to text,
increasing the complexity of the task. Therefore,
the performance of the IMAGE framework on the
SNER task is notably lower than on the TNER task.

4.4.2 Ablation Study

To assess the impact of various components in IM-
AGE, we conducted ablation experiments on the
CNERTA dataset, with the findings presented in
Table 3. Our conclusions are as follows:

(1) The removal of the Modality Absence Fea-
ture leads to reduced model performance, highlight-

ing its role in enhancing IMAGE’s ability to discern
valid modal information in the input. Additionally,
eliminating either Pseudo Text Input or Pseudo
Speech Input diminishes the model’s performance.
These components are believed to capture global
information across different modalities, fostering
synergy among the tasks within IMAGE.

(2) Excluding the training data for any one of the
TNER, SNER, and MNER tasks during the training
process results in a decline in the model’s perfor-
mance across all three NER subtasks. This suggests
that there is an intrinsic interconnection among the
TNER, SNER, and MNER tasks, allowing them
to mutually benefit from each other. This finding
supports our IMNER approach, addressing Issue
1 raised in the introduction of this paper, which
concerns the overlooked potential interconnections
between these tasks.

4.4.3 Performance on Low-resource Scenarios

We conducted experiments with training data sets
of 1000, 2000, 3000, 4000, and 5000 samples
to evaluate the performance of IMAGE in low-
resource scenarios, with results shown in Figure
3. The experimental results reveal that, with lim-
ited training data resources, IMAGE maintains an
advantage compared to baselines trained on single-
task data. This demonstrates that within the low-
resource context, the IMAGE framework can still
effectively leverage the potential connections and
complementarity among the three IMNER subtasks
(i.e., TNER, SNER, MNER) to enhance the perfor-
mance across these tasks. This underscores the
potential of the IMAGE method in scenarios with
limited training resources.
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5 Conclusions

In our study, we introduce the Integrated Multi-
modal NER (IMNER) task, bridging the gap be-
tween text-based NER, speech NER, and multi-
modal NER to enable a unified approach to these
three distinct tasks. By designing a novel unified
data format and leveraging the pre-trained MM-
Speech as backbone, we introduced the IMAGE
framework, transforming the Chinese IMNER task
into an entity-aware text generation task. Experi-
mental results reveal the effectiveness of IMAGE,
marking a significant step forward in integrated
multimodal learning for NER, which may shed
light on future research in this research domain.

Limitations

In this section, we discuss two limitations of the
IMAGE framework as follows:

(1) Language Limitation: Currently, the IM-
AGE framework is designed to address the Chinese
IMNER task exclusively. This restriction arises
because the MMSpeech backbone, on which IM-
AGE relies, exhibits robust and balanced represen-
tation capabilities in both text and speech modali-
ties only in Chinese. In contrast, English lacks mul-
timodal pre-training models that perform equally
well across both modalities. The available mod-
els, such as SpeechT5 (Ao et al., 2022) and STPT
(Tang et al., 2022), have been pre-trained on limited
text corpora, resulting in weaker text representa-
tion capabilities. Therefore, there is an urgent need
to develop multimodal pre-trained models using
extensive text and speech data in other languages,
such as English, to support IMNER tasks in those
languages.

(2) Task Limitation: At present, the IMAGE
framework has only been applied to the Chinese
Integrated Multimodal Named Entity Recognition
(IMNER) task. Future work will involve extending
the IMAGE framework to other integrated multi-
modal information extraction tasks. This expansion
aims to fully exploit the complementary nature of
different modality tasks, enhancing the overall per-
formance and applicability of the framework.
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