
Findings of the Association for Computational Linguistics: EACL 2024, pages 11584–11596
November 12-16, 2024 ©2024 Association for Computational Linguistics

R2AG: Incorporating Retrieval Information into Retrieval Augmented
Generation

Fuda Ye1, Shuangyin Li1,* , Yongqi Zhang2, Lei Chen2,3

1School of Computer Science, South China Normal University
2The Hong Kong University of Science and Technology (Guangzhou)

3The Hong Kong University of Science and Technology
fudayip@m.scnu.edu.cn, shuangyinli@scnu.edu.cn, yongqizhang@hkust-gz.edu.cn, leichen@cse.ust.hk

Abstract
Retrieval augmented generation (RAG) has
been applied in many scenarios to augment
large language models (LLMs) with external
documents provided by retrievers. However,
a semantic gap exists between LLMs and
retrievers due to differences in their training
objectives and architectures. This misalign-
ment forces LLMs to passively accept the
documents provided by the retrievers, leading
to incomprehension in the generation process,
where the LLMs are burdened with the task of
distinguishing these documents using their in-
herent knowledge. This paper proposes R2AG,
a novel enhanced RAG framework to fill this
gap by incorporating Retrieval information into
Retrieval Augmented Generation. Specifically,
R2AG utilizes the nuanced features from the
retrievers and employs a R2-Former to capture
retrieval information. Then, a retrieval-aware
prompting strategy is designed to integrate re-
trieval information into LLMs’ generation. No-
tably, R2AG suits low-source scenarios where
LLMs and retrievers are frozen. Extensive ex-
periments across five datasets validate the effec-
tiveness, robustness, and efficiency of R2AG.
Our analysis reveals that retrieval information
serves as an anchor to aid LLMs in the gener-
ation process, thereby filling the semantic gap.

1 Introduction

Retrieval augmented generation (RAG) (Lewis
et al., 2020) significantly enhances the capabilities
of large language models (LLMs) by integrating
external, non-parametric knowledge provided by
retrievers. In RAG framework, the retriever lo-
cates and looks up useful documents based on a
given query, and then the LLM interacts with these
retrieved results to generate a response. The coordi-
nation of retrieval and generation achieves impres-
sive performance without additional training. Espe-
cially in domain-specific and knowledge-intensive

*Corresponding author. The source code is available at
https://github.com/yefd/RRAG.git.
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Figure 1: A comparison between RAG and R2AG.
R2AG employs a trainable R2-Former to bridge the
semantic gap between retrievers and LLMs. Optionally,
LLMs can be fine-tuned to understand the retrieval in-
formation further.

tasks, RAG offers real-time knowledge with high
interpretability to LLMs, effectively mitigating the
hallucination problem (Mallen et al., 2023).

However, there exists a semantic gap between re-
trievers and LLMs due to their vastly different train-
ing objectives and architectures (BehnamGhader
et al., 2022). Specifically, retrievers, typically en-
coder architecture, are designed to retrieve the most
relevant documents for a query (Zhu et al., 2023b).
Conversely, LLMs, generally decoder architecture,
are expected to answer questions based on their
inherent knowledge or given documents. How-
ever, the interaction between retrievers and LLMs
in RAG primarily relies on simple text concatena-
tion (BehnamGhader et al., 2022). This poor com-
munication strategy will lead to several challenges
for LLMs. Externally, it is hard for LLMs to uti-
lize more information from retrievers in separate
processes. In RAG, the retrieved documents that
only preserve sequential relationships are unidirec-
tionally delivered to LLMs, and LLMs do not fully
understand why retrievers provide the documents.
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Particularly, low-quality documents inevitably ap-
pear in retrieved results (Barnett et al., 2024), but
LLMs have to accept this noise passively. Inter-
nally, it is hard for LLMs to handle all of the re-
trieved documents with their inherent knowledge.
LLMs must process all the results and assess which
documents are important, impacting their ability
to generate accurate answers (Wu et al., 2024).
Moreover, LLMs face the lost-in-middle problem
in overly long documents (Liu et al., 2023), leading
to further misunderstanding.

Unfortunately, existing enhanced RAG methods,
including pre-processing approaches (Izacard et al.,
2022; Yan et al., 2024; Asai et al., 2023; Ke et al.,
2024) and compression-based approaches (Yan
et al., 2024; Xu et al., 2023; Jiang et al., 2023),
do not recognize this semantic gap between retriev-
ers and LLMs. They remain to treat retrieval and
generation as separate processes and directly add
processed or compressed documents into the inputs
for LLMs. These strategies ignore the semantic
connections necessary for deeper comprehension,
which may lead to potentially misleading LLMs
even with perfect retrievers.

To address these challenges, it is essential to
bridge the semantic gap between retrievers and
LLMs. As previously mentioned, retrievers can
provide high-quality semantic representations that
can be beneficial for catching nuanced differences
among documents (Zhao et al., 2022). Thus, our in-
tuition is to exploit these semantic representations
as additional knowledge, empower LLMs to gain a
deeper comprehension of the retrieved documents,
and thereby generate more accurate responses.

This paper proposes a cost-effective enhanced
RAG framework to incorporate Retrieval informa-
tion into Retrieval Argumented Generation (named
R2AG), enhancing LLMs’ perception of the key
information among retrieved documents. Specif-
ically, R2AG adopts an input processing pipeline
that transforms semantic representations from a
retriever into unified retrieval features. Then, a
trainable R2-Former is employed to capture es-
sential retrieval information. As shown in Fig-
ure 1, R2-Former is a pluggable and lightweight
model placed between the retriever and the LLM.
Finally, through a retrieval-aware prompting strat-
egy, the LLM receives additional embeddings that
contain retrieval information. This strategy aligns
the knowledge from retrievers with LLMs without
changing the content and order of retrieved docu-
ments, thereby relieving information loss. R2AG

offers the flexibility to fine-tune R2-Former alone
or both with LLMs. Thus, in R2AG framework,
both retrievers and LLMs can be frozen to save
computational costs, making R2AG suitable for
scenarios with limited resources. Overall, our con-
tributions are summarized as follows:

• We propose R2AG, an enhanced RAG frame-
work, to incorporate retrieval information
into retrieval augmented generation. Notably,
R2AG is compatible with low-source scenar-
ios where retrievers and LLMs are frozen.

• We design a lightweight model, R2-Former,
to bridge the semantic gap between retrievers
and LLMs. R2-Former can be seamlessly in-
tegrated into existing RAG frameworks using
open-source LLMs.

• We introduce a retrieval-aware prompting
strategy to inject retrieval information into the
input embeddings, enhancing LLMs’ ability
to understand relationships among documents
without much increase in complexity.

Experimental results demonstrate the superior per-
formance and robustness of R2AG in various sce-
narios. Our analysis shows that R2AG increases
latency by only 0.8% during inference. Further-
more, it demonstrates that retrieval information
anchors LLMs to understand retrieved documents
and enhances their generation capabilities.

2 Related Works

2.1 Retrieval Augmented Generation
Despite being trained on vast corpora, LLMs still
struggle with hallucinations and updated knowl-
edge in knowledge-sensitive tasks (Zhao et al.,
2023). RAG (Lewis et al., 2020) is regarded as an
efficient solution to these issues by combining a re-
trieval component with LLMs. In detail, documents
gathered by retrievers are bound with the original
query and placed into the inputs of LLMs to pro-
duce final responses. RAG allows LLMs to access
vast, up-to-date data in a flexible way, leading to
better performance. Benefiting from the progress
of multi-modal alignment techniques (Li et al.,
2023b; Zhu et al., 2023a), the idea of RAG has
been extended to various domains with modality-
specific retrievers, including audios (Koizumi et al.,
2020), images (Yasunaga et al., 2023), knowledge
graphs (He et al., 2024), and so on. Despite its
rapid growth, RAG suffers several limitations, such
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as sensitivity to retrieval results, increased com-
plexity, and a semantic gap between retrievers and
LLMs (Kandpal et al., 2022; Zhao et al., 2024).

2.2 Enhanced RAG
Recent works develop many enhanced approaches
based on the standard RAG framework. To directly
improve the effectiveness of RAG, REPLUG (Shi
et al., 2023) and Atlas (Izacard et al., 2022) lever-
age the LLM to provide a supervisory signal for
training a better retriever. However, the noise will
inevitably appear in retrieval results (Barnett et al.,
2024). Recent studies focus on pre-processing
the retrieved documents before providing them
to LLMs. Techniques such as truncation and se-
lection are effective methods to enhance the qual-
ity of ranking lists without modifying the content
of documents (Gao et al., 2023; Xu et al., 2024).
CRAG (Yan et al., 2024) trains a lightweight re-
trieval evaluator to exclude irrelevant documents.
BGM (Ke et al., 2024) is proposed to meet the
preference of LLMs by training a bridge model to
re-rank and select the documents. Some studies
aim to train small LMs to compress the retrieval
documents, thus decreasing complexity or reducing
noise. Jiang et al. (2023) propose LongLLMLin-
gua to detect and remove unimportant tokens. RE-
COMP (Xu et al., 2023) adopts two compressors
to select and summarize the retrieved documents.
However, the pre-processing methods introduce ad-
ditional computational costs during inference and
may lead to the loss of essential information.

Notably, the above methods target providing
higher-quality retrieval results to LLMs and ac-
tually treat retrieval and generation as two dis-
tinct processes. This separation fails to bridge the
semantic gap between retrievers and LLMs fully.
Some approaches (Deng et al., 2023; Sachan et al.,
2021) enhance LLM comprehension abilities by in-
corporating documents into latent representations.
However, these methods are typically designed for
encoder-decoder LLMs, and constrain their suit-
ability for prevailing decoder-only LLMs. While
joint modeling methods (Glass et al., 2022; Izac-
ard et al., 2024) benefit from the joint optimiza-
tion of LLMs and retrievers, they need extra train-
ing to align semantic spaces, which may hamper
the generality of LLMs (Zhao et al., 2024). Com-
pared with these joint modeling methods, a key
difference is that R2AG offers a cost-effective and
non-destructive manner to bridge the semantic gap
between LLMs and retrievers.

3 R2AG

3.1 Problem Formulation and Overview
RAG involves the task that aims to prompt an
LLM to generate answers based on a query
and documents returned by a retriever. For-
mally, given a query q and a list of documents
D={d1, d2, · · · , dk} in preference order ranked by
the retriever fR, the LLM, a generator fG, is ex-
pected to generate the output ŷ. The pipeline can
be expressed as:

ŷ = fG (P (q,D)) , (1)

where P is a predefined prompt template. It shows
the retrievers and LLMs are couple in a simplistic
prompt-based method, which will lead to miscom-
munication and the semantic gap.

Figure 2 illustrates the overall framework of
R2AG. Initially, given a query and retrieved docu-
ments, R2AG processes representations modeled
by a retriever into unified-format features. These
list-wise features consider nuanced relationships
both between the query and documents and among
the documents themselves. Then, a R2-Former is
designed to capture retrieval information for LLM
usage. It allows unified features to interact with
each other via self-attention mechanism, enabling it
to understand complex dependencies. To integrate
retrieval information into the LLM’s generation
process, R2AG adopts a retrieval-aware prompting
strategy to insert the retrieval information into the
LLM’s input embedding space without causing in-
formation loss or increasing much complexity. Be-
sides, R2AG is flexible to be applied in low-source
scenarios where LLMs are frozen.

3.2 Retrieval Feature Extraction
Before generation, it is necessary to obtain high-
quality retrieval features. In R2AG, we first get
semantic representations from the retriever fR. For-
mally, a query q and document d are encoded into
representations as xq=fR(q) and xd=fR(d), re-
spectively. However, these representations can not
be directly used because a single representation
can not capture interactive features for LLM’s gen-
eration. Moreover, to suit various retrievers, it is
intuitive to transform representations in different
spaces into unified format features.

Inspired by works in retrieval downstream
tasks (Ma et al., 2022; Ye and Li, 2024), we align
these representations into retrieval features by com-
puting relevance, precedent similarity, and neigh-
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Figure 2: An illustration of R2AG. The R2-Former is designed to extract retrieval features, acting as an information
bottleneck between retrievers and LLMs. Through the retrieval-aware prompting strategy, the retrieval information
serves as an anchor to guide LLMs during generation. “Emb” is short for embedding, “PE” stands for positional
embeddings, and “<R>” denotes the placeholder for retrieval information.

bor similarity scores. Specifically, these scores are
calculated by a similarity function such as dot prod-
uct or cosine similarity. The relevance score ri is
between the query and the i-th document and is
also used to sort the documents. The precedent and
neighbor similarity scores are computed between
the i-th document representation and its precedent-
weighted and adjacent representations, respectively.
Detailed formulations are provided in Appendix A.

Finally, three features are concatenated as input:
inputi={ri, γi, ζi}, representing relevance, prece-
dent similarity, and neighbor similarity. Then, the
feature list {inputi}ki=1 is then fed into R2-Former
to further exploit retrieval information.

3.3 R2-Former

Inspired by Li et al. (2023b), we propose the R2-
Former as the trainable module that bridges be-
tween retrievers and LLMs. As shown in the
right side of Figure 2, R2-Former is a pluggable
Transformer-based model that accepts list-wise fea-
tures as inputs and outputs retrieval information.

To better comprehend list-wise features from re-
trievers, we employ an input embedding layer to
linearly transform input features into a higher di-
mension space. Positional embeddings are then
added before attention encoding to maintain se-
quence awareness. Then, a Transformer (Vaswani
et al., 2017) encoder is utilized to exploit the input
sequences, which uses a self-attention mask where
each position’s feature can attend to other positions.
Formally, for an input list {inputi}ki=1, the process
is formulated by:

H = fatt

[
f→h1

(
{inputi}ki=1

)
+p

]
, (2)

where fatt is the Transformer encoder with h1 hid-
den dimension, f→h1 is a linear mapping layer, and
p ∈ Rk×h1 represents trainable positional embed-
dings. The output embeddings H ∈ Rk×h1 thus
contain the deeper retrieval information and will be
delivered to the LLM’s generation.

3.4 Retrieval-Aware Prompting
In the generation process, it is crucial for the LLM
to utilize the retrieval information effectively. As
shown in the upper part of Figure 2, we introduce a
retrieval-aware prompting strategy that injects the
retrieval information extracted by R2-Former into
the LLM’s generation process.

First, we employ a projection layer to linearly
transform the retrieval information into the same
dimension as the token embedding layer of the
LLM. Formally, this is represented as:

ER = f→h2(H) = {eRi }ki=1, (3)

where f→h2 is a linear projection layer via an MLP
layer, and h2 is the dimension of LLM’s token
embedding layer.

Then, we tokenize the query and documents us-
ing LLM’s tokenizer and convert them into embed-
dings. For example, a document d is tokenized into
td={tdj}nd

j=1, where tdj is the j-th token in the docu-
ment, nd is the number of tokens in the document d.
And the token embeddings can be transformed by a
lookup in the token embedding layer. The process
can be expressed as:

Ed = femb

(
td
)
= {edj}nd

j=1, (4)

where femb is the token embedding layer of the
LLM, and Ed ∈ Rnd×h2 is the embeddings of
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document d. A similar process is applied to obtain
the query embeddings Eq = {eqj}

nq

j=1, where nq is
the number of query tokens.

For nuanced analysis of each document, the cor-
responding retrieval information embeddings are
then prepended to the front of each document’s
embeddings. They are external knowledge and
function as an anchor, guiding the LLM to focus
on useful documents. The final input embeddings
can be arranged as:

E = [e
q
1, · · · , e

q
nq

︸ ︷︷ ︸
query

, e
R
1 , e

d1
1 , · · · , e

d1
nd1︸ ︷︷ ︸

document1

, · · · , e
R
k , e

dk
1 , · · · , e

dk
ndk︸ ︷︷ ︸

documentk

],

(5)

where eRi denotes the retrieval information embed-
ding for the i-th document. In this way, the re-
trieval information of corresponding document can
be well mixed, reducing the burden of the LLM
to process all documents. Finally, we can get the
responses by:

ŷ = fG(E), (6)

where ŷ represents the LLM-generated results. No-
tably, this part simplifies the instruction prompt,
and detailed descriptions and prompt templates can
be found in Appendix B.

3.5 Training Strategy
As the interdependence of retrieval and generation,
we integrate R2-Former training and LLM align-
ment into one stage. The joint training allows R2-
Former to better understand list-wise features from
the retriever, ensuring retrieval information can be
deeply interpreted by the LLM.

For R2-Former training, we perform a query-
document matching (QDM) task that enforces R2-
Former to learn the relevance relationships from
list-wise features. In detail, it is a binary classi-
fication task that asks to model each document’s
relevance to the query. The formula for prediction
is as follows:

ŝ = f→1(H) = {ŝi}ki=1, (7)

where f→1 is a binary classification head that
outputs the relevance predictions ŝ. Supporting
s={si}ki=1 are the ground-truth labels for docu-
ments, we use cross-entropy as the loss function,
defined as:

LQDM (s, ŝ) = −
k∑

i=1

si log(ŝi)+(1−si) log(1−ŝi). (8)

For LLM alignment, we utilize the language
modeling (LM) task, which involves learning to

generate subsequent tokens based on the preceding
context and retrieval information. The language
modeling loss LLM aims to maximize the log-
likelihood of the tokens, rewarding the LLM for
predicting subsequent words correctly.

The joint training involves instruction fine-
tuning with a linear combination of QDM and LM
tasks. The final loss is expressed as:

L = LQDM+LLM . (9)

Notably, R2AG offers the flexibility to train the
R2-Former solely while freezing the LLM or to
train both together for a deeper understanding of
retrieval information. The decision represents a
trade-off between lower computational costs and
higher accuracy in real-world scenarios.

4 Experiments

4.1 Datasets and Metrics
We evaluate R2AG on five datasets: Natural
Questions (NQ) (Kwiatkowski et al., 2019), Hot-
potQA (Yang et al., 2018), MuSiQue (Trivedi
et al., 2021), 2WikiMultiHopQA (2Wiki) (Ho et al.,
2020), and DuReader (He et al., 2018). For NQ
dataset, we utilize NQ-10, NQ-20, and NQ-30
datasets built by Liu et al. (2023), which contain 10,
20, and 30 total documents, respectively. DuReader
is a multiple documents QA version built by Bai
et al. (2023b). Detailed introduction and statistics
are shown in Appendix C.

Following Mallen et al. (2023); Liu et al. (2023),
we adopt accuracy (Acc) as the evaluation met-
ric for NQ datasets. Following Bai et al. (2023b),
we adopt accuracy (Acc) and F1 score as evalua-
tion metrics for HotpotQA, MuSiQue, and 2Wiki
datasets. For DuReader dataset, we measure per-
formance by F1 score and Rouge (Lin, 2004).

4.2 Baselines
To fully evaluate R2AG, we compared two types of
methods: standard RAG using various LLMs, and
enhanced RAG using the same foundation LLM.

First, we evaluate standard RAG baselines
where LLMs generate responses given the query
prepended with retrieved documents. For English
datasets, we use several open-source LLMs, includ-
ing LLaMA27B , LLaMA213B , LLaMA38B (Tou-
vron et al., 2023), and LongChat1.57B (Li et al.,
2023a). Besides, we adopt ChatGPT (Ouyang et al.,
2022) and GPT4 (Achiam et al., 2023) as baselines
of closed-source LLMs. For the Chinese dataset,

11588



Methods NQ-10 NQ-20 NQ-30 HotpotQA MuSiQue 2Wiki
Acc Acc Acc Acc F1 Acc F1 Acc F1

Frozen LLMs

LLaMA27B 0.3898 - - 0.2630 0.0852 0.0546 0.0241 0.1205 0.0634
LongChat1.57B 0.6045 0.5782 0.5198 0.5424 0.3231 0.2808 0.1276 0.3882 0.2253
LLaMA38B 0.5141 0.4991 0.5311 0.5901 0.2056 0.2427 0.0891 0.4723 0.1952
LLaMA213B 0.7684 - - 0.3788 0.1000 0.0909 0.0446 0.2405 0.0898
ChatGPT 0.6886 0.6761 0.6347 0.6557 0.6518 0.3376 0.3321 - -
GPT4 0.7759 0.7514 0.7514 0.7673 0.6026 0.4853 0.3270 - -

CoT 0.4482 0.6026 0.5631 0.2365 0.1028 0.0626 0.0412 0.1627 0.0969
RECOMP 0.0169 0.2222 0.1977 0.2388 0.0265 0.0830 0.0156 0.2666 0.0329
CRAG 0.3974 0.6441 0.6347 0.1194 0.0360 0.0262 0.0047 0.0768 0.0422
LongLLMLingua 0.3635 - - 0.4174 0.1178 0.1939 0.0477 0.2374 0.0888
R2AG 0.6930 0.7062 0.6704 0.6675 0.3605 0.1864 0.1687 0.3342 0.3452

Fine-tuned LLMs

Self-RAG 0.1883 - - 0.2475 0.1236 0.0701 0.0378 0.2611 0.1389
RAFT 0.7514 0.8041 0.7307 0.7349 0.3172 0.2529 0.1502 0.7555 0.4869
R2AG+RAFT 0.8192 0.8060 0.7458 0.7351 0.3056 0.2295 0.1533 0.7444 0.6351

Table 1: Main results on four English datasets. All enhanced RAG methods utilize the same foundation LLMs,
with results marked in gray background indicating the performance of these foundation LLMs. Results in gray
represent the performance of closed-source LLMs. Results in bold and results in underlined mean the best and
second-best performance among current classified methods.

Methods DuReader
F1 Rouge

Frozen LLMs

LongChat1.57B 0.0914 0.1181
Qwen1.50.5B 0.1395 0.1656
Qwen1.51.8B 0.1533 0.1570
InternLM21.8B 0.1330 0.1391

R2AG 0.1510 0.1663

Fine-tuned LLMs

RAFT 0.2423 0.2740
R2AG+RAFT 0.2507 0.2734

Table 2: Performance comparison on DuReader dataset.

we employ Qwen1.50.5B , Qwen1.51.8B (Bai et al.,
2023a) and InternLM21.8B (Cai et al., 2024).

Secondly, we experiment with several meth-
ods that can enhance RAG, including CoT (Wei
et al., 2022), RECOMP (Xu et al., 2023),
CRAG (Yan et al., 2024), Self-RAG (Asai et al.,
2023), LongLLMLingua (Jiang et al., 2023), and
RAFT (Zhang et al., 2024). For NQ-10, HotpotQA,

MuSiQue, and 2Wiki datasets, we use LLaMA27B
as the foundation LLM for enhanced RAG methods,
which has a maximum context length of 4k tokens.
For NQ-20 and NQ-30 datasets, LongChat1.57B
is selected as the foundation LLM, which extends
the context window to 32k tokens. For DuReader
dataset, Qwen1.50.5B is the foundation LLM, also
with a maximum context length of 32k tokens.

These methods were categorized into two groups
– frozen and fine-tuned – based on whether they
require training the LLMs.

The implementation details are in Appendix D.

4.3 Main Results

Table 1 and Table 2 provide the main results. We
can obtain the following conclusions:

(1) Compared with foundation LLMs using stan-
dard RAG, R2AG can significantly increase perfor-
mance. Even in multi-hot datasets, R2AG improves
LLMs’ ability for complex reasoning. In DuReader
dataset, with a token length of 16k, R2AG remains
effective, demonstrating its robustness and effi-
ciency in handling extensive text outputs. These re-
sults indicate that R2AG effectively enables LLMs
to better understand the retrieval information and
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Methods NQ-10 NQ-20
LLaMA27B LongChat1.57B

R2AG 0.6930 0.7062

w/o r 0.6761 (↓2.45%) 0.6798 (↓3.73%)
w/o γ 0.6723 (↓2.99%) 0.6930 (↓1.87%)
w/o ζ 0.6252 (↓9.78%) 0.6855 (↓2.93%)
w/o LQDM 0.6441 (↓7.07%) 0.7043 (↓0.27%)

Table 3: Ablation studies on NQ-10 and NQ-20 datasets.
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Figure 3: Performance of learnable tokens across dif-
ferent document counts on NQ-10 dataset. “GT” means
only retaining ground-true documents.

boosts their capabilities in handling provided doc-
uments. (2) Compared with other LLMs using
standard RAG, R2AG generally achieves better per-
formance except for closed-source LLMs. GPT4
shows superior results in most datasets, establish-
ing it as a strong baseline. Notably, R2AG ex-
cels ChatGPT in NQ and HotpotQA datasets. Us-
ing LLaMA27B as the foundational LLM, R2AG
competes well with LLaMA38B and LLaMA213B
across most metrics. (3) It is clear that R2AG
significantly surpasses other enhanced RAG meth-
ods in most results, underscoring the importance
of incorporating retrieval information. Although
CRAG has a good result in NQ datasets, its perfor-
mance significantly declines in multi-hop datasets.
That is because CRAG’s simplistic approach of fil-
tering out documents irrelevant to the query can
omit crucial connections needed for understanding
complex queries. Additionally, our method outper-
forms compression-based methods (RECOMP and
LongLLMLingua). Our case studies reveal their
poor performance is mainly because the coordi-
nation between the compressors and LLMs tends
to result in substantial information loss and even
severe hallucinations. (4) RAFT can significantly
improve the performance. When combined with
R2AG, the results are the best overall, suggesting
that a deeper understanding acquired through train-
ing benefits generation capabilities.
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Darker parts mean the difference values of R2AG13B .

4.4 Ablation Studies
To demonstrate the effectiveness of R2AG, we
create four variants. Specifically, we remove
three retrieval features r, γ, ζ, individually. For
R2-Former, we remove the QDM loss LQDM . We
conduct the ablation studies on the NQ-10 and NQ-
20 datasets, using LLaMA27B and LongChat1.57B
as foundation LLMs with results shown in Table 3.
We can obtain the following observations: First,
the performance decreases without any of the three
retrieval features, underscoring their effectiveness.
The results reveal that utilizing additional retrieval
features can help LLMs disentangle irrelevant
documents. Secondly, the performance decreases
without the QDM loss, showing that the query-
document matching task is indeed beneficial for
exploiting retrieval information.

To explore the effectiveness of the retrieval-
aware prompting strategy, we design an experi-
ment on NQ-10 dataset with various top-k retrieved
documents where the retrieval information is set
as learnable tokens. This means R2AG only uses
these soft prompts without additional features when
training and inference. From the results shown in
Figure 3, we can find that: (1) When retrieval re-
sults are largely relevant, with few or no redundant
documents, learnable tokens do not aid the LLM
and may instead become redundant information
for the generation. (2) As the number of docu-
ments increases, it is natural to observe a decline
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Figure 6: Heatmaps of self-attention distribution of the last token, broken out by token position (X-axis) and layer
(Y-axis). Each attention layer comprises 8 heads, and the attention weights are the mean of all the heads. Darker
yellow means higher attention weights. eRi is the retrieval information embedding for i-th document.

performance. Surprisingly, learnable tokens sig-
nificantly enhance the performance of the LLM.
These findings demonstrate that the retrieval-aware
prompting strategy effectively assists LLMs in pro-
cessing multiple documents, especially when those
documents include irrelevant information.

4.5 Discussions

The Impact of Performance of Retrievers and
LLMs. As mentioned in Section 1, the quality
of retrieved documents can heavily influence the
performance of LLMs in RAG. From the main re-
sults, R2AG achieves improvements even when
the retrieval performance is poor, as observed
in MuSiQue and DuReader datasets. Further-
more, we conduct experiments on NQ-10 dataset
with five non-trained retrievers, specifically BGE-
Reranker (Xiao et al., 2023), BERT (Devlin et al.,
2019), Contriever (Izacard et al., 2022), and Ope-
nAI Embedding models (small and large) (Nee-
lakantan et al., 2022), with 1024, 768, 768, 1536,
and 3072 dimensions, respectively. Note that Ope-
nAI Embedding models are closed-source. From
the results presented in Figure 4, we easily observe
that a stronger retriever leads to better performance,
both standard RAG and R2AG. Importantly, R2AG
significantly enhances the effectiveness of LLMs,
even when the retrieval performance is poor.

We conduct experiments on HotpotQA,
MuSiQue, and 2Wiki datasets using LLaMA213B
as the foundation LLM. Results shown in Figure 5
indicate that R2AG13B outperforms R2AG7B ,
particularly in the accuracy metric. Specially,

there is a decline performance in F1 scores for
HotpotQA and MuSiQue datasets. We find this
primarily because larger LLMs usually tend to
output longer answers with explanations (the
average response token count in HotpotQA dataset
for R2AG7B is 37.44, compared to 49.71 for
R2AG13B). This tendency also can be observed
from the results of ChatGPT and GPT4.

These results reveal that both a stronger LLM
and a more effective retriever lead to better perfor-
mance, validating that R2AG is a genetic method
that can be efficiently applied in various scenarios.

The Effect of Retrieval Information. For a
deeper and more intuitive exploration of how re-
trieval information improves LLMs’ generation,
we present a visualization of the self-attention dis-
tribution in R2AG compared with standard RAG.
In detail, we analyze a case in NQ-10 dataset in
which the foundation LLM is LLaMA27B . We ex-
tract the self-attention weights in different layers
from LLM’s outputs and visualize the last token’s
attention distribution for other tokens. The relevant
document is ranked in position 2 in our selected
case, while the 1st document is potentially confus-
ing. For a clear illustration, we select attention
distribution for tokens in top-4 documents. From
Figure 6, it is evident that the retrieval informa-
tion receives higher attention scores even in deeper
layers, and the relevant document can get more at-
tention within 1-4 layers. That means the retrieval
information effectively acts as an anchor, guiding
the LLM to focus on useful documents.
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5 Conclusion and Future Work

This paper proposed a novel enhanced RAG frame-
work named R2AG to bridge the semantic gap be-
tween the retrievers and LLMs. By incorporating
retrieval information from retrievers into LLMs’
generation process, R2AG captures a comprehen-
sive understanding of retrieved documents. Experi-
mental results show that R2AG outperforms other
competitors. In addition, the robustness and effec-
tiveness of R2AG are further confirmed by detailed
analysis. In future work, more retrieval features
could be applied to R2AG framework.

Limitations

The following are the limitations associated with
R2AG: First, R2AG depends on the semantic rep-
resentations modeled by encoder-based retrievers.
The suitability of other types of retrievers, such as
sparse and cross-encoder retrievers, requires further
exploration. Secondly, as mentioned in Section 4.5,
R2AG relies on the ability of the foundation LLM,
and more powerful closed-source LLMs may not be
compatible with R2AG. Thirdly, there may be other
informative features besides the three retrieval fea-
tures - relevance, precedent similarity, and neighbor
similarity scores. Lastly, R2AG is evaluated on five
datasets, of which relevant documents are provided.
However, situations where no relevant documents
are available need to be considered. R2AG may
benefit from integrating techniques like self-RAG
to better handle such situations.
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Datasets Language # Query # Train/Test # Tokens # Rel/Docs MAP

NQ-10 English 2655 2124/531 ∼2k 1/10 0.9602
NQ-20 English 2655 2124/531 ∼4k 1/20 0.9287
NQ-30 English 2655 2124/531 ∼6k 1/30 0.9215

HotpotQA English 97852 90447/7405 ∼2k 2.36/10 0.9138
MuSiQue English 22355 19938/2417 ∼3k 2.37/20 0.5726

2Wiki English 180030 167454/12576 ∼2k 2.42/10 0.9637
DuReader Chinese 200 160/40 ∼16k 1.82/20 0.7169

Table 4: Statistics of datasets. “# Rel/Docs” denotes the number of relevant documents and the total number of
documents for each query. “MAP” represents the Mean Average Precision, a common retrieval metric.

A Retrieval Feature Extraction Details

Formally, the relevance between the query and the
i-th document is calculated as:

ri = sim
(
xq,xd

i

)
, (10)

where sim is a similarity function such as dot prod-
uct or cosine similarity, xq and xd

i are representa-
tions of query and i-th document, respectively.

The precedent similarity computes the simi-
larity score between case representation and its
precedent-weighted representations in the ranking
list as follows:

γi=sim


xd

i ,
i−1∑

j=1

wj · xd
j


 , wj=

exp(rj)∑k
ℓ=1 exp(rℓ)

,

(11)
where γi is the precedent similarity between i-th
document and its precedents in the ranking list, and
ri is relevance between the query and i-th docu-
ment.

Neighbor similarity represents the average simi-
larity of i-th document to its adjacent documents.
Specifically, the neighbor similarity of a case in the
ranking list is given by:

ζi =

{
sim(xd

1,x
d
2), i = 1

[sim(xd
i−1,x

d
i ) + sim(xd

i ,x
d
i+1)]/2, i ∈ [2, k)

sim(xd
k−1,x

d
k), i = k

,

(12)

where ζi represents the average similarity of i-th
document to its adjacent documents. Such that we
can get the list-wise features among documents.

B Prompt Templates

In R2AG, retrieval information, we append k spe-
cial tokens (“<R>”) in front of each document to
facilitate the incorporation of retrieval information.
These tokens do not carry meaningful semantics

but serve as placeholders for the retrieval informa-
tion within the prompt. This special token facili-
tates the integration of retrieval information into
the generation process.

Table 5 shows the prompt templates for R2AG
and other baselines. The prompt templates of
DuReader dataset can be found in our source code.

C Dataset Introduction

We conduct evaluations on five datasets, including:

Natural Questions (NQ) (Kwiatkowski et al.,
2019) is developed from Google Search and con-
tains questions coupled with human-annotated an-
swers extracted from Wikipedia. Further, Liu
et al. (2023) collect k−1 distractor documents from
Wikipedia that do not contain the answers, where
k is the total document number for each question.
This dataset has three versions: NQ-10, NQ-20,
and NQ-30, with total document numbers of 10,
20, and 30, respectively.

HotpotQA (Yang et al., 2018) is a well-known
multi-hop question answering dataset based on
Wikipedia. This dataset involves questions requir-
ing finding and reasoning over multiple supporting
facts from 10 documents. There are two reasoning
types of questions: bridging and comparison.

MuSiQue (Trivedi et al., 2021) has questions
that involve 2-4 hops and six types of reasoning
chains. The dataset is constructed through a bot-
tom–up process by carefully selecting and compos-
ing single-hop questions. The final answer to each
question in the distractor setting is extracted from
20 documents.

2WikiMultiHopQA (2Wiki) (Ho et al., 2020)
consists of up to 5-hop questions, each associated
with 10 documents. Unlike HotpotQA, this dataset
needs to evaluate the interpretability of models not
only with supporting evidence but also with entity-
relation tuples.
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DuReader (He et al., 2018) is a Chinese dataset
developed based on Baidu Search and Baidu Zhi-
dao. To adapt it for assessing long context ability,
for each question, Bai et al. (2023b) arbitrarily se-
lect several documents from the total corpus as
distractors until each question is associated with 20
candidate documents.

The ground truth labels are provided in original
datasets. Detailed statistics can be found in Table 4.

D Implementation Details

Unlike some works (Li et al., 2023b; Zhu et al.,
2023a) built on LAVIS (Li et al., 2022), we com-
pletely implement R2AG on PyTorch (Paszke et al.,
2019) and Transformers (Wolf et al., 2020) libraries
for easy usage.

For the retrieval task, we utilize the Sentence-
Transformer (Reimers and Gurevych, 2019) to fine-
tune a BERT (Devlin et al., 2019) model as the re-
triever, which is a siamese dual encoder with shared
parameters. The models “bert-base-uncased”
and “bert-base-chinese” are used for English
datasets and the Chinese dataset, respectively. All
retrievers adopt default hyper-parameter settings
with 768 embedding dimensions. Cosine similarity
is employed as the scoring function for retrieval
and feature extraction. The retrieval performance
across datasets is shown in Table 4. Contrary to
some works (Liu et al., 2023; Jiang et al., 2023)
that artificially place ground truth documents in
fixed positions, this paper considers that candidate
documents are ranked by the retriever to simulate
real-world scenarios.

For R2-Former, we determine the learning rate
as 2e-4 and dropout as 0.1. The number of attention
heads and hidden size in Transformer encoder are
4 and 256, respectively. Adam (Kingma and Ba,
2014) is adopted as the optimization algorithm.

For LLMs, all methods use default settings and
adopt greedy decoding for fair comparison. The
ChatGPT version is “gpt-3.5-turbo-0125” with
a 16k context window size, and the GPT4 version is
“gpt-4-turbo-2024-04-09” with a 128k context
window size. In CRAG, the retrieval evaluator only
triggered {Correct, Ambiguous} actions to next
knowledge refinement process as there are at least
one relevant document in retrieval results. In the
RAFT method, we employ LoRA (Hu et al., 2021)
to effectively fine-tune LLMs, with LoRA rank set
at 16, alpha at 32, and dropout at 0.1.

Methods Prompts

RAG Write a high-quality answer for the given
question using only the provided search
results (some of which might be irrelevant).
Only give me the answer and do not output
any other words.
[1]{#d1}
[2]{#d2}
...
[k]{#dk}
Only give me the answer and do not output
any other words.
Question: {#q}
Answer:

CoT Write a high-quality answer for the given
question using only the provided search
results (some of which might be irrelevant).
Only give me the answer and do not output
any other words.
[1]{#d1}
[2]{#d2}
...
[k]{#dk}
Only give me the answer and do not output
any other words.
Question: {#q}
Let’s think it step by step.

Comps Write a high-quality answer for the given
question using only the provided search
results (some of which might be irrelevant).
Only give me the answer and do not output
any other words.
{#Compressed documents}
Only give me the answer and do not output
any other words.
Question: {#q}
Answer:

R2AG Write a high-quality answer for the given
question using only the provided search
results (some of which might be irrelevant).
Only give me the answer and do not output
any other words. The similarity
information is provided in front of search
results.
[1]similarity: <R>{#d1}
[2]similarity: <R>{#d2}
...
[k]similarity: <R>{#dk}
Only give me the answer and do not output
any other words.
Question: {#q}
Answer:

Table 5: Prompt templates of different methods.
“Comps” means compression-based methods, including
RECOMP and LongLLMLingua. “<R>” is the place-
holder for retrieval information.
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