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Abstract

We introduce a generalization of classic
information-theoretic measures of predictive
uncertainty in online language processing,
based on the simulation of expected continua-
tions of incremental linguistic contexts. Our
framework provides a formal definition of
anticipatory and responsive measures, and it
equips experimenters with the tools to define
new, more expressive measures beyond stan-
dard next-symbol entropy and surprisal. While
extracting these standard quantities from lan-
guage models is convenient, we demonstrate
that using Monte Carlo simulation to estimate
alternative responsive and anticipatory mea-
sures pays off empirically: New special cases
of our generalized formula exhibit enhanced
predictive power compared to surprisal for
human cloze completion probability as well
as ELAN, LAN, and N400 amplitudes, and
greater complementarity with surprisal in pre-
dicting reading times.

https://github.com/rycolab/
generalized-surprisal

1 Introduction

The prediction of upcoming linguistic units is
posited to play a key role in human language
comprehension (Federmeier, 2007; Willems et al.,
2016; Goldstein et al., 2022). One fruitful method
of operationalizing human uncertainty over pre-
dictions is through information-theoretic measures.
Because human predictive mechanisms leave be-
havioral and neural traces that are observable dur-
ing reading and listening (Kutas and Hillyard, 1984;
Van Berkum et al., 2005; Forseth et al., 2020), the
most common method of vetting an information-
theoretic measure of predictive uncertainty is by
examining its relationship with such traces. Be-
yond simply yielding good correlates, information-
theoretic measures often provide insight into the hu-
man prediction mechanism, and they are thus cen-
tral to much cognitive and neurobiological research
on human language processing (Monsalve et al.,
2012; Armeni et al., 2017; Wilcox et al., 2023).

In the domain of sentence processing, there
are two commonly deployed information-theoretic
measures of predictive uncertainty. Both assume
that the comprehender implicitly maintains a prob-
ability distribution over upcoming sequences of
linguistic units. The first, and most prominent,
is the surprisal of a unit given its preceding con-
text (Hale, 2001), while the other is entropy (Hale,
2003, 2006). In broad strokes, surprisal tells us
how likely the next unit is in the given context and
is a good example of a responsive measure, i.e., a
measure that quantifies a response to the next unit.
In contrast to surprisal, entropy is solely a function
of the context, as it tells us the uncertainty over the
range of possible upcoming linguistic units. Thus,
entropy is an example of an anticipatory measure,
i.e., a measure that anticipates a response to the
next unit without knowing its identity. In the spe-
cific case of next-symbol entropy (Frank, 2013;
Pimentel et al., 2023), it is the expected value of
the next-symbol surprisal so it comes with a natural
interpretation of the expected response.

Estimates of surprisal and entropy based on neu-
ral language models have demonstrated significant
predictive capacity for a wide variety of neural
and behavioral data collected using self-paced and
eye-tracked reading experiments (Goodkind and
Bicknell, 2018; Wilcox et al., 2023), as well as
EEG (Merkx and Frank, 2021; Michaelov et al.,
2024), fMRI (Shain et al., 2020; Bhattasali and
Resnik, 2021), and ECoG imaging (Schrimpf et al.,
2021), along with explicit grammaticality and ac-
ceptability ratings (Lau et al., 2017; Wallbridge
et al., 2022). Despite surprisal and entropy’s empir-
ical success, there is increasing interest in defining
and evaluating alternative measures. Examples in-
clude measures designed to disentangle different
dimensions—e.g., lexical versus syntactic—of un-
certainty (Roark et al., 2009; Arehalli et al., 2022;
Giulianelli et al., 2023) or to quantify uncertainty
over spans larger than a single unit (Aurnham-
mer and Frank, 2019; Giulianelli et al., 2024b).
While estimating surprisal and entropy from neu-
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ral language models is convenient, experimenters
should chart new territory by designing their own
measures, rethinking and enhancing established
information-theoretic quantities to capture over-
looked aspects of online language processing.

In this paper, we introduce a new framework,
termed generalized surprisal, for responsive and
anticipatory models of online language processing.
This framework encompasses existing information-
theoretic measures as special cases and offers a new
method to develop novel ones. We begin by deriv-
ing a generalization of surprisal, demonstrating
that it corresponds to an expectation over continu-
ations of a linguistic context (§2). We then show
how many existing measures can be seen as special
cases of our generalized formula, and we propose
new special cases, such as sequence-level entropy
and next-symbol information value (§3). Because
some special cases cannot be calculated in closed
form, we must rely on a sampling procedure. This
introduces a trade-off between runtime and vari-
ance, which we analyze empirically in §5. Finally,
we evaluate all special cases as predictors of neural
and behavioral data collected in experiments with
human participants (§6).

We present several new findings, including:
(1) contextual probability predicts human cloze
completions better than surprisal, while surprisal is
a better predictor of human predictability ratings;
(2) information value predicts N400 better than
surprisal, which is among the go-to predictors for
this ERP component (DeLong et al., 2005; Frank
et al., 2015; Michaelov et al., 2024); (3) sequence-
level entropy, introduced in this paper, is the sole
significant predictor of ELAN; and (4) different
responsive measures predict ERP amplitudes at
varying time windows after stimulus onset.

2 Generalized Surprisal

This section introduces our framework. First, we
establish some key notation and definitions. Then,
we present a decomposition of surprisal, which
motivates our definition of generalized surprisal.

2.1 Language Modeling

An alphabet Σ is a finite, non-empty set of sym-
bols, and its Kleene closure Σ∗ is the set of all
strings formed by concatenating symbols in Σ, in-
cluding the empty string ε.1 The set of all strings

1We use an unbolded font for symbols, i.e., w ∈ Σ, and
a bolded font for strings w ∈ Σ∗. The concatenation of two

Σ∗ is partially ordered by the prefix relation ⪯,
defined as follows: w ⪯ w′ ⇐⇒ ∃v : wv = w′.
As is easy to see, ⪯ is reflexive and transitive, but
not symmetric. A language model p is a distribu-
tion over strings Σ∗. A common quantity derived
from a language model is the prefix probability,
defined as

πp(w | c) def
=
∑

v∈Σ∗
p(wv | c). (1)

In words, Eq. (1) tells us the probability of the
event that a string sampled from p starts with w.
Crucially, this is different from the probability
p(w | c) that the string is identically w.

The Human Language Model. So far, we have
used the symbol p to refer to an arbitrary language
model. However, in the context of cognitive
modeling, we are interested in a hypothetical
construct model—the human language model
pH. Because the true human language model is
unknown, we must approximate it via another
language model p. To the extent that p is close
to pH (under some notion of distance between
distributions), we would expect estimates derived
from p to be a reliable proxy of the probabilities
prescribed by the human language model. In our
experiments, we will use a model p parameterized
by a transformer neural network, which was
shown to closely approximate pH in a series of
psycholinguistic studies (Schrimpf et al., 2021; Oh
and Schuler, 2023; Shain et al., 2024, inter alia).

2.2 Generalizing Surprisal
The surprisal of a target w ∈ Σ∗ given a context
c ∈ Σ∗ is defined as ιp(w; c)

def
= − log πp(w | c).2

In constructing our framework, we draw inspiration
from the following decomposition of surprisal:

ιp(w; c)
def
= − log πp(w | c) (2a)

= − log
∑

v∈Σ∗
p(wv | c) (2b)

= − log
∑

v∈Σ∗
p(v | c)1{w ⪯ v}, (2c)

where v is a continuation and 1{w ⪯ v} is an in-
dicator function that returns 1 when w ⪯ v is true
and 0 otherwise. When viewed through the lens of

strings w and v is written as wv. The length of a string is the
number of symbols it contains and is denoted as |w|.

2Note that this is not equal to information content in a strict
sense, since that would require πp(· | c) to be a probability
distribution over Σ∗, for all c ∈ Σ∗.
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such a decomposition, surprisal is a marginaliza-
tion over possible continuations of the context c: it
is the negative log-transformed cumulative proba-
bility of all the continuations that begin with w.

By writing the sum as an expectation, we can
rewrite surprisal as follows

ιp(w; c) = − log

(
E

v∼p(·|c)
[1{w ⪯ v}]

)
. (3)

Our notion of generalized surprisal abstracts Eq. (3)
by introducing a scoring function g to generalize
the indicator function and a warping function f to
replace the − log of standard surprisal.

Definition 1 (Generalized Surprisal). We define
a generalized surprisal model as the pair (f, g)
of a warping function f : R → R and a scoring
function g : Σ∗ × Σ∗ × Σ∗ → R. Under a specific
model (f, g), the generalized surprisal of a target
w in a context c is

γp(w; c)
def
= f

(
E

v∼p(·|c)
[g(v,w, c)]

)
. (4)

The Scoring Function. We call g the scoring
function because it evaluates each continuation
v ∼ p(· | c) against a target w, conditioned on
a context c, yielding a real-valued score. The
score quantifies the accuracy of a prediction (or
how close the prediction is to the observed target),
where the specific notion of closeness is encoded
by the experimenter in their definition of g.

The Warping Function. We call f the warping
function because it applies a transformation to
the expected score and thus controls the shape
of the distribution of generalized surprisal values
for a given score distribution. It is useful to think
of the warping function as characterizing the
relationship between prediction accuracy and a
certain construct or measurement of interest. For
instance, in §6.2.1, we show how the same notion
of prediction accuracy captured by surprisal’s
scoring function, 1{w ⪯ v}, is in a nearly linear
relationship with human cloze probabilities yet in a
logarithmic relationship with human predictability
ratings. Much psycholinguistic research aiming
to establish the functional relationship between
surprisal and processing difficulty (Smith and Levy,
2013; Brothers and Kuperberg, 2021; Wilcox et al.,
2023; Shain et al., 2024, inter alia) can be seen as
testing different hypotheses about the workings of
online language processing by instantiating them
through varying warping functions.

2.3 Anticipation and Responsivity
An important distinction between various general-
ized surprisal models is whether they characterize
anticipatory or responsive online processes. These
notions have been introduced informally by Pi-
mentel et al. (2023). We give a formal definition of
anticipation and responsivity below.
Definition 2 (Anticipation and Responsivity). We
call a generalized surprisal model (f, g) anticipa-
tory if g is constant in w, i.e., ∀v,w,w′, c ∈ Σ∗,
we have g(v,w, c) = g(v,w′, c). Otherwise, we
call (f, g) responsive.

Def. 2 differentiates anticipation, a state of un-
certainty over possible outcomes that is fully deter-
mined by the context and the processor’s language
model, from responsivity, which expresses uncer-
tainty for a specific next outcome.

3 Special Cases of Generalized Surprisal

In this section, we introduce concrete special cases
of generalized surprisal (Eq. (4)), which we evalu-
ate as predictors of human behavior and neural ac-
tivity recorded during online language processing.
Some of these have been previously used to predict
such psycholinguistic data, while others are new.
All special cases are designed by varying the three
core components of our framework—anticipation
vs. responsivity, scoring function, and warping
function—and are meant to exemplify how differ-
ent hypotheses about online language processing
can be instantiated as generalized surprisal models.

3.1 Responsive Measures
We start by introducing three responsive gener-
alized surprisal models. These are models (f, g)
where the scoring function g(v,w, c) is not con-
stant in w (see Def. 2).

Surprisal. The first generalized surprisal model
we will consider is the pair (f, g) corresponding to
standard surprisal (Eq. (2a) and (3)):

f(x) = − log(x) (5a)

g(v,w, c) = 1{w ⪯ v}. (5b)

The scoring function captures a binary notion of
prediction accuracy, while the logarithmic warp-
ing function is classically considered to instantiate
a view of online language processing where cog-
nitive costs reflect the magnitude of incremental
mental representation updates, which is related log-
arithmically to prediction accuracy (Levy, 2008).
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Probability. Replacing standard surprisal’s loga-
rithmic warping function with the identity function
yields the contextual probability of the next unit:

f(x) = x (6a)

g(v,w, c) = 1{w ⪯ v}. (6b)

The identity warping function can be seen as instan-
tiating a facilitation view of online linguistic predic-
tion, where prediction accuracy is linearly related
to cognitive cost (Brothers and Kuperberg, 2021).

Information Value. By replacing the indicator
function of surprisal and probability with a scor-
ing function dc : Σ

∗ × Σ∗ → R≥0 that measures
a graded, possibly context-sensitive notion of dis-
tance between strings, we obtain information value
(Giulianelli et al., 2023):3

f(x) = x (7a)

g(v,w, c) = dc(v,w). (7b)

Whilst the use of a binary scoring function follows
naturally from the surprisal model of cognitive cost,
it results in a relatively simplistic notion of predic-
tion accuracy which conflates different aspects of
predictive accuracy and does not take into account
the communicative equivalence of predictions and
observations. In the information value model of
cost (Giulianelli et al., 2023, 2024b), instead, pre-
diction accuracy is a continuous score that quanti-
fies the representational distance between predic-
tions and observations. For instance, if the pre-
dicted continuation is syntactically different but
semantically equivalent to the observed next unit,
this results in high syntactic and low semantic in-
formation value.

3.2 Anticipatory Measures

We now move to anticipatory generalized surprisal
models, where the scoring function g(v,w, c) is
constant in w; see Def. 2. We are not aware of
any theoretical justifications for using non-linear
warping functions for anticipatory measures, so all
the special cases presented here will use the identity
function f(x) = x.

3More precisely, this is information value with the mean
as a summary statistic (cf. Giulianelli et al., 2023, §3.1). The
ordered pair (Σ∗, dc) forms a semi-metric space, satisfying
all properties of a metric space except, possibly, the triangle
inequality. The distance function dc may also be constant in c.

Expected Next-symbol Surprisal. We begin
with a measure that was recently proposed to study
the effects of anticipatory processing on reading
comprehension (Pimentel et al., 2023). This is the
expected surprisal over the language model’s next-
symbol distribution, which is defined as follows:4

−
∑

u∈Σ
πp(u | c) log πp(u | c)

− p(ε | c) log p(ε | c).
(8)

This measure can be obtained by instantiating the
following generalized surprisal model:

f(x) = x (9a)

g(v,w, c) = −
∑

u∈Σ
1{u ⪯ v} log πp(u | c)

− 1{ε = v} log p(ε | c). (9b)

This model lends itself to multiple interpretations;
see Pimentel et al. (2023, §3) for some proposals.
One prominent view is that cognitive resources may
be budgeted in advance—before the identity of the
next symbol is known—in proportion to the magni-
tude of the mental representation update the proces-
sor expects to sustain once the symbol is observed.
As we have seen in §3.1, said magnitude corre-
sponds to the logarithm of the prediction accuracy.

Expected Next-symbol Probability. An alterna-
tive view of anticipatory mechanisms is that they
allow for preemptive processing of upcoming units,
with cognitive costs proportional to the prediction
accuracy in string space. As seen in §3.1, this view
can be expressed by discarding the logarithm:

f(x) = x (10a)

g(v,w, c) =
∑

u∈Σ
1{u ⪯ v}πp(u | c)

+ 1{ε = v}p(ε | c). (10b)

Under this model, expected prediction accuracy is
linearly related to cognitive cost.

Expected Next-symbol Information Value. A
third view is that contextual uncertainty increases
processing cost by requiring the retention of a

4Note that this expression involves πp(· | c) rather than
p(· | c) since it quantifies the uncertainty over the first sym-
bols of possible continuations, rather than over full continua-
tions. The p(ε | c) term is included to account for the possibil-
ity that the string ends after c, i.e., that the continuation is ε.
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larger number of competing continuations in mem-
ory. While this can be modeled through expected
next-symbol surprisal and probability (Pimentel
et al., 2023), these measures characterize different
continuations as distinct objects. An alternative
hypothesis is that maintaining multiple continua-
tions in memory should be less costly if they are
representationally similar. This can be expressed
through information value’s scoring function:

f(x) = x (11a)

g(v,w, c) = E
v′∼p(·|c)

dc(v1, v
′
1), (11b)

with a representational notion of distance dc.

Entropy. The three anticipatory models pre-
sented so far assume that anticipatory processes
operate solely over the next symbol. One way to
capture uncertainty over sequences of symbols is
through the entropy of the language model, i.e.,

−
∑

v∈Σ∗
p(v | c) log p(v | c). (12)

The corresponding generalized surprisal model is

f(x) = x (13a)

g(v,w, c) = − log p(v | c). (13b)

This model inherits the interpretation of expected
surprisal but characterizes anticipation as a process
spanning longer time intervals (Hale, 2003).

Expected Information Value. We also consider
a second generalized surprisal model that captures
sequence-level contextual uncertainty:

f(x) = x (14a)

g(v,w, c) = E
v′∼p(·|c)

dc(v,v
′), (14b)

again, with a representational notion of distance dc.
Unlike entropy, which regards expected next strings
as distinct, expected information value (Giulianelli
et al., 2023, §G) corrects for potential similarity
between strings in representational space.

3.3 Monte Carlo Simulation
For tractable estimation of generalized surprisal,
which requires taking an expectation over continu-
ations v ∈ Σ∗, we use Monte Carlo simulation:

γ̂p(w; c) = f

(
1

N

N∑

n=1

g(v(n),w, c)

)
, (15)

where v(n) ∼ p(· | c) are obtained via ancestral
sampling. If f is continuous, then Eq. (15) is con-
sistent. Moreover, if f(x) = x, the estimator is
additionally unbiased. The variance of Eq. (15)
depends on the scoring function g and the sample
size N ; in §5.1, we study the influence of N on the
variance of the estimator for different generalized
surprisal models.

Some special cases of generalized surprisal—in
particular, surprisal, probability, and their expected
next-symbol versions—can be computed in closed
form, and, for those, we do not need to rely on
Monte Carlo simulation.

4 Experimental Setup

Dataset. We use the Aligned dataset (de Varda
et al., 2023), which consists of M = 1726
target–context pairs from English novels annotated
with several different neural and behavioral
measurements. We include most of these in our
experiments: cloze completions (probability and
entropy), predictability ratings, event-related brain
potentials (ELAN, LAN, N400, P600, EPNP, PNP),
eye-tracked reading times (first-fixation time,
first-pass time, right-bounded time), and self-paced
reading times. Details on these measurements
are given in App. A.1. Each target–context pair
(w(m), c(m)), termed a stimulus, is associated
with a real-valued measurement ψ(w(m), c(m)),
termed datum, which is an aggregation of per-
subject measurements for that stimulus.5 In our
experiments, we will compute generalized surprisal
{γ̂p(w(m), c(m))}Mm=1 for all stimuli in the dataset,
and evaluate it as a predictor for the corresponding
data {ψ(w(m), c(m))}Mm=1. The contexts c are
strings ranging from 5 to 14 words and targets w
are strings corresponding to a single word.6

Language Models. We obtain generalized sur-
prisal estimates from GPT-2 Small (Radford et al.,
2019) and GPT-Neo 125M (Black et al., 2021).
Prior work has shown that, despite exhibiting
higher test perplexity, these two models have better
psycholinguistic predictive power than larger ones
(Oh and Schuler, 2023; Shain et al., 2024). Further-
more, their smaller size incurs a lower computa-

5For all types of psycholinguistic data except cloze proba-
bility and cloze entropy (which are aggregates by definition),
a single datum is the average per-subject measurement.

6A word is taken to be a contiguous sequence of characters
delimited by a white space. Following de Varda et al. (2023),
sentence-initial and sentence-final words, as well as words
attached to a comma or clitics are excluded.
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Figure 1: Coefficient of variation (top), correlation between resamples (center), and runtimes (bottom) for sampling-
based measures across the stimuli in the Aligned dataset. Confidence intervals (95%) are too narrow to be visible;
the horizontal axis is in log scale. The average runtime for the exact metrics (surprisal, probability, expected
next-symbol surprisal, and expected next-symbol probability) is 0.002 seconds.

tional cost for sampling. For comparability to prior
work (Wilcox et al., 2023; Pimentel et al., 2023;
de Varda et al., 2023, inter alia), when a word is
composed of multiple subword tokens, token-level
estimates of generalized surprisal are aggregated
(either summed or multiplied, depending on the
special case; see App. A.2 for details).

Distance Function. The information value
models introduced in §3.1 rely on a function dc to
quantify the distance between two strings v and w
in the context of c. Here, we use mean-pooled non-
contextual (i.e., layer 0) representation from GPT-2
Small and GPT-Neo 125M as column vectors
r(v), r(w) ∈ RD, where D is the dimensionality
of the representations, and calculate the cosine dis-
tance dc(v,w) = 1 − r(v)⊺r(w)

∥r(v)∥2∥r(w)∥2 . There exist
several other choices for distance and representa-
tion functions; see Giulianelli et al. (2023, 2024b)
and Meister et al. (2024) for some examples.

5 Empirical Analysis of Measures

We begin our experiments with an empirical anal-
ysis of Monte Carlo estimation for the measures
presented in §3. As alluded to earlier, sampling-
based measures introduce variance that does not
arise for measures like surprisal, which can be com-
puted in closed form. This variance can be reduced
by increasing the sample size (§5.1), but that incurs
additional costs in terms of runtime (§5.2). In this
section, we provide an empirical analysis of these
properties to gain an understanding of their trade-
off. We also investigate the correlations between
different measures, in App. B, to assess the extent

to which various theoretical models of anticipatory
and responsive processing lead to divergent em-
pirical uncertainty measurements. The analysis in
this section is based on GPT-2 Small; results for
GPT-Neo 125M are provided in Appendix App. C.

5.1 Variation in Estimates
We use bootstrapping (Efron, 1992) to measure the
variance of different estimators. For each stimulus
(w(m), c(m)) in the Aligned dataset (§4), given an
original sample of sizeN ∈ {2j | j = 2, 3, . . . , 9},
we obtain B = 1000 resamples of the same size
by sampling with replacement. For entropy and
expected information value, to yield tractable es-
timation, we limit the maximum length in tokens
L ∈ {5, 10, 15} of sampled continuations.

In a first analysis, we compute µm and σm as
the mean and standard deviation of a measure of
choice across the B resamples and calculate the
coefficient of variation CVm = σm/µm. Fig. 1 (top)
shows how average CV , as expected, decreases
with N . The maximum sample length L has a lim-
ited effect on the CV of sequence-level measures.
In a second analysis, to gauge the robustness of a
given measure across a dataset of stimuli, we also
calculate correlations between different resamples.
For each measure, we obtain a matrix of M ×B es-
timates, and then compute a vector of

(
B
2

)
Pearson

correlations between all two-column combinations.
Fig. 1 (center) shows the average correlation co-
efficients as a function of increasing sample sizes.
With the exception of entropy, which only reaches
near-perfect correlation with N = 27, all measures
show near-perfect correlation already withN = 25,
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indicating that all bootstrapped resamples yield
virtually equivalent estimates for the dataset.

In sum, for all measures, both stimulus- and
corpus-level variance are contained, they decrease
with larger sample sizes, and a sample size as
small as 25 yields consistent estimates.

5.2 Runtime
We study runtime using the same sample sizes N
and maximum sequence lengths L as above, and
for the same measures. Fig. 1 (bottom) displays
the results. As expected, the runtime increases
monotonically in both N and L. Comparing these
results to those of the variance analysis suggests
a good runtime-variance tradeoff can be obtained
with a sample size N between 25 and 27.

6 Psycholinguistic Predictive Power

We now evaluate the generalized surprisal models
introduced in §3 in terms of their predictive power
for the neural and behavioral data presented in §4.

6.1 Evaluation
To quantify a measure’s predictive power for
a given data type {ψ(w(m), c(m))}Mm=1 in the
Aligned dataset, we use regression analysis.
We compare a regressor that includes baseline
predictors for {(w(m), c(m))}Mm=1, the baseline re-
gressor, to one that further includes the measure of
interest {γ̂p(w(m), c(m))}Mm=1, the target regres-
sor. Reading time regressors include target and
baseline predictors not just for the target string but
also the previous two words to account for spillover
effects (Just et al., 1982; Frank et al., 2013a).

For the experiments on responsive measures
(§6.2.1), all regressors include three baseline
predictors: the length of the target string w(m),
its frequency, and the length of the context string
c(m).7 We call this the default baseline. For the
experiments on anticipatory measures (§6.2.2),
we use an additional baseline. Because expected
next-symbol surprisal has proven to be most
effective as a predictor when used in conjunction
with surprisal (Pimentel et al., 2023), we compare
the other, as yet untested, anticipatory measures
against a baseline that includes both surprisal
and expected next-symbol surprisal, along with
the three baseline predictors mentioned above
(the combined baseline). In the target regressor,

7The length of the target string is measured in characters,
the length of the context in words. Frequencies are extracted
from the SUBTLEXus (Brysbaert et al., 2012).

expected next-symbol surprisal is then replaced
with another anticipatory target predictor, allowing
us to assess the boost, or decrease, in predictive
power that results from this substitution.8

In our analysis, we only use linear regression so
that the functional relationship between the scoring
function and the psycholinguistic variable can be
unambiguously expressed via the warping func-
tion.9 The regressors are fit with the ordinary least
squares method and evaluated on a held-out test set.
We quantify the predictive power of a measure
as the difference in the coefficient of determination
R2 of the target regressor and the baseline regres-
sor, denoted as ∆R2 . The statistical significance
of a measure’s ∆R2 is assessed via 10-fold cross-
validation and permutation tests. A full description
of our analysis procedure is given in App. D.1.

6.2 Results

We now present our main results, obtained with
GPT-2 Small, N = 29, and L = 5 tokens.

6.2.1 Responsive Measures

The main results for responsive measures are vi-
sualized in Figs. 2 and 3. See Figs. 10 to 13 in
App. D.2 for further results.

Cloze Completions and Predictability Ratings.
These are the two types of psycholinguistic data
in the Aligned dataset that more explicitly quantify
uncertainty for the upcoming unit. Indeed, predic-
tive power here is 1-2 orders of magnitude larger
than for ERPs and reading times (Fig. 2 vs. 12).We
find surprisal has the highest ∆R2 for predictability
ratings (0.30±0.06), while probability has stronger
predictive power for human cloze completion prob-
ability (0.48± 0.07). This result demonstrates the
role of the warping function f in Eq. (4) in fitting a
given psycholinguistic construct or data type, even
when the scoring function remains unchanged
(see Eq. (5b) and (6b)). As further illustrated in
Fig. 3, the same binary scoring function provides a
good linear fit to human cloze probabilities but not
to predictability ratings. In contrast, logarithmic
warping of the binary scores, which handles highly
surprising outcomes more robustly, results in a
better fit to predictability ratings.

8App. D.2 also reports results for the default baseline.
9Others (e.g., Smith and Levy, 2008, 2013; Goodkind and

Bicknell, 2018; Brothers and Kuperberg, 2021; Wilcox et al.,
2023) have tried to learn the form of this relationship from
data, using generalized additive models (Wood, 2004, 2017).
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Figure 2: Predictive power (∆R2) of responsive generalized surprisal models for event-related potentials and
reading times. 95% confidence intervals. Significance color-coded: blue for p < 0.0001, gray for p > 0.01.
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Figure 3: Probability and surprisal against human cloze
probabilities and predictability ratings, with Pearson
correlation coefficients r and regression lines. For re-
gressions, x(m) = γ(w(m), c(m)) is the predictor and
y(m) = ψ(w(m), c(m)) the predicted variable.

Event-related Brain Potentials. Different re-
sponsive models—both in terms of warping and
scoring function—align with different ERP com-
ponents (Fig. 2). Surprisal shows higher predic-
tive power for EPNP and P600, probability is the
best predictor of PNP amplitudes, and information
value of LAN and N400. Information value’s high
predictive power for N400, a component believed
to relate to semantic predictability (Brothers et al.,
2020), may be explained in terms of this measure’s
semantically aware scoring function. Furthermore,
the predictive power of different responsive mea-
sures appears to correspond to groupings defined
by the time windows in which the ERP amplitudes
are recorded: LAN and N400 are detected roughly
between 300 and 500 ms after the stimulus on-
set, EPNP and P600 occur between 400 and 700
ms, and PNP is the latest component, recorded be-

tween 600 and 700 ms after the onset (Frank et al.,
2015).10 Overall, this result highlights the impor-
tance of having a family of measures at disposal for
targeted modeling of various psycholinguistic data.

Reading Times. For both eye-tracked and self-
paced reading time data, surprisal demonstrates
superior performance among responsive measures.
As shown in Fig. 2, probability is the second best
predictor for eye-tracked reading times, and infor-
mation value ranks second for self-paced reading
times. These results imply that, among the compet-
ing theories we examined, surprisal theory—which
posits that cognitive cost is linked to the magnitude
of incremental updates in mental representation—
provides a better explanation for the traditional
notion of cost captured by reading times.

6.2.2 Anticipatory Measures
The main results for anticipatory measures are
shown in Fig. 4. See also Figs. 14 to 18 in App. D.2.

Cloze Completions. The most direct quantifi-
cation of contextual uncertainty in the Aligned
dataset is the entropy derived from human cloze
completions. Indeed, all anticipatory measures
show the strongest predictive power when used in
isolation for this data type; see Fig. 14 in App. D.2
(default baseline). Expected next-symbol surprisal
and probability have equivalent predictive power
for close entropy, followed by expected next-
symbol information value. The sequence-level
anticipatory measures exhibit lower predictive
capacity, with entropy obtaining the lowest ∆R2 .
This is not surprising, considering that cloze
completions are composed of individual words.

Event-related Brain Potentials. Echoing our
findings with responsive measures, expected next-

10In fact, a fourth cluster consists of ELAN, the earliest
ERP component (125–175ms), for which only an anticipatory
measure, entropy, shows significant predictive power (Fig. 4).
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Figure 4: Difference between the predictive power of anticipatory measures used in combination with surprisal vs.
expected next-symbol surprisal used in combination with surprisal; 95% confidence intervals. The red dotted line
represents the combined baseline regressor. Significance is color-coded, as described in the legend.

symbol information value is the strongest predic-
tor for LAN, and even more so for N400, which
emphasizes the connection between N400 and in-
formation value’s semantically informed scoring
function. Entropy also deserves a special men-
tion: It stands out as the sole predictive measure
for ELAN, where no other measure—responsive
or anticipatory—is significantly predictive. It is
also the best predictor of EPNP, with predictive
power equivalent to surprisal. A common feature
of ELAN and EPNP amplitudes is that they are
detected by EEG sensors on frontal scalp regions.

Reading Times. As shown in Fig. 17, where we
use the default baseline, reading times are generally
less strongly predicted by anticipatory measures in
isolation than by responsive ones. However, when
considering the combined baseline with surprisal
and expected next-symbol surprisal (Fig. 4), we
find replacing expected next-symbol surprisal with
another anticipatory measure increases predictive
power across all data types. The improvements
likely stem from the higher complementarity of
these measures with surprisal (see App. B).

6.3 Main Findings

Our experiments, conducted across a comprehen-
sive range of psycholinguistic data, demonstrate
that different generalized surprisal models—both
responsive and anticipatory—provide complemen-
tary fit across different data types. For behavioral
responses collected in the cloze task (Taylor, 1953),
next-symbol probability accurately captures the
distribution of human productions, while human
predictability ratings are better explained by next-
symbol surprisal. For ERP components, the choice
of measures has an impact on predictive power

for amplitudes recorded at different onsets. Infor-
mation value is a stronger predictor of early-onset
components, while probability and surprisal are
more predictive for late-onset ones. Next-symbol
information value, both in its responsive and antic-
ipatory form, is consistently the best predictor for
N400, an ERP compoment often predicted using
surprisal (Frank et al., 2013b; Michaelov et al.,
2024) but also known to be associated with seman-
tic uncertainty (Brothers et al., 2020; Lindborg
et al., 2023). On the other hand, sequence-level
entropy, a measure whose computation involves
long-horizon simulations, is predictive of ERP
components in the frontal regions of the scalp,
which are thought to be implicated in cognitive or
executive control (Alexander et al., 1989; Kandel
et al., 2000; Fedorenko et al., 2013). Finally, read-
ing times, both self-paced and eye-tracked, are best
predicted by responsive measures, with surprisal
emerging as the overall best predictor. However,
when comparing models that include surprisal
alongside an anticipatory predictor, replacing
Pimentel et al.’s (2023)’s expected next-symbol
surprisal with one of our alternative anticipatory
measures yields significant increases in predictive
power across all studied reading time variables.

7 Conclusion

We introduced a generalization over classic
information-theoretic measures of predictive uncer-
tainty in online language processing. Our general-
ized surprisal framework subsumes both responsive
and anticipatory measures, including established
special cases, but providing a vocabulary and the
formal tools for experimenters to design new mea-
sures and explain psycholinguistic data of interest.
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Limitations

There are several special cases of generalized sur-
prisal that we did not include in our experiments
to maintain focus, ensure the interpretability of
our results, and keep the scope appropriate for a
conference paper. In App. E, we provide a few
examples (Rabovsky et al., 2018; Li and Ettinger,
2023; Opedal et al., 2024; Meister et al., 2024).

Other limitations of our study concern the psy-
cholinguistic data under analysis. We consider only
English data and native English speakers, and thus,
can only draw conclusions about incremental pro-
cessing of English as L1. Multilingual datasets
exist (e.g., Siegelman et al., 2022; Berzak et al.,
2022) and should be used in future work to test
our findings for other languages as well as speak-
ers of English with a different L1. Furthermore,
the linguistic contexts in the analyzed dataset con-
sist of a single sentence. More experimentation is
needed to assess the predictive power of our differ-
ent measures with more complex linguistic contexts
such as whole paragraphs and texts, e.g., with the
Natural Stories corpus (Futrell et al., 2018), or se-
quences of conversational turns, which are known
to modulate predictive uncertainty in non-trivial
ways (Giulianelli and Fernández, 2021; Giulianelli
et al., 2021; Tsipidi et al., 2024). Generally speak-
ing, contexts are representations of the current state
of the world and can include extra-linguistic infor-
mation (Ankener et al., 2018; Giulianelli, 2022).
Future work should also study responsive and antic-
ipatory linguistic processing modulated by visual
cues. For visuo-linguistic contexts, estimates of
our generalized formula can be calculated using
image-conditioned or video-conditioned LMs.

Finally, while we experiment with increasing the
sample size in §5.1, there could be other, more ef-
ficient ways to reduce variance. Future work may
tackle variance reduction through, for example, im-
portance sampling from altered (e.g., temperature-
annealed) language model distributions.
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A Details of the Experimental Setup

A.1 Measurements in the Aligned Dataset

In our experiments, we use the Aligned dataset (de Varda et al., 2023), which consists ofM = 1726 target–
context pairs from English novels annotated with several different neural and behavioral measurements.
We present all types of measurements below.

Cloze Completions. In this incremental version of the cloze task (Taylor, 1953), participants are shown
a sentence fragment c where the upcoming target word w is masked, and they are asked to guess what
that target word will be. Two data types are derived from cloze completions: the cloze probability of the
upcoming word, estimated as the Laplace-smoothed (with pseudocount α = 1) proportion of participants
who pick that word, and the entropy of the Laplace-smoothed cloze distribution (cloze entropy).

Predictability Ratings. Participants are presented with a sentence fragment c as well as its correspond-
ing target w. Then, they are asked to rate how likely they think the target is on a Likert scale from 1 to 5
(DeLong et al., 2014). Predictability ratings facilitate the analysis of low-probability words unlikely to
appear among cloze completions.

Event-related Brain Potentials (ERPs). ERPs are small voltages generated by participants’ neural
activity and recorded via an electroencephalogram (Donchin, 1979). Participants are tasked with reading
a sentence, then their ERPs are post-processed to obtain word-level measurements, where each word in
turn is the target w and its preceding words form the context c. For further details, see Frank et al. (2015).
The ERP components analyzed here are the N400, often associated with a word’s semantic predictability
(Brothers et al., 2020), P600, implicated in syntactic integration processes (Kaan et al., 2000), (Early) Left
Anterior Negativity (ELAN and LAN), linked to syntactic expectations and working memory (Friederici
and Weissenborn, 2007), and (Early) Post-N400 Positivity (EPNP and PNP), thought to reflect lexical
expectations (Thornhill and Van Petten, 2012).

Eye-tracked Reading Times. Participants read a sentence and the time spent looking at each word
is recorded, so that each word, in turn, is the target w and its preceding words form the context c. The
Aligned dataset contains four types of eye-tracked reading time indices: first-fixation time, first-pass
time, right-bounded time, and go-past time. For more details, see Frank et al. (2013a). We exclude
go-past time, a measurement that includes regressions to previous words, and was found to be noisy in
this dataset (de Varda et al., 2023).

Self-paced Reading Times. Participants read a sentence one word at a time in a stationary-window
paradigm (Just et al., 1982). The time elapsed between the presentation of a word and the participant’s
key press to proceed to the next word is the self-paced reading time. Contexts c here are taken to be the
words preceding the current word w, although these are not physically present on the participants’ screen.

A.2 Aggregating Multi-Token Estimates

When a word is composed of multiple subword tokens, token-level estimates are aggregated. For
probability-based measures, we naturally multiply token-level estimates following the chain rule. For
surprisal and information value, we sum token-level estimates (which, for surprisal, is equivalent to
multiplying token probabilities). See Giulianelli et al. (2024a) for a discussion on the proper treatment of
tokenization in computational psycholinguistics.

B Correlation Between Measures

To understand the potential overlap or complementarity between measures, we calculate their correlation.
App. B.1 and App. B.2 below present results in terms of Pearson correlation and Spearman rank-correlation,
respectively.
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B.1 Pearson Correlation

Fig. 5 shows Pearson correlation coefficients between estimates obtained with responsive and anticipatory
measures. Estimates are computed on the 1726 prefix-continuation pairs of the Aligned dataset (§4) using
GPT-2 Small, N = 29 samples and a maximum sample length of L = 5 tokens. Results for GPT-Neo
125M, which follow the same trends, are shown in Fig. 7.

First, we compare MC estimates of surprisal and probability to values computed in closed form, putting
our theoretical argument in §2.2 to the test. Probability and MC probability have an almost perfect Pearson
correlation (r = 0.97). The correlation between surprisal and MC surprisal is also strong, although with
a lower coefficient (r = 0.91).11 The rank-correlation between the two pairs of measures is the same,
ρ = 0.96, as shown in Figs. 6 and 7. This result empirically confirms the formal argument put forward in
§2.2: surprisal and probability can be expressed as expectations over continuations of partial linguistic
stimuli, scored with an indicator function.

Next, we investigate the relationship between measures of the same type, anticipatory or responsive.
This allows us to evaluate whether different models of anticipatory and responsive processing lead to
similar, diverging, or complementary measurements. We find that information value correlates more
strongly with surprisal than with probability and, in line with this observation, that the highest correlation
for anticipatory measures is between expected next-symbol surprisal and expected next-symbol informa-
tion value. Expected next-symbol probability and expected next-symbol surprisal also correlate strongly
(r = 0.80). On the other hand, sequence-level anticipatory measures exhibit lower correlations overall;
entropy, in particular, correlates only moderately with other measures.

Finally, the anticipatory measure that correlates most strongly with surprisal is expected next-symbol
surprisal (see both Figs. 5 and 7 for GPT-2 Small and Figs. 6 and 8 for GPT-Neo 125M, where this is
even more evident). This result contributes to explaining our findings for reading times in §6.2.2, where
we show that replacing expected next-symbol surprisal with another anticipatory measure, in a model
that includes surprisal along with the default baselines, yields an increase in predictive power across all
reading time variables.

In summary, this correlation analysis provides empirical support to the theoretical foundations of
our generalized framework and confirms that its different special cases quantify alternative notions of
responsive and anticipatory processing.

B.2 Spearman Rank-Correlation

As a complement to App. B.1, we show the Spearman rank-correlation coefficients between responsive
and anticipatory measures in Figs. 7 and 8. Note the almost perfect correlation between surprisal and MC
surprisal, identical to that of probability and MC probability.

C Variation and Runtime Analysis

In §5 of the main paper, we presented an empirical analysis of Monte Carlo estimation, with the goal of
understanding the trade-off between the variance and runtime of each measure’s estimator. Here, in Fig. 9,
we display the result of this analysis conducted using GPT-Neo 125M.

D Psycholinguistic Predictive Power

D.1 Statistical Analysis

To evaluate the predictive power of a generalized surprisal model, we use the following procedure. First,
we run 10-fold cross-validation, iteratively partitioning the Aligned dataset into a 90% training set and a
10% test set and measuring the coefficients of determination R2 of the baseline and target regressors on
the test set. We repeat this procedure using 100 random seeds, and collect the ∆R2 scores associated with
the target predictor. These are the scores that determine the width of the bars and the confidence intervals
in Figs. 2, 4, 10 and 12 to 18. Then, to assess the significance of a measure’s predictive power—i.e., of

11We add a small constant (1e−4) to the expected score in Eq. (3) before taking the logarithm to avoid numerical errors. The
Pearson correlation coefficient is mildly sensitive to the choice of constant.
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a measure’s positive ∆R2 scores—we run paired permutation tests12 under the null hypothesis that the
target regressor’s R2 is smaller or equal to the baseline regressor’s R2 and the alternative hypothesis that
the target regressor’s R2 is greater than the baseline regressor’s R2. We use 10,000 resamples and the
difference between the sample means as a test statistic. The p-value output by the permutation test (as
color-coded or indicated in the captions of Figs. 2, 4, 10 and 12 to 18) is the proportion of the randomized
null distribution that is as extreme as the observed value of the test statistic.

For comparison between pairs of regressors which both include target predictors, we use the same pro-
cedure, only considering the baseline regressor with each of the target regressors in turn. Our full analysis
is implemented in Python and available at https://github.com/rycolab/generalized-surprisal.

D.2 Further Results

Responsive Measures. To complement Figs. 2 and 3 in the main paper, Figs. 10 and 11 show the results
for responsive measures obtained with GPT-Neo 125M. Figs. 12 and 13 show the ∆R2 scores of our three
responsive measures for cloze probability and predictability.

Anticipatory Measures. To complement Fig. 4 in the main paper, Fig. 16 shows the results for
anticipatory measures used in combination with surprisal, with GPT-Neo 125M estimates. Figs. 14 and 15
show the predictive power of anticipatory measures for cloze entropy.

In §6.2.2 of the main paper (Fig. 4), we evaluate anticipatory measures against a combined baseline that
includes surprisal and expected next-symbol surprisal next to the default baseline variables (target length,
target frequency, and prefix length). Here, in Figs. 17 and 18, we show the predictive power results for the
anticipatory measures against the default baseline.

E Other Special Cases of Generalized Surprisal

As noted in the Limitations section, there are several special cases of generalized surprisal that we did not
include in our experiments to maintain a focused scope for the paper. Below, we provide a few examples.

Semantic Update. This model, proposed by Rabovsky et al. (2018), is based on changes in neural
representations and is given by:

f(x) = x (16a)

g(v,w, c) =1{w1 ⪯ v}
∑

i∈I
|ai(w1)− ai(c|c|)|, (16b)

in which I is an index set corresponding to the neurons at some particular layer in a neural network
implementation of a language model, and ai(u) represents the sigmoid activation of neuron i for symbol u.

Pointwise Mutual Information. The pointwise mutual information between a word and its context,
which under certain conditions yields expressive power equivalent to surprisal (Opedal et al., 2024), can
be written as:

f(x) = log(x) (17a)

g(v,w, c) = p(c) · 1{w1 ⪯ v}. (17b)

Similarity-adjusted Surprisal. The similarity-adjusted notion of surprisal proposed by Meister et al.
(2024) is analogous to information value but uses a similarity function zc : Σ

∗ × Σ∗ → [0, 1] as a scoring
function and the negative logarithm as a warping function, as given by the following model:

f(x) = − log(x) (18a)

g(v,w, c) = zc(v,w) (18b)

12We use the implementation provided by the SciPy library under scipy.stats.permutation_test.
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Lastly, we note that the decomposition introduced by Li and Futrell (2023) is mathematically equivalent
to surprisal and is therefore also captured by our framework.
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Figure 5: Pearson correlation between responsive and anticipatory measures. Estimates obtained for the Aligned
dataset. Monte Carlo (MC) samples with N = 29 and L = 5 from GPT-2 Small.
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Figure 6: Pearson correlation between responsive and anticipatory measures. Estimates obtained for the Aligned
dataset. Monte Carlo (MC) samples with N = 29 and L = 5 from GPT-Neo 125M.
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Figure 7: Spearman rank-correlation between responsive and anticipatory measures. Estimates obtained for the
Aligned dataset. Monte Carlo (MC) samples with N = 29 and L = 5 from GPT-2 Small.
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Figure 8: Spearman rank-correlation between responsive and anticipatory measures. Estimates obtained for the
Aligned dataset. Monte Carlo (MC) samples with N = 29 and L = 5 from GPT-Neo 125M.
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Figure 9: Coefficient of variation (top), correlation between resamples (center), and runtimes (bottom) for sampling-
based measures across the stimuli in the Aligned dataset, using GPT-Neo 125M as a language model. Confidence
intervals (95%) are too narrow to be visible; the horizontal axis is in log scale.
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Figure 10: Predictive power ∆R2 of responsive generalized surprisal models for event-related potentials and reading
times, using GPT-Neo 125M as a language model; 95% confidence intervals. Significance color-coded: blue for
p < 0.0001, gray for p > 0.01.
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Figure 11: Probability and surprisal (GPT-Neo 125M) against human cloze probabilities and predictability ratings,
with Pearson correlation coefficients r. For regressions, x(m) = γ(w(m), c(m)) is the predictor and y(m) =
ψ(w(m), c(m)) the predicted variable.
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Figure 12: Predictive power ∆R2 of responsive measures for human cloze probabilities and predictability ratings,
using GPT-2 Small as a language model; 95% confidence intervals. The red dotted line represents the default
baseline regressor. All measures are significantly predictive (p < 0.001).
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Figure 13: Predictive power ∆R2 of responsive measures for human cloze probabilities and predictability ratings,
using GPT-Neo 125M as a language model; 95% confidence intervals. The red dotted line represents the default
baseline regressor. All measures are significantly predictive (p < 0.001).
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Figure 14: Psycholinguistic predictive power ∆R2 of anticipatory generalized surprisal models for the cloze entropy
of the human cloze completion distributions, using GPT-2 Small as a language model; 95% confidence intervals.
The red dotted line represents the default baseline regressor. All measures have significant predictive power
(p < 0.0001).
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Figure 15: Psycholinguistic predictive power ∆R2 of anticipatory generalized surprisal models for the cloze entropy
of the human cloze completion distributions, using GPT-Neo 125M as a language model; 95% confidence intervals.
The red dotted line represents the default baseline regressor. All measures have significant predictive power
(p < 0.0001).
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Figure 16: Difference between the predictive power of anticipatory measures used in combination with surprisal vs.
expected next-symbol surprisal in combination with surprisal; 95% confidence intervals. GPT-Neo 125M is used as
the language model. The red dotted line represents the combined baseline regressor. Significance is color-coded, as
described in the legend.
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Figure 17: Psycholinguistic predictive power ∆R2 of anticipatory generalized surprisal models for event-related
potentials and reading times, using GPT-2 Small as a language model; 95% confidence intervals. The red dotted line
represents the default baseline regressor. Significance is color-coded, as described in the legend.
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Figure 18: Psycholinguistic predictive power ∆R2 of anticipatory generalized surprisal models for event-related
potentials and reading times, using GPT-Neo 125M as a language model; 95% confidence intervals. The red dotted
line represents the default baseline regressor. Significance is color-coded, as described in the legend.
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