
Findings of the Association for Computational Linguistics: EACL 2024, pages 11561–11571
November 12-16, 2024 ©2024 Association for Computational Linguistics

Revisiting the Impact of Pursuing Modularity for Code Generation

Deokyeong Kang†, Ki Jung Seo†, Taeuk Kim∗

Department of Computer Science, Hanyang University, Seoul, Republic of Korea
{rkdejrdud88,tjrlwjd1,kimtaeuk}@hanyang.ac.kr

Abstract

Modular programming, which aims to con-
struct the final program by integrating smaller,
independent building blocks, has been regarded
as a desirable practice in software develop-
ment. However, with the rise of recent code
generation agents built upon large language
models (LLMs), a question emerges: is this
traditional practice equally effective for these
new tools? In this work, we assess the impact
of modularity in code generation by introduc-
ing a novel metric for its quantitative measure-
ment. Surprisingly, unlike conventional wis-
dom on the topic, we find that modularity is not
a core factor for improving the performance
of code generation models. We also explore
potential explanations for why LLMs do not ex-
hibit a preference for modular code compared
to non-modular code. Our code is available
at � https://github.com/HYU-NLP/Revisiting-
Modularity.

1 Introduction

With recent advances in the capabilities of large
language models (LLMs; OpenAI, 2024; Gemini
Team, 2024; inter alia), their application areas have
expanded beyond simple text-based tasks. Among
these, coding assistants are becoming practically
essential for programmers, enhancing their effi-
ciency through tasks such as natural language to
code (NL2Code) generation.

Similar to other use cases of LLMs, coding as-
sistants are typically utilized in zero- or few-shot
manners. The problem is that as the length of code
is usually much longer than that of a sentence, the
number of code examples available for each run is
strictly limited. Furthermore, the same functional-
ity can be represented with different forms of code,
making it challenging for users to select a proper
example for a target task. The diversity of code

†Equal contribution. ∗Corresponding author.

Figure 1: In this work, we address the following research
question: Given modular and non-modular code snip-
pets with identical functionality, which code type more
effectively enhances performance in code generation
when used as input for code language models?

formats also poses challenges in fine-tuning setups,
as constructing an appropriate training dataset be-
comes non-trivial. It is thus important to under-
stand what characteristics of the code provided to
the agents contribute to their final performance of
such models. Among the many possible properties
that influence the characteristics of code snippets,
this work investigates the impact of code modu-
larity on the performance of LLMs for NL2Code
generation.

Modular programming, the practice of building
software with independent components, has long
been considered a cornerstone of good software
development. While this paradigm facilitates desir-
able properties of code for human programmers,
such as reusability, readability, and maintainability,
it remains an open question whether it offers the
same level of effectiveness for LLMs.

Notably, Jain et al. (2024) argued that leverag-
ing a set of modular functions can improve code
generation accuracy for both in-context learning

11561

https://github.com/HYU-NLP/Revisiting-Modularity
https://github.com/HYU-NLP/Revisiting-Modularity

(ICL) and fine-tuning. As it is not trivial to guaran-
tee the modularity of each code snippet, the authors
asked GPT-3.5-Turbo1 to convert an existing code
snippet into a more modular one, while ensuring
its functional correctness.

However, we claim that their report warrants
revisiting for two reasons. First, since LLMs are
notorious for their verbosity, it is unclear whether
the conversion process aimed solely for modularity
or accidentally introduced unexpected side effects.
Second, the lack of a formally defined quantitative
method for estimating modularity hinders more
extensive analyses related to the problem.

In this paper, we (re-)investigate the effective-
ness of pursuing modularity in NL2Code genera-
tion. We aim to push the boundaries of previous
work by (1) introducing a novel metric that quanti-
fies the modularity of a code snippet using numeric
values. Based on the metric, we (2) classify code
snippets as modular or non-modular without re-
lying on LLMs, and evaluate how each category
contributes to performance.2 Moreover, beyond pre-
vious work, we (3) conduct experiments on models
with parameters exceeding 7B (i.e., 33B and 34B)
to investigate the impact of model scale. Figure 1
illustrates the core research question of this work.

In experiments, we discover that contrary to con-
ventional wisdom in the literature, the modularity
of a code example may not be the crucial factor
for performance. We also explore potential expla-
nations for why LLMs do not exhibit a preference
for modular code compared to non-modular one.

2 Quantitative Definition of Modularity

To assess the impact of code modularity, the first
essential step is to develop a method that provides
a measurable score for code modularity. While the
previous study (Jain et al., 2024) bypassed this vital
step,3 we present a reasonable metric for estimating
code modularity, which is challenging due to the
inherent subjectivity of the concept itself.

Inspired by the software engineering literature,
we employ the concept of Cyclomatic Complex-
ity (CC) (McCabe, 1976) to determine the ideal
number of modules, m∗, for a given code snippet.
CC counts the number of independent execution

1
https://platform.openai.com/docs/models/gpt-3-5-turbo

2Note that this was infeasible in the previous study (Jain
et al., 2024) as there was no clear standard for determining
whether each code snippet is modular or not.

3The authors instead utilized LLMs to transform all code
snippets into supposedly modular ones.

Figure 2: Procedure of computing Cyclomatic Com-
plexity (CC) and Modularity Score (). We first build
control-flow graphs (CFGs) from the given code to de-
rive CC. The CC values are then used to compute MOS
as the form of CCtotal and m∗.

paths in the control-flow graph (CFG) of the target
code, where the CFG is a graph representation of
all potential paths that a program might follow dur-
ing execution. CC can also be calculated as E - N
+ 2, where E and N correspond to the number of
edges and nodes in the CFG.4 The CC values are
computed at either the whole code level (total CC;
CCtotal) or the function level (meaning the average
CC across all functions in the code; CCavg).

A high CC value generally indicates a complex
code structure. It functions as a guideline for code
decomposition, suggesting that a function whose
CC is exceeding a certain threshold value τ , e.g., 5
(McCabe, 1976) or 10 (McConnell, 2004), might
benefit from being broken down into smaller sub-
functions. Based on the concept, we assume that
the average CC of an ideal modular code example,
denoted by CCavg∗ , should be equal to the threshold
τ .5 In other words, ideally, every function within
a modular code snippet is expected to have a CC
value of τ . Following the intuition, we define m∗,
the number of ideal modules, as follows:

m∗ =
⌊

CCtotal

CCavg∗

⌋
=

⌊
CCtotal

τ

⌋
,

Finally, we define the modularity score, dubbed
MOS, as follows:

MOS =

min
(
1, n

m∗
)

if m∗ > 0

0 if m∗ = n = 0

1 if m∗ = 0, n > 0

,

4In practice, we rely on the Python library Radon (https:
//radon.readthedocs.io/) to derive CC.

5Given two choices for τ , i.e., 5 or 10, we set τ to 5 to
encourage a sparser distribution of modularity scores (MOS).

11562

https://platform.openai.com/docs/models/gpt-3-5-turbo
https://radon.readthedocs.io/)
https://radon.readthedocs.io/)

where n is equal to the actual number of modules
in the target code.6 That is, the closer n (actual
number of modules) is to m∗ (ideal number of
modules), the higher the modularity is considered
to be.7 The process of deriving MOS is illustrated
in Figure 2.

In Appendix A, we show that MOS is effective
not only in capturing the structural properties of a
code snippet but also in revealing the frequency of
interactions between functions within the code.

3 Four Code Categories by Modularity

With a way to quantify code modularity, we can
now classify a code dataset into two categories—
modular and non-modular (= singular). We further
leverage prior research by including LLM-based
code transformations and their corresponding man-
ually recovered counterparts for controlled experi-
ments. This allows us to create four distinct clusters
of code separated by their modularity levels.8

Modular Code (MC) is a collection of code snip-
pets with high MOS among solutions for each prob-
lem in a dataset.

Singular Code (SC) represents another set of so-
lution code examples for the same problems corre-
sponding to MC, with MOS being 0.

Transformed Modular Code (TMC) can be ob-
tained by utilizing GPT-3.5-Turbo (f) to transform
SC into code with high MOS while preserving its
original functionality. The conversion process can
be represented by the following:

TMC = f(I,Q,SC),

where I represents a transformation instruction and
Q is the problem description of SC.9

Transformed Singular Code (TSC) is a varia-
tion from TMC, whose modularity is manually
removed by human programmers. The goal of this
approach is to ensure that all factors except mod-
ularity are preserved during the conversion pro-
cess from TMC to TSC, minimizing unintended

6We consider modules valid only if they are utilized in at
least one execution path of the program.

7In extreme cases where m∗ = 0 (no modularization
required), the modularity score is set to 0 if no actual modules
are used (n = 0) and 1 otherwise (n > 0).

8Figure 3 in Appendix displays examples of each category.
9See Figure 4 for prompt details on the conversion process.

changes that could occur if we rely solely on auto-
matic conversion.

Specifically, TSC is created by replacing the
module invocation parts in TMC with the body
of the corresponding modules and then removing
those modules from the program. By comparing
TSC and TMC, which are expected to be identi-
cal except for their modularity, we gain a valuable
opportunity to rigorously assess the impact of mod-
ularity while accounting for the influence of the
transformation process executed by f .

4 Experimental Setups

We explore the impact of modularity by compar-
ing how the four code collections, categorized by
their modularity levels, affect performance. We
first focus on the case of utilizing code LLMs with
few-shot in-context learning. We leverage two-shot
demonstrations (providing two code examples) un-
less otherwise specified.10 In addition, we explore
the scenario of fine-tuning LLMs with datasets that
have varying levels of modularity.

Models We exploit three LLMs for code
generation—Code Llama (7B, 34B; Rozière et al.,
2024), DeepSeekCoder (6.7B, 33B; Guo et al.,
2024), and GPT-4o-mini.11

Datasets We employ two NL2Code generation
datasets—APPS (Hendrycks et al., 2021) and Code-
Contests (Li et al., 2022).12 They are based on com-
petitive programming contests and provide a set of
different solutions for each problem.13 In this study,
we focus our evaluation on Python.

For ICL experiments, MC and SC demonstra-
tions are chosen from solutions for random prob-
lems sampled from each dataset. The one with the
highest MOS among solutions is chosen as MC.
After selecting SC examples, they are converted
into TMC, and finally, TSC is manually derived.

For fine-tuning, we split the original dataset into
two subsets, MC and SC, and train different varia-
tions of LLMs on each subset. The details on fine-
tuning experiments are presented in Appendix C.

10Refer to Figure 5, 6, and 7 for prompt details.
11
https://openai.com/index/

gpt-4o-mini-advancing-cost-efficient-intelligence/
12Note that representative code generation benchmarks, e.g.,

HumanEval (Chen et al., 2021), typically provide code snip-
pets whose length restricts the possibility of modularization.

13We preprocess the APPS and CodeContests datasets fol-
lowing Jain et al. (2024). Refer to Appendix B for more details.

11563

https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/

Model Size Code
Type

Introductory Interview Competition Average

pass@1 pass@5 pass@1 pass@5 pass@1 pass@5 pass@1 pass@5

Code Llama 7B

MC 7.98 12.75 1.26 2.63 0.00 0.03 2.43 4.33
SC 11.12 15.78 1.65 3.13 0.07 0.26 3.32 5.29

TMC 14.67 19.63 2.28 3.98 0.21 0.59 4.45 6.66
TSC 13.84 17.15 2.16 3.61 0.07 0.24 4.20 6.07

DeepSeekCoder 6.7B

MC 24.76 32.59 6.49 10.58 0.72 1.72 9.39 14.01
SC 28.93 36.26 7.17 11.02 0.65 1.42 10.74 14.99

TMC 34.26 40.74 9.60 13.41 0.76 1.93 13.49 17.63
TSC 33.24 39.73 8.55 12.40 0.55 1.21 12.55 16.64

Table 1: Results on APPS measured by pass@k. We use n = 10 for pass@1 and pass@5. The best results are in
bold for each section. Two-shot prompting is applied for generating code given natural language queries.

Model Size Code
Type

CodeContests

pass@1 pass@10

Code Llama

7B

MC 1.98 8.02
SC 2.58 8.81

TMC 2.57 10.18
TSC 4.35 10.67

34B

MC 4.11 12.78
SC 5.83 14.1

TMC 3.39 13.55
TSC 5.61 15.32

DeepSeekCoder

6.7B

MC 5.3 12.78
SC 7.15 16.27

TMC 8.02 17.88
TSC 8.19 17.79

33B

MC 6.79 16.14
SC 8.87 20.5

TMC 9.38 22.74
TSC 8.78 22.09

GPT-4o-mini -

MC 14.07 -
SC 15.35 -

TMC 14.29 -
TSC 14.4 -

Table 2: Results on CodeContests measured by pass@k.
We use n = 10 for pass@1 and n = 50 for pass@10,
respectively. The best results are in bold for each section.
Two-shot prompting is applied for generating code given
natural language queries. Due to the cost issue, we only
compute pass@1 for GPT-4o-mini.

Evaluation Metrics We apply an unbiased ver-
sion of pass@k (Chen et al., 2021), which measures
the functional correctness of generated programs
by running them against test cases. For each prob-
lem, LLMs are prompted to generate n programs,
and we determine c, the number of programs that
pass the test cases. In addition, k (k ≤ n) specifies
the granularity of evaluation such that the metric
indicates the probability of finding at least one cor-
rect solution when sampling k programs out of the
n generated ones. The metric is then averaged over

all problems. As a result, pass@k is computed as:

pass@k = Eproblems

[
1−

(
n−c
k

)
(
n
k

)
]
.

5 Main Results

Table 1 and Table 2 present the results of experi-
ments conducted in the ICL setting on APPS and
CodeContests, categorized by the modularity of the
code demonstrations. All results are the average of
five independent runs with different random seeds.

In Table 1, we observe that that SC outperforms
MC, but as previously reported, the performance
of TMC is slightly better than TSC. However, their
marginal performance gaps raise questions about
the impact of modularity.

In Table 2, the relationship between modularity
and performance becomes less clear. When com-
paring MC to SC, we observe that MC consis-
tently underperforms SC, which contradicts pre-
vious findings. Furthermore, the comparison be-
tween TMC and TSC—a more controlled setting
for evaluating modularity—shows no clear corre-
lation between code modularity and performance.
This is despite the fact that the transformation pro-
cess by GPT-3.5-Turbo (SC → TMC) seems to
contribute to non-trivial increases in performance,
particularly for Code Llama and DeepSeekCoder.
GPT-4o-mini demonstrates consistent performance
across all four code types, suggesting that modular-
ity does not significantly impact its performance.

We thus argue that the previously reported effec-
tiveness of modularity on performance was likely
due to unforeseen consequences of the transforma-
tion process, rather than the modularity itself.

On the other hand, the performance of LLMs
fine-tuned on MC and SC from CodeContests is
reported in Table 3. We discover that SC constantly

11564

Model Size
Code
Type

CodeContests

pass@1 pass@10

Code Llama 7B
MC 3.88 12.2
SC 4.42 12.56

DeepSeekCoder 6.7B
MC 6.06 13.82
SC 8.73 16.16

Table 3: Performance of fine-tuning code LLMs on
CodeContests, measured by pass@k. We use n = 10
for pass@1 and n = 50 for pass@10. The best results in
each section are highlighted in bold. Zero-shot prompt-
ing is used during inference, meaning no demonstrations
are provided to guide the models in generating code.

Model Size Pearson Spearman

Code Llama 7B -0.34 (0) -0.31 (0)

DeepSeekCoder 6.7B -0.21 (0.04) -0.25 (0.01)

Table 4: Correlations between modularity (MOS) and
performance (pass@1), evaluated on CodeContests.
They consistently show weak negative relationships.
Numbers in parentheses represent p-values.

outperforms MC, albeit by a narrow margin, reflect-
ing a simlar trend observed in the ICL setting.14

These results suggest that the modularity of the
code examples used for training does not have a
significant impact on the performance of LLMs in
terms of code generation.

6 Analysis

6.1 Correlation Study

We conduct an extra experiment to dive deeper into
the modularity-performance relationship. Specifi-
cally, given 100 code samples used as demonstra-
tions,15 we compute the Pearson and Spearman
correlations between their modularity (MOS) and
resulting performance (pass@1). For simplicity,
we perform one-shot ICL on CodeContests. Experi-
mental results are presented in Table 4 and Figure 8
in Appendix. Surprisingly, the results reveal weak
negative correlations between modularity and per-
formance, suggesting that modularity may not offer
benefits, or even hinder performance in some cases.

14Due to the cost of constructing TMC and TSC using
GPT-3.5-Turbo, we focused our experiments on MC and SC.

15For balanced sampling, we create bins along the MOS
dimension and sample an equal number of data from each bin.
All the examples are either MC or SC type.

Model Size PPL(CMC) PPL(CSC)

Code Llama
7B 2.2 (0.57) 2.4 (1)

34B 2.02 (0.45) 2 (0.44)

DeepSeekCoder
6.7B 1.93 (0.41) 2.05 (0.63)

33B 1.89 (0.42) 1.89 (0.42)

Table 5: Perplexities of LLMs for CMC and CSC. LLMs
exhibit similar predictive ability for both SC and MC.
Numbers in parentheses represent standard deviations.

6.2 Do LLMs Favor Modular Code?

The minimal performance gap between (T)MC and
(T)SC suggests that LLMs may not have a strong
preference for generating modular code. To ver-
ify this hypothesis, we compare the perplexities
of LLMs on modular and non-modular code. For-
mally, the perplexity of a code snippet C given a
problem description D is:

PPL(C) = exp

{
− 1

n

n−1∑

t=0

logP (xt+1 | D, x≤t)

}
,

where C, consisting of tokens x1, . . . , xn, belongs
to either MC (CMC) or SC (CSC). We sample nearly
10,000 problems from CodeContests containing
both CMC and CSC, with CMC having MOS values
ranging from 0.7 to 1 and CSC having value of 0.
We then compare PPL(CMC) and PPL(CSC) av-
eraged over all examples to identify which type of
code is better predicted by code language models.

Table 5 supports our hypothesis, highlighting a
neutral preference of LLMs which is not biased
towards generating SC or MC. This is presumably
because the models were likely exposed to both
code types during pre-training. We speculate that
this could be one of the reasons why modular exam-
ples are not always beneficial for code generation
in language models.

7 Conclusion

In this work, we propose a metric, called MOS, for
quantifying the modularity of code snippets and
evaluate its impact on performance. Our evaluation
reveals no significant correlation, or even a possi-
ble weak negative correlation, between modularity
and performance. This suggests that factors influ-
encing the usefulness of code examples may differ
between human and LLM perspectives. Exploring
the influence of other code properties beyond mod-
ularity is a promising direction for future work.

11565

Limitations

Due to limited computational resources, we fo-
cused on designing experimental settings that are
both targeted and generalizable. This limitation re-
stricted the scope of our investigation, but consider-
ing more extensive configurations in future work—
such as employing much larger models, and eval-
uating other programming languages—will help
validate and potentially broaden the applicability
of our findings. Despite these limitations, we be-
lieve our findings offer valuable insights, thanks to
our comprehensive exploration of the feasible con-
figurations within the available resources. Addition-
ally, identifying a core factor besides modularity
that directly affects performance holds significant
promise for improving code generation.

Ethics Statement

In this study, we utilize models and datasets pub-
licly available on Huggingface, ensuring that no
ethical issues are associated with their usage. All
datasets for evaluation are open-source and follow
strictly to data usage policies.

Acknowledgements

This work was supported by Institute of Infor-
mation & communications Technology Planning
& Evaluation (IITP) grant funded by the Ko-
rea government (MSIT) (No.RS-2020-II201373,
Artificial Intelligence Graduate School Program
(Hanyang University)), Institute of Information
& communications Technology Planning & Eval-
uation (IITP) under the artificial intelligence
semiconductor support program to nurture the
best talents (IITP-2024-RS-2023-00253914) grant
funded by the Korea government (MSIT), and the
National Research Foundation of Korea (NRF)
grant funded by the Korea government (MSIT)
(No.2018R1A5A7059549).

References
Mark Chen, Jerry Tworek, Heewoo Jun, Qiming

Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen

Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluat-
ing large language models trained on code. Preprint,
arXiv:2107.03374.

Gemini Team. 2024. Gemini: A family of highly capa-
ble multimodal models. Preprint, arXiv:2312.11805.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai
Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wen-
feng Liang. 2024. Deepseek-coder: When the large
language model meets programming – the rise of
code intelligence. Preprint, arXiv:2401.14196.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Man-
tas Mazeika, Akul Arora, Ethan Guo, Collin Burns,
Samir Puranik, Horace He, Dawn Song, and Jacob
Steinhardt. 2021. Measuring coding challenge com-
petence with apps. Preprint, arXiv:2105.09938.

Naman Jain, Tianjun Zhang, Wei-Lin Chiang, Joseph E.
Gonzalez, Koushik Sen, and Ion Stoica. 2024. LLM-
assisted code cleaning for training accurate code gen-
erators. In The Twelfth International Conference on
Learning Representations.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman,
Julian Schrittwieser, Rémi Leblond, Tom Eccles,
James Keeling, Felix Gimeno, Agustin Dal Lago,
Thomas Hubert, Peter Choy, Cyprien de Mas-
son d’Autume, Igor Babuschkin, Xinyun Chen, Po-
Sen Huang, Johannes Welbl, Sven Gowal, Alexey
Cherepanov, James Molloy, Daniel J. Mankowitz,
Esme Sutherland Robson, Pushmeet Kohli, Nando
de Freitas, Koray Kavukcuoglu, and Oriol Vinyals.
2022. Competition-level code generation with alpha-
code. Science, 378(6624):1092–1097.

Ilya Loshchilov and Frank Hutter. 2019. De-
coupled weight decay regularization. Preprint,
arXiv:1711.05101.

T.J. McCabe. 1976. A complexity measure. IEEE
Transactions on Software Engineering, SE-2(4):308–
320.

Steve McConnell. 2004. Code Complete, Second Edi-
tion. Microsoft Press, Redmond, WA, USA.

OpenAI. 2024. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy
Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna
Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron
Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade
Copet, Faisal Azhar, Hugo Touvron, Louis Martin,

11566

https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2105.09938
https://arxiv.org/abs/2105.09938
https://openreview.net/forum?id=maRYffiUpI
https://openreview.net/forum?id=maRYffiUpI
https://openreview.net/forum?id=maRYffiUpI
https://doi.org/10.1126/science.abq1158
https://doi.org/10.1126/science.abq1158
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://doi.org/10.1109/TSE.1976.233837
http://portal.acm.org/citation.cfm?id=1096143
http://portal.acm.org/citation.cfm?id=1096143
https://arxiv.org/abs/2303.08774

Nicolas Usunier, Thomas Scialom, and Gabriel Syn-
naeve. 2024. Code llama: Open foundation models
for code. Preprint, arXiv:2308.12950.

Appendix

A The Effectiveness of MOS

In this section, we explore the question: Does MOS
indeed reflect the modularity of code? A key as-
pect of modular programming is decomposing a
program into modules and enabling interaction be-
tween them through function calls or class instanti-
ation. We argue that MOS not only considers the
structure of a program but also inherently reflects
the interactions between its constituents (e.g., func-
tions and class methods).

To support this claim, we examine the correla-
tion between MOS and the number of function calls
to determine if MOS reflects module interactions.
Specifically, we (1) sample 100 codes from the
CodeContests training set, (2) calculate the Pear-
son and Spearman correlation coefficients between
each code example’s MOS and the frequency of the
function invocations, and (3) repeat the same exper-
iment using five random seeds. To ensure balanced
sampling, we create bins based on MOS values and
sample the same number of codes from each bin.
As shown in Table 6, the Pearson and Spearman
correlation coefficients are 0.41 and 0.61, respec-
tively. This positive correlation between MOS and
the frequency of function calls highlights its effec-
tiveness in reflecting modular interaction.

B Dataset Preprocessing

In both the APPS and CodeContests datasets,
there are some solution codes that are incorrect
based on functional correctness. We filter out code
snippets that do not pass the test cases and re-
tain only the solutions written in Python. After
data filtering, CodeContest has a training dataset
of around 7K samples, while APPS has a train-
ing dataset of approximately 2K samples. Since
some of the problems in APPS provide insuffi-
cient or absent test cases, we retain only prob-
lems obtained from atcoder, codechef, and code-
forces in APPS, following Jain et al. (2024). APPS
are divided into APPS-INTRODUCTORY, APPS-
INTERVIEW, and APPS-COMPETITION based
on problem difficulty. Table 7 describes the statis-
tics of the APPS and CodeContests datasets we
finally employed. Additionally, we also guarantee
that both TMC and TSC pass the test cases.

Random Seed Pearson Spearman

27 0.37 (0) 0.61 (0)

42 0.41 (0) 0.64 (0)

101 0.4 (0) 0.63 (0)

134 0.44 (0) 0.57 (0)

169 0.42 (0) 0.62 (0)

Average 0.41 0.61

Table 6: Correlations between MOS of code and number
of function calls in the code. Numbers in parentheses
represent p-values.

C Training Details

We construct two training datasets consisting solely
of MC and SC, respectively, based on their MOS
values, and fine-tune the full parameters of the
code LLMs on these datasets. Both training subsets
cover the same set of problems, with SC having
a MOS value of 0 and MC having MOS values
ranging between 0.7 and 1. Following Jain et al.
(2024), we employ minhash-based deduplication
using Gaoya16 to limit each problem to a maximum
of 25 solutions. Then, an equal number of codes
are randomly selected from each problem to ensure
that the MC and SC datasets have the same num-
ber of training samples. Applying this process to
the CodeContests dataset results in about 5K prob-
lems and 61K training examples for both the MC
and SC datasets. We decided to exclude the APPS
dataset from the fine-tuning experiment due to the
limited number of common problems and codes for
SC and MC.

For model training, we used the HuggingFace
Trainer17 library with the AdamW(Loshchilov and
Hutter, 2019) optimizer, starting with a learning
rate of 5e-5. A cosine learning rate scheduler with
a warmup ratio of 0.01 was applied, and we utilized
bf16 precision to optimize memory usage. The ef-
fective batch size was set to 64, achieved through
a per-device batch size of 4 and gradient accumu-
lation step of 16. Training was conducted for 1
epoch on 4 A6000 GPUs. After training, model in-
ference was conducted in a zero-shot manner using
the same sampling parameters as those in the ICL
setting.

16https://github.com/serega/gaoya
17https://huggingface.co/docs/transformers/

main_classes/trainer

11567

https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2308.12950
https://github.com/serega/gaoya
https://huggingface.co/docs/transformers/main_classes/trainer
https://huggingface.co/docs/transformers/main_classes/trainer

D Details on In-Context Learning

Following Rozière et al. (2024), we use a special
instruction to help models understand the specific
question format: “read from and write to standard
IO” for standard questions and “use the provided
function signature” for call-based questions, which
we insert into our prompt as the question guidance
for APPS and use special instructions for standard
questions for CodeContests. This corresponds to
{FEW_SHOT_QUESTION} in Figure 4. We use
temperature and top-p sampling strategies for cal-
culating pass@k. Following Jain et al. (2024), we
set the top-p value of 0.95 and temperature to 0.1
for pass@1, and 0.6 for pass@10.

11568

Figure 3: Examples of four code categories for the same problem with their modularity scores.

11569

Split CodeContests APPS
(INTRODUCTORY)

APPS
(INTERVIEW)

APPS
(COMPETITION)

Problems
Training 7313 42 1247 361

Test 165 702 2699 309

Avg. Test Cases
Training 20 1 1 10

Test 10 16 24 45

Avg. Solutions Training 182 64 24 17

Table 7: Statistical details regarding the number of problems, the average number of test cases per problem, and the
average number of solutions in the filtered datasets of CodeContests and APPS.

Figure 4: The prompt template used for converting SC to TMC.

Figure 5: The prompt template used for two-shot in-context learning with Code Llama.

11570

Figure 6: The prompt template used for two-shot in-context learning with DeepSeekCoder.

Figure 7: The prompt template used for two-shot in-context learning with GPT-4o-mini.

(a) One-shot ICL with CodeLlama 7B. (b) One-shot ICL with DeepSeekCoder 6.7B.

Figure 8: Scatter plots with modularity (MOS) on the x-axis and performance (pass@1) on the y-axis show weak
negative correlations between the two variables. The CodeContests dataset is used for evaluation. Note that the
MOS scores of demonstration codes exhibit a wide distribution. The red dashed line represents the regression line.

11571

