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Abstract

The ability to predict an NLP model’s accu-
racy on unseen, potentially out-of-distribution
data is a prerequisite for trustworthiness. We
present a novel model that establishes upper
and lower bounds on the accuracy, without re-
quiring gold labels for the unseen data. We
achieve this by training a discriminator which
predicts whether the output of a given sequence-
to-sequence model is correct or not. We show
across a variety of tagging, parsing, and se-
mantic parsing tasks that the gold accuracy is
reliably between the predicted upper and lower
bounds, and that these bounds are remarkably
close together.

1 Introduction

In order for a user to trust that an NLP system per-
forms its task with sufficient reliability, the user
must be able to judge the system’s accuracy on
real-world tasks of interest. This ability is growing
in importance with the rapidly increasing promi-
nence of NLP technology in users’ daily lives and
the growing capability of this technology to solve
high-level tasks, e.g. by orchestrating the use of
external tools (Yao et al., 2023; Shinn et al., 2023).
At the same time, even the best available models
still struggle on out-of-distribution (OOD) test sets
(Lake and Baroni, 2018; Li et al., 2023) and com-
plex tasks on unseen domains (Zhou et al., 2024;
Jimenez et al., 2024).

In realistic settings, the accuracy of an NLP
model M needs to be estimated on unlabeled test
data; it is plausible that the estimator has access
to the user’s inputs, but not to gold annotations
that would capture the behavior the user intended.
There is some previous work on estimating the ac-
curacy of M on unlabeled test data, primarily for
text or image classification tasks and based on M ’s
confidence (Garg et al., 2022; Guillory et al., 2021).
However, existing accuracy estimation models pro-
vide only point estimates for the accuracy of M ,

Sentences

a) James rolled Paula

b) A poet baked the cake

c) Noah gave Elizabeth Lina 

Predictions Confidences

roll(agent=James, theme=Paula) 0.99

bake(agent=poet, theme=*cake) 0.99

give(agent=Noah, recipient=Elizabeth Lina ) 0.98

Previous
methods

estimation=100%

Discriminators

Upperbound = 100%
Lowerbound = 67%

Unlabeled test set Gold Accuracy = 67%

Discriminator1 Discriminator2

a) ✔ ✔

b) ✔ ✔

c) ✔ ✘

✔

✔

✘

Parser

Figure 1: Comparison of our discriminators and
confidence-based methods. Our method provides upper
and lower bounds which can capture gold accuracy.

which hides their own uncertainty; a user cannot
judge whether the accuracy estimator is confident
about its estimates or whether they should be cau-
tious about trusting them. Ultimately, there is an
infinite hierarchy of accuracies: the true accuracy
of M ; the accuracy of the accuracy estimator; esti-
mates of that accuracy; and so on.

In this paper, we take the first step up this hierar-
chy by offering a method for capturing the accuracy
predictor’s uncertainty about the estimation of M ’s
accuracy. Instead of directly calculating a point es-
timate for M ’s accuracy, our method predicts upper
and lower bounds for this accuracy, from unlabeled
test data. We focus on estimating the accuracy of
sequence-to-sequence models, applied to parsing,
semantic parsing, and tagging tasks; these tasks
have the advantage over other sequence generation
tasks that there is a unique correct answer, which
allows us to talk about accuracies.

We first train a discriminator to predict whether
M ’s output on a given input is correct or not; we
show that this can be done with remarkable ac-
curacy across a range of tasks. We then run an
ensemble of discriminators on M ’s predictions on
the unlabeled test data and obtain upper and lower
bounds through a voting mechanism (Figure 1). We
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show across a variety of in-distribution and OOD
tasks that M ’s true accuracy is reliably between
the upper and lower bounds, and that these bounds
are quite tight. Finally, if forced to predict point
estimates of the true accuracy, our model provides
more precise estimates than earlier work on most
datasets, by taking the mean of the upper and lower
bounds.

We will release our code online 1.

2 Related work

Calibration. A neural model is called well-
calibrated if its predicted probability (e.g. con-
fidence) for its decision (e.g. label or sequence)
aligns to the probability of the prediction correct-
ness. Much prior work has attempted to improve
the calibration of systems, often through either
modifying training objectives or posthoc methods:
Kong et al. (2020) add a regularization term into
training objective to address in-distribution calibra-
tion and out-of-distribution detection for text clas-
sification; Desai and Durrett (2020) exploit temper-
ature scaling (Guo et al., 2017) to normalize output
logits with a scalar temperature parameter; Dong
et al. (2018); Kamath et al. (2020) train an addi-
tional regressor to estimate the model confidence
with designed features for semantic parsing; Jiang
et al. (2021b) investigate all these methods and find
that posthoc-based methods are universally helpful
for question answering tasks.

Most calibration works above focus on in-
distribution (ID) tasks and assume a development
set as given, which allows them to estimate param-
eters (e.g. temperature) to yield the optimal confi-
dence. However, according to Kamath et al. (2020),
the predicted model confidence is an unreliable es-
timate of the correctness on OOD generalization
tasks. Compared to such calibration works, our
method applies just as easily to OOD as to ID tasks.
Further, development sets from OOD distributions
are usually difficult to access, which introduces ad-
ditional challenges of applying calibration-based
methods. Kamath et al. (2020) also consider dis-
tribution shift, but their calibrator requires a small
amount of data from a known OOD distribution.

Predicting test accuracy from unlabeled data.
Previous works have investigated predicting the
model performance on an unannotated OOD test
set for other tasks: Guillory et al. (2021) exploit the
difference of confidences between training distribu-

1https://github.com/coli-saar/discriminator

tion and the OOD distribution as a useful feature;
Jiang et al. (2021a) show that the test error of deep
networks can be estimated by the disagreement of
two models trained with the same architecture on
the same training set but with two different runs;
Yu et al. (2022) exploits the euclidean distance
between model parameters trained on differently
distributed data to predict generalization errors;
Garg et al. (2022) estimate a threshold of model
confidence from training data and predict the cor-
rectness of OOD data based on it; Fu et al. (2023)
train an additional model to predict the accuracy
of large language models on question answering
tasks, which takes as input confidence scores and
outputs the overall accuracy of the test set.

Works introduced above estimate the accuracy
as a scalar value between 0 and 1. In contrast,
our method explicitly judges the uncertainty of
the estimated accuracy, providing upper and lower
bounds for the estimated accuracy. Besides, previ-
ous works only consider image classification and
natural language inference tasks. Our work shows
that for sequence generation tasks like semantic
parsing, the predicted sequence can serve as a good-
enough feature to determine the prediction correct-
ness on OOD data.

Quality estimation in NLP tasks. Automatic
accuracy prediction has also been investigated for
NLP tasks: Van Asch and Daelemans (2010) ex-
ploit similarity metrics between the training and
test set to estimate POS tagger performances; Chat-
terjee et al. (2018) train regressors to predict BLEU
(Papineni et al., 2002) scores of a machine transla-
tion system with given features; Opitz and Frank
(2019) train regressors to predict F1 scores for sub-
tasks of AMR (Banarescu et al., 2013). Compared
to these works, our method does not require manu-
ally designed features and thus is easy to be adapted
to any sequence generation tasks. Varshney and
Baral (2023) also train a correctness discriminator
to improve the coverage of a selective prediction
system for question answering. In contrast to this
work, we use discriminators to predict accuracies,
and more specifically upper and lower bounds.

3 Correctness discriminator

The core of our approach is to construct and train a
correctness discriminator model, which judges the
correctness of a model prediction on unseen data.
In this section, we first introduce how we design
the discriminator model and collect training data
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IN: A butterfly grew Emma . | 

OUT: grow ( agent = butterfly , recipient = Emma )

IN: A butterfly grew Emma . | 

OUT: grow ( agent = butterfly , theme = Emma )

Incorrect

Correct

COGS

IN: What Swedish actor founded M1 | 

OUT: SELECT DISTINCT ?x0 WHERE { 
?x0 a film.actor .
?x0 organizations_founded M1 

}

IN: What Swedish actor founded M1 | 

OUT: SELECT DISTINCT ?x0 WHERE { 
?x0 a film.actor .
?x0 organizations_founded M1 .
?x0 people.person.nationality m_0d0vqn

}

CFQ

Incorrect

Correct

Figure 2: Examples of COGS and CFQ training data
for the discriminator. IN refers to the input sentence
and OUT refers to the predicted output sequence (e.g.
logical form for COGS and SPARQL query for CFQ).

(Section 3.1), and then describe how to predict the
upper bound and lower bounds accuracy (Section
3.2). To avoid confusion, we call the model for
the original parsing or tagging tasks a parser and
the model for predicting the parser performance a
discriminator. Note that here we only assume that
the parser solves a sequence-to-sequence task, but
the task output can be any sequence – not just a
linearized parse.

3.1 Discriminator design

The discriminator is designed as a binary classifier
whose task is to determine whether a given pre-
dicted sequence is the correct output for a given
natural language sentence. Formally, given a nat-
ural language sentence X ∈ X and a predicted
symbolic sequence (e.g. meaning representation
for semantic parsing tasks) Y ∈ Y , the discrimi-
nator F : X × Y → {Correct, Incorrect} maps
them to a Correct or Incorrect label to represent its
correctness.

In this paper, we explore different model ar-
chitectures as the discriminators: encoder-only,
encoder-decoder, and decoder-only. All three mod-
els take as input the concatenation of the input
natural language sentence with the predicted se-
quence. For each architecture, we finetune an exist-
ing pretrained language model as the discriminator.
For encoder-only (e.g. Roberta) discriminators, the
input is first encoded into hidden representations

and then fed into an additional multi-layer percep-
tron classifier, which determines the Correct or
Incorrect label. For encoder-decoder (e.g. T5) and
decoder-only (e.g. LLaMA) discriminators, the de-
coder directly generates the label.

Now we discuss how to collect training data for
our discriminator. In principle, the training data
should contain both positive and negative exam-
ples. For positive examples, we can always exploit
the training set of the parser. However, it is non-
trivial to obtain negative examples. Such examples
can be synthesized by applying noise functions
(e.g. replacement or deletion) to positive examples
(Kim et al., 2021), but this requires prior knowledge
about errors a parser tends to make. Another op-
tion is to collect errors a trained parser made on its
training set, which is still challenging since parsers
yield near-perfect accuracies on their training sets.

We therefore generate negative examples from
intermediate checkpoints of our parser during its
training. Specifically, we run the parser checkpoint
on its training data. We take incorrect predictions
from the decoder beam as the negative training data
for the discriminator. Figure 2 gives examples of
our training data.

Given the described discriminator, we can es-
timate the accuracy of our parser on any unseen
test sets. Assuming a parser makes predictions on
|Dt| instances and the discriminator labels |Dc| of
predictions as Correct, the predicted accuracy can
be calculated as Eq 1.

Accpred =
|Dc|
|Dt|

(1)

3.2 Bounds prediction

We now introduce how to predict upper and lower
bounds for accuracy with the discriminator de-
scribed above. This is implemented by two vot-
ing mechanisms, Ensemble_correct and Ensem-
ble_incorrect. These mechanisms aggregate out-
puts from multiple trained discriminators.

• Ensemble_correct predicts Correct if at least
one discriminator predicts Correct; if all dis-
criminators predict Incorrect, it also predicts
Incorrect. This yields the most optimistic es-
timation, assuming correctness if at least one
discriminator agrees.

• Conversely, Ensemble_incorrect predicts In-
correct if at least one discriminator predicts
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instance 1

Ensemble_Correct

Lowerbound =  50% Upperbound = 100%

Discriminator 1

Discriminator 2

Discriminator 3

instance 2

Discriminator 1

Discriminator 2

Discriminator 3

Ensemble_Incorrect Ensemble_Correct Ensemble_Incorrect

Figure 3: Example of calculating upper and lower
bounds from discriminators. Green blocks mean the
instance is predicted as Correct by the discriminator
and Red blocks refer to Incorrect. Ensemble_incorrect
predicts Incorrect for instance 1 and Correct for in-
stance 2. Hence, the lower bound is 1/2 = 50%.

Incorrect; otherwise Correct. This mecha-
nism is more cautious, predicting an instance
as incorrect if any discriminator disagrees.

We calculate the upper bound of the accuracy as
Accpred in Eq. 1, with |Dc| determined by the out-
put of the Ensemble_correct mechanism instead of
a single discriminator. Similarly, the lower bound
is calculated with |Dc| determined by the output of
Ensemble_incorrect. Figure 3 illustrates how the
ensembles compute bounds.

Ensembles of neural networks have been shown
effective for uncertainty quantification (Lakshmi-
narayanan et al., 2017; Lukovnikov et al., 2021) by
averaging confidence scores of individual models.
Here we use voting mechanisms to calculate the
upper and lower accuracy bounds.

4 Experiments

We introduce our datasets, model setup, evaluation
metrics and experimental results in this section.

4.1 Datasets

We experiment with three tasks: semantic parsing,
part-of-speech tagging and constituency parsing.

For semantic parsing, we consider two OOD gen-
eralization scenarios: compositional generalization
and low-resource domain adaptation. We use the
COGS (Kim and Linzen, 2020) and CFQ (Keysers
et al., 2020) datasets to evaluate compositional gen-
eralization. For CFQ, we use its MCD1 and MCD2
splits. For low-resource domain adaptation, we use
the TOPv2 (Chen et al., 2020) dataset. We also
evaluate our method on in-distribution task with
the AMR 2.0 dataset (Banarescu et al., 2013).

For part-of-speech (POS) tagging and con-
stituency parsing tasks, we use the Penn Treebank

3 (PTB) dataset (Marcus et al., 1993). We train
our parser on the WSJ training set and evaluate its
in-domain performance on the WSJ test set and
cross-domain performance on the Brown corpus.
We predict the generalization performance for both
the WSJ test set (i.e. in-distribution test set) and the
Brown corpus (i.e. OOD test set), which we call
Syn-WSJ, Syn-Brown (for parsing) and POS-WSJ,
POS-Brown (for tagging) in this paper. In addition,
we experiment with POS-COGS, a POS tagging
dataset generated based on COGS (Yao and Koller,
2022), to evaluate compositional generalization in
the POS tagging task. Details of our datasets are in
Appendix A.

4.2 Setup
Parser. We finetune T5-base (Raffel et al., 2020)
as the parser for all tasks described above. To
do this, we convert all of our tasks into sequence
generation tasks, where the output sequence can
be a semantic meaning representation, POS tag
sequence or linearized parse tree. All our parsers
achieve the same or close performance as those
reported in previous works using T5.

Discriminator. We experiment with three ar-
chitectures as discriminators: (1) An encoder-only
architecture consisting of a Roberta-base encoder
(Liu et al., 2019) and an MLP classifier (2) An
encoder-decoder architecture using T5-base (Raf-
fel et al., 2020) and (3) A decoder-only architecture
using Vicuna-7B (Zheng et al., 2023). We report
results of the T5 and RoBERTa discriminators in
Section 4.4, since the T5 discriminators share the
same architecture as our parsers, and the RoBERTa
discriminators have the fewest parameters. Results
for the Vicuna discriminators in Appendix C. All
three discriminators perform well across corpora.

To collect negative training examples, we val-
idate the parser checkpoint every K steps on its
training set, where K is a hyperparameter. Since
our parser is an encoder-decoder model, we ran-
domly sample incorrect predictions from the de-
coded beam predictions. For each task we train an
ensemble of 5 discriminators with different random
seeds. See Appendix B for more training details.

Comparable baseline. We also compare our
methods with several previous methods.

MaxProb. Maxprob is a strong baseline shown
in Kamath et al. (2020). Assuming we are given
a threshold γ on the maximal prediction probabil-
ity (e.g. confidence) of a parser, we can predict
an instance as Correct if the parser confidence on
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T5 Roberta

Single Upper Lower Single Upper Lower

CR IR CR IR CR IR CR IR CR IR CR IR

OOD

MCD1 97.0 83.1 99.2 69.8 92.9 94.5 97.0 90.0 98.5 80.8 92.5 97.3
MCD2 80.6 83.7 83.4 77.9 71.7 92.2 78.3 85.0 84.7 79.4 70.6 90.6
COGS 98.5 96.6 99.8 89.4 98.5 96.9 98.9 87.7 99.8 86.6 97.8 90.8
TOP 87.4 57.9 92.2 44.7 82.5 78.9 85.4 65.8 91.3 42.1 77.7 78.9
POS-Brown 81.3 54.7 94.0 26.0 52.2 84.7 62.1 67.4 95.2 23.3 44.4 88.0
POS-COGS 98.8 86.3 99.9 84.4 98.7 89.2 99.9 90.9 100 86.7 99.5 94.9
Syn-Brown 33.8 90.0 69.3 73.9 29.7 96.0 17.5 74.3 70.6 38.4 4.2 96.3

ID
AMR 2.0 37.0 98.3 70.9 84.1 29.1 99.1 38.9 96.1 59.1 80.2 37.3 97.4
POS-WSJ 80.2 53.6 93.0 26.5 52.4 84.8 64.5 65.2 96.0 21.7 49.6 87.6
Syn-WSJ 44.5 89.2 66.2 73.1 20.5 97.0 27.1 66.0 74.3 34.6 6.5 94.7

Table 1: Results of our discriminators on different datasets. For each dataset, we report Correct-Recall (CR) and
Incorrect-Recall (IR). Single refers to the results with predictions from a single discriminator. Upper refers to the
results with discriminator predictions using ensemble_incorrect; Lower to ensemble_correct.

this instance is higher than γ, otherwise Incorrect.
Since we have no prior knowledge about the OOD
distribution, we set γ = 0.5 in our experiments.

Average Confidence (AC). We take the average
confidence across the test set as the predicted accu-
racy. Different from previous works where the con-
fidence is defined as the maximal softmax probabil-
ity of the classifier, here we define the confidence
as the probability of the most probable sequence
in the beam, which is calculated by the product of
softmax probabilities of each word in the sequence.

Difference Of Confidence (DOC). We also es-
timate the accuracy using DOC (Guillory et al.,
2021). We start with a development set that fol-
lows the same distribution as the training data. We
then subtract the difference in average confidence
between the development set and the test set from
the gold accuracy on the development set. The
result is the estimated accuracy on the test set.

Average Thresholded Confidence (ATC) is a
strong method recently proposed by Garg et al.
(2022), which has been shown to be more effective
than previous methods. Applying ATC consists
of two steps. First, we estimate a threshold γ on
parser confidence scores to make the number of
errors made by the parser match the number of in-
stances where the parser confidence is lower than
γ; then we can obtain the predicted accuracy on
the test set by calculating the fraction of unlabeled
instances that obtain a score below γ.

Maxprob (Oracle). To compare with our pre-
dicted bounds, we calculate bounds based on Max-
prob, where estimate γ such that the Correct-Recall
calculated based on γ is equal to the one from the
predicted upper bound calculated by our discrimi-

nators. This measures the reliability of the parser’s
confidence in recognizing correct instances com-
pared to discriminators. Similarly, we calculate a
lower bound by matching Incorrect-Recall scores.
Note that this method requires annotated test sets,
which are impractical for real-world applications.

4.3 Evaluation metrics
For all parsing tasks, we evaluate the exact match
accuracy of our parser.

For discriminators, we need a metric to quantify
the quality of the predicted upper and lower bounds.
Intuitively, such a metric should reflect whether the
gold accuracy is within the bounds (i.e. reliability)
and whether the bounds are tight (i.e. tightness).

Previous work predicts point estimations for
OOD test sets and evaluates their method with
mean absolute estimation error (MAE) by calculat-
ing average absolute difference between the true
accuracy on the target data and the estimated accu-
racy on the same unlabeled examples. Their results
are averaged over multiple test sets for each clas-
sifier (e.g. parser in our tasks). In our setup, most
tasks only have one OOD or ID test set, and thus
we calculate the absolute estimation error (AE) to
compare with previous works. Equation 2 defines
the metric, where Accgold denotes the gold accu-
racy and Accpred denotes the predicted accuracy.

|Accgold −Accpred| (2)

We calculate Accpred with two methods: (1) cal-
culating the mean of estimated accuracies by all
discriminators and (2) calculating the mean of es-
timated upper and lower bounds. Despite their
simplicity, both methods perform well across tasks.
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OOD ID

MCD1 MCD2 COGS TOP AMR 2.0

Acc AE ↓ Acc AE ↓ Acc AE ↓ Acc AE ↓ Acc AE ↓
Maxprob 84.5 26.7 78.0 55.1 97.1 5.7 92.2 19.2 40.6 26.3
AC 82.5 24.7 74.0 51.1 96.6 5.2 85.9 12.9 38.0 23.7
DOC 82.9 25.1 74.3 51.4 96.6 5.2 89.3 16.3 32.8 18.5
ATC 73.0 15.2 56.9 34.0 100.0 8.6 66.0 7.0 15.0 0.7

Maxprob (Oracle)

Upper. 86.4 - 51.3 - 96.7 - 85.8 - 17.9 -
Lower. 43.7 - 17.2 - 44.3 - 65.2 - 5.8 -
Mean 65.1 7.3 34.3 11.4 70.5 20.9 75.5 2.5 11.8 2.5

Ours (T5)

Meandiscrim 63.0 5.2 28.8 5.9 91.4 0.0 75.3 2.3 8.6 5.7
Upper. 70.0 - 36.1 - 92.1 - 82.3 - 18.3 -
Lower. 56.0 - 22.4 - 90.2 - 66.0 - 3.4 -
Meanbounds 63.0 5.2 29.3 6.4 91.2 0.3 74.2 1.2 10.9 3.4

Ours (Roberta)

Meandiscrim 59.5 1.7 28.9 6.0 91.5 0.1 73.0 0.0 14.1 0.2
Upper. 65.0 - 35.3 - 92.3 - 82.3 - 25.5 -
Lower. 54.6 - 23.4 - 90.2 - 62.4 - 7.6 -
Meanbounds 59.8 2.0 29.3 6.4 91.3 0.2 72.3 0.7 16.6 2.3

Gold 57.8 0.0 22.9 0.0 91.4 0.0 73.0 0.0 14.3 0.0

Table 2: Predicted test-set accuracy on semantic parsing tasks. Upper. and Lower. in the leftmost column refer to
predicted upper bound and lower bound. Meandiscrim refers to a point estimate obtained as the mean of estimated
accuracies by all discriminators. Meanbounds refers to the mean of estimated upper and lower bounds as the point
estimate. Gold refers to the accuracy evaluated with gold annotations. Green numbers refer to valid bounds that
capture the gold accuracy, and Red numbers refer to invalid bounds.

In addition, we report the Recall of our discrim-
inators. Specifically, we report the score for the
Correct and Incorrect labels individually. We de-
fine True Correct (TC) as instances with an an-
notation being Correct and the prediction being
Correct, False Correct (FC) as instances with an
annotation being incorrect and the prediction being
correct. Similarly, we can define True Incorrect
(TI) and False Incorrect (FI). The Correct-Recall
is calculated by Equation 3; the Incorrect-Recall is
analogous.

CR =
Count(TC)

Count(TC) + Count(FI)
(3)

These recall scores indicate how many correct
or incorrect instances can be discriminated, but
are not studied by previous works. We propose
these metrics as a side contribution, which can be
beneficial for downstream uses of the discriminator.

4.4 Results

Correctness of bounds prediction. We first re-
port recall scores of our discriminators in Table 1.
For both T5 and RoBERTa discriminators, we can

observe that the upper bound achieves the highest
Correct-Recall score, and the lower bound achieves
the highest Incorrect-Recall score. This is because
these bounds are based on voting mechanisms
specifically designed to find correct or incorrect
predictions. On many of our datasets, these recall
scores approach 100%, which indicates the strong
ability of our method to discriminate correctness.

Accuracy of bounds prediction. We then com-
pare the predicted accuracy of our bounds in Table
2 (e.g. semantic parsing), Table 3 (e.g. tagging) and
Table 4 (e.g. parsing). We can observe that our
predicted upper and lower bounds accurately cap-
ture the gold accuracy (i.e. high reliability). This
pattern holds for 9 of 10 datasets with T5 discrim-
inators, and for 8 of 10 datasets with RoBERTa
discriminators. Even for POS-COGS and MCD2,
where this conclusion is not true, the gold accu-
racy only violates the bounds predicted by a small
amount (i.e. 0.4% on POS-COGS and 0.5% on
MCD2). Meanwhile, the predicted upper and lower
bounds are usually close (i.e. high tightness). Com-
paring our predicted bounds with Maxprob (Ora-
cle), our bounds are more tight on OOD general-
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OOD ID

POS-Brown POS-COGS POS-WSJ

Acc AE Acc AE Acc AE

Maxprob 87.4 26.4 99.8 14.1 84.7 19.4
AC 80.5 19.5 100.0 14.3 77.4 12.1
DOC 88.0 27.0 98.8 13.1 85.0 19.7
ATC 68.0 7.0 100.0 14.3 61.6 3.7

Maxprob (Oracle)

Upper. 83.6 - 99.6 - 82.4 -
Lower. 44.5 - 83.3 - 47.9 -
Mean 64.0 3.0 91.4 5.7 65.2 0.1

Ours (T5)

Meandiscrim 64.1 3.1 87.1 1.4 65.6 0.3
Upper. 86.2 - 87.9 - 86.2 -
Lower. 37.8 - 86.2 - 39.5 -
Meanbounds 62.0 1.0 87.1 1.4 62.9 2.4

Ours (Roberta)

Meandiscrim 62.6 1.6 86.8 1.1 65.8 0.5
Upper. 88.0 - 87.6 - 89.9 -
Lower. 31.8 - 86.1 - 36.7 -
Meanbounds 59.9 1.1 86.8 1.1 63.3 2.0

Gold 61.0 0.0 85.7 0.0 65.3 0.0

Table 3: Predicted accuracy on POS tagging tasks.

ization tasks (e.g. MCD splits and COGS). Note
that Maxprob (Oracle) can access gold annotations
to find a proper bound, which is implausible in
practice. Nonetheless, our method still provides
better bounds than this oracle method, indicating
the effectiveness of our method on OOD tasks.

Obtaining point estimates. We also com-
pare our method with other point estimation meth-
ods with two heuristics (e.g. Meandiscrim and
Meanbounds rows in Ours). Although our methods
are not specifically designed for point estimation,
these estimates substantially outperform previous
methods and achieve very low AE scores across all
tasks. Our method is especially useful for OOD
test sets, where confidence-based methods yield a
much larger AE.

5 Discussion

Low performance on constituency parsing. Our
method predicts loose bounds on PTB parsing tasks
and sometimes yields high AE scores. We conjec-
ture that this is because the PTB training set con-
tains many long output sequences (e.g. linearized
parse trees), whose lengths are much larger than
the maximal encoding length (e.g. 512) of our lan-
guage model discriminators. Encoding sequences
longer than observed during pretraining has been
shown challenging for transformer-based language

OOD ID

Syn-Brown Syn-WSJ

Acc AE Acc AE

Maxprob 48.3 14.5 50.8 13.2
AC 50.8 17.0 52.4 14.8
DOC 48.5 14.7 50.2 12.6
ATC 34.7 0.9 34.0 3.6

Maxprob (Oracle)

Upper. 32.9 - 33.4 -
Lower. 17.7 - 16.5 -
Mean 25.3 8.5 24.9 12.7

Ours (T5)

Meandiscrim 36.3 2.5 43.8 6.2
Upper. 57.5 - 64.2 -
Lower. 17.9 - 24.6 -
Meanbounds 37.7 3.9 44.4 6.8

Ours (Roberta)

Meandiscrim 40.2 6.4 34.8 2.8
Upper. 64.6 - 68.8 -
Lower. 3.8 - 5.8 -
Meanbounds 34.2 0.4 37.3 0.3

Gold 33.8 0.0 37.6 0.0

Table 4: Predicted accuracy on parsing tasks.

models (Dai et al., 2019), which leads to an addi-
tional challenge for our discriminators. Nonethe-
less, the gold accuracy is still robustly between the
predicted bounds.

The robustness of discriminators. We have
seen that our predicted upper and lower bounds can
capture the gold accuracy. However, this may not
be enough to show the robustness of our method,
since we only evaluated it on one overall test set
for each parser, while previous works (Garg et al.,
2022) collect multiple test sets for each classifier.
To investigate the robustness of our method, we
create multiple test sets by randomly sampling sub-
sets from the original test set and plot the accuracy
of T5 discriminators on OOD test sets in Figure
4. See Appendix D for full results of both T5 and
RoBERTa discriminators.

According to the results, we can observe that
our predicted bounds robustly capture the gold ac-
curacy with regard to different sizes of randomly
sampled test sets. On COGS, POS-COGS and TOP,
a small test set gives a large confidence interval. We
consider this is because their test sets contain some
extremely difficult examples for the parser, which
could result in a challenging subset and yield a low
accuracy. Despite this, our discriminators capture
the difficulty of such challenging subsets and shares
similar confidence intervals as the gold accuracy.
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(a) MCD1 (b) MCD2 (c) COGS

(d) TOP (e) POS-COGS (f) POS-Brown

Figure 4: Predicted accuracy w.r.t. the number of test-set instances. For each subset we randomly sample 50 times
and show its confidence interval with 95% confidence.

Training models to predict another model’s
accuracy. The main idea of our method is to train
one model (i.e. discriminator) to predict a base
model’s accuracy (i.e. parser). Previous work esti-
mates model accuracy using the parser’s confidence
scores, which can be misleading in OOD tasks due
to overconfidence, as shown in Section 4.4. On
the other hand, Kim et al. (2021) find that despite
the parser’s poor performance on OOD data, cate-
gorizing the parsing task into a classification task
enables their classifier to generalize to OOD data
to some extents. Hence, we directly train a clas-
sifier (i.e. discriminator) to assess correctness of
the prediction. Training discriminators to evaluate
another model’s prediction has been studied in vari-
ous fields, including adversarial learning (Goodfel-
low et al., 2014), error detection (Chen et al., 2023)
and reranking (Yin and Neubig, 2019), where dis-
criminators are used to improve the base model’s
accuracy. Our work differs in using discriminators
to predict bounds of the base model’s accuracy.

Despite the impressive performance of our dis-
criminators, training them relies on incorrect parser
outputs (i.e. errors) on the parser’s training set. This
raises concerns about the generalization of discrim-
inators to errors made in OOD data by the parser.
Our results empirically show that discriminators
can generalize to such errors, but further investiga-
tion is needed to understand the specific scenarios
where this method fails and the underlying reasons.

Since the discriminators’ performance still lags
behind on particular tasks, it is worth exploring
discriminators’ confidence scores to improve the
estimated accuracy. We leave this for future study.

6 Conclusion

We propose a method to predict upper and lower
bounds for the accuracy of a model on unlabeled
and possibly OOD data. To do this, we first train
multiple correctness discriminators by finetuning
pretrained language models, and then ensemble
discriminator predictions through a special voting
mechanism. Our experiments show that our pre-
dicted bounds reliably capture gold accuracy across
a variety of in-distribution and out-of-distribution
tasks including semantic parsing, tagging and con-
stituency parsing tasks, and the upper and lower
bounds are usually tight. Although our method
is not specifically designed for point estimation,
simple heuristics (e.g. using the mean of bounds
as estimated accuracy) based on our method can
substantially outperform previous methods, which
indicates the effectiveness of our method.

For the future, we will explore the use of our
discriminators to improve model performance on
tasks evaluated in this paper. For example, given
unlabeled OOD sentences and a parser, our lower
bound can be used to detect instances with a high
Correct-Precision, as training data to improve the
parser. It would be interesting to expand our predic-
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tion of hard upper and lower bounds to a Bayesian
model that predicts a probability distribution over
accuracies. Finally, it would be useful to extend
our method to predicting accuracy in terms of other
metrics (e.g. parsing f-score or SMATCH).

Limitations

In order to train the discriminators, we extract neg-
ative training instances from the beam of a partially
finetuned T5 model. Our method is therefore not
applicable in situations where we cannot easily ac-
cess the beam, e.g. when trying to estimate the
accuracy of a closed language model.

Training the discriminators incurs a computa-
tional overhead, compared to training only the
parser. In the experiments reported above, with
five discriminators per ensemble, the training time
is increased roughly by a factor of ten. However,
once an ensemble has been trained, it can be ap-
plied across many unlabeled test sets for the same
task.

Finally, the discriminator ensembles in our ap-
proach currently vote only at the level of entire
test instances, which means that we can only use
instance-level evaluation measures such as exact
match. As we discussed in the conclusion, ex-
tending our approach to other evaluation measures
seems like a very useful topic for future research.

Acknowledgements

We appreciate Mareike Hartmann, Megan Dare,
Blerta Veseli and Xudong Hong for their insightful
feedback to this paper. This work was supported
by the Deutsche Forschungsgemeinschaft (DFG)
through the project KO 2916/2-2.

References
Laura Banarescu, Claire Bonial, Shu Cai, Madalina

Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract Meaning Representation
for sembanking. In Proceedings of the 7th Linguistic
Annotation Workshop and Interoperability with Dis-
course, pages 178–186, Sofia, Bulgaria. Association
for Computational Linguistics.

Rajen Chatterjee, Matteo Negri, Marco Turchi, Frédéric
Blain, and Lucia Specia. 2018. Combining quality
estimation and automatic post-editing to enhance ma-
chine translation output. In Proceedings of the 13th
Conference of the Association for Machine Transla-
tion in the Americas (Volume 1: Research Track),
pages 26–38, Boston, MA. Association for Machine
Translation in the Americas.

Shijie Chen, Ziru Chen, Huan Sun, and Yu Su. 2023.
Error detection for text-to-SQL semantic parsing. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2023, pages 11730–11743, Singa-
pore. Association for Computational Linguistics.

Xilun Chen, Asish Ghoshal, Yashar Mehdad, Luke
Zettlemoyer, and Sonal Gupta. 2020. Low-resource
domain adaptation for compositional task-oriented
semantic parsing. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 5090–5100, Online. As-
sociation for Computational Linguistics.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Car-
bonell, Quoc Le, and Ruslan Salakhutdinov. 2019.
Transformer-XL: Attentive language models beyond
a fixed-length context. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 2978–2988, Florence, Italy. Asso-
ciation for Computational Linguistics.

Shrey Desai and Greg Durrett. 2020. Calibration of
pre-trained transformers. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 295–302, Online.
Association for Computational Linguistics.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. Qlora: Efficient finetuning
of quantized llms.

Li Dong, Chris Quirk, and Mirella Lapata. 2018. Con-
fidence modeling for neural semantic parsing. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 743–753, Melbourne, Australia.
Association for Computational Linguistics.

Harvey Yiyun Fu, Qinyuan Ye, Albert Xu, Xiang Ren,
and Robin Jia. 2023. Estimating large language
model capabilities without labeled test data.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew Pe-
ters, Michael Schmitz, and Luke Zettlemoyer. 2018.
AllenNLP: A deep semantic natural language pro-
cessing platform. In Proceedings of Workshop for
NLP Open Source Software (NLP-OSS), pages 1–6,
Melbourne, Australia. Association for Computational
Linguistics.

Saurabh Garg, Sivaraman Balakrishnan, Zachary C
Lipton, Behnam Neyshabur, and Hanie Sedghi.
2022. Leveraging unlabeled data to predict
out-of-distribution performance. arXiv preprint
arXiv:2201.04234.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. 2014. Generative
adversarial networks.

Devin Guillory, Vaishaal Shankar, Sayna Ebrahimi,
Trevor Darrell, and Ludwig Schmidt. 2021. Pre-
dicting with confidence on unseen distributions. In

11733

https://aclanthology.org/W13-2322
https://aclanthology.org/W13-2322
https://aclanthology.org/W18-1804
https://aclanthology.org/W18-1804
https://aclanthology.org/W18-1804
https://doi.org/10.18653/v1/2023.findings-emnlp.785
https://doi.org/10.18653/v1/2020.emnlp-main.413
https://doi.org/10.18653/v1/2020.emnlp-main.413
https://doi.org/10.18653/v1/2020.emnlp-main.413
https://doi.org/10.18653/v1/P19-1285
https://doi.org/10.18653/v1/P19-1285
https://doi.org/10.18653/v1/2020.emnlp-main.21
https://doi.org/10.18653/v1/2020.emnlp-main.21
http://arxiv.org/abs/2305.14314
http://arxiv.org/abs/2305.14314
https://doi.org/10.18653/v1/P18-1069
https://doi.org/10.18653/v1/P18-1069
http://arxiv.org/abs/2305.14802
http://arxiv.org/abs/2305.14802
https://doi.org/10.18653/v1/W18-2501
https://doi.org/10.18653/v1/W18-2501
http://arxiv.org/abs/1406.2661
http://arxiv.org/abs/1406.2661


Proceedings of the IEEE/CVF international confer-
ence on computer vision, pages 1134–1144.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Wein-
berger. 2017. On calibration of modern neural net-
works. In International conference on machine learn-
ing, pages 1321–1330. PMLR.

Sonal Gupta, Rushin Shah, Mrinal Mohit, Anuj Ku-
mar, and Mike Lewis. 2018. Semantic parsing for
task oriented dialog using hierarchical representa-
tions. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 2787–2792, Brussels, Belgium. Association
for Computational Linguistics.

Yiding Jiang, Vaishnavh Nagarajan, Christina Baek, and
J Zico Kolter. 2021a. Assessing generalization of sgd
via disagreement. arXiv preprint arXiv:2106.13799.

Zhengbao Jiang, Jun Araki, Haibo Ding, and Graham
Neubig. 2021b. How can we know when language
models know? on the calibration of language models
for question answering. Transactions of the Associa-
tion for Computational Linguistics, 9:962–977.

Carlos E Jimenez, John Yang, Alexander Wettig,
Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. 2024. SWE-bench: Can language mod-
els resolve real-world github issues? In The Twelfth
International Conference on Learning Representa-
tions.

Amita Kamath, Robin Jia, and Percy Liang. 2020. Se-
lective question answering under domain shift. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 5684–
5696, Online. Association for Computational Lin-
guistics.

Daniel Keysers, Nathanael Schärli, Nathan Scales,
Hylke Buisman, Daniel Furrer, Sergii Kashubin,
Nikola Momchev, Danila Sinopalnikov, Lukasz
Stafiniak, Tibor Tihon, Dmitry Tsarkov, Xiao Wang,
Marc van Zee, and Olivier Bousquet. 2020. Measur-
ing compositional generalization: A comprehensive
method on realistic data. In International Conference
on Learning Representations (ICLR).

Juyong Kim, Pradeep Ravikumar, Joshua Ainslie, and
Santiago Ontanon. 2021. Improving compositional
generalization in classification tasks via structure an-
notations. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 2: Short Papers),
pages 637–645, Online. Association for Computa-
tional Linguistics.

Najoung Kim and Tal Linzen. 2020. COGS: A compo-
sitional generalization challenge based on semantic
interpretation. In Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP), pages 9087–9105, Online. As-
sociation for Computational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Lingkai Kong, Haoming Jiang, Yuchen Zhuang, Jie
Lyu, Tuo Zhao, and Chao Zhang. 2020. Cali-
brated language model fine-tuning for in- and out-
of-distribution data. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1326–1340, Online. As-
sociation for Computational Linguistics.

Brenden Lake and Marco Baroni. 2018. Generaliza-
tion without systematicity: On the compositional
skills of sequence-to-sequence recurrent networks.
In Proceedings of the 35th International Conference
on Machine Learning, volume 80 of Proceedings
of Machine Learning Research, pages 2873–2882,
Stockholmsmässan, Stockholm Sweden. PMLR.

Balaji Lakshminarayanan, Alexander Pritzel, and
Charles Blundell. 2017. Simple and scalable pre-
dictive uncertainty estimation using deep ensembles.
Advances in neural information processing systems,
30.

Bingzhi Li, Lucia Donatelli, Alexander Koller, Tal
Linzen, Yuekun Yao, and Najoung Kim. 2023. Slog:
A structural generalization benchmark for semantic
parsing.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Denis Lukovnikov, Sina Daubener, and Asja Fischer.
2021. Detecting compositionally out-of-distribution
examples in semantic parsing. In Findings of the
Association for Computational Linguistics: EMNLP
2021, pages 591–598, Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated cor-
pus of English: The Penn Treebank. Computational
Linguistics, 19(2):313–330.

Juri Opitz and Anette Frank. 2019. Automatic accu-
racy prediction for AMR parsing. In Proceedings
of the Eighth Joint Conference on Lexical and Com-
putational Semantics (*SEM 2019), pages 212–223,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

11734

https://doi.org/10.18653/v1/D18-1300
https://doi.org/10.18653/v1/D18-1300
https://doi.org/10.18653/v1/D18-1300
https://doi.org/10.1162/tacl_a_00407
https://doi.org/10.1162/tacl_a_00407
https://doi.org/10.1162/tacl_a_00407
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://doi.org/10.18653/v1/2020.acl-main.503
https://doi.org/10.18653/v1/2020.acl-main.503
https://openreview.net/pdf?id=SygcCnNKwr
https://openreview.net/pdf?id=SygcCnNKwr
https://openreview.net/pdf?id=SygcCnNKwr
https://doi.org/10.18653/v1/2021.acl-short.81
https://doi.org/10.18653/v1/2021.acl-short.81
https://doi.org/10.18653/v1/2021.acl-short.81
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/2020.emnlp-main.731
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.18653/v1/2020.emnlp-main.102
https://doi.org/10.18653/v1/2020.emnlp-main.102
https://doi.org/10.18653/v1/2020.emnlp-main.102
http://proceedings.mlr.press/v80/lake18a.html
http://proceedings.mlr.press/v80/lake18a.html
http://proceedings.mlr.press/v80/lake18a.html
http://arxiv.org/abs/2310.15040
http://arxiv.org/abs/2310.15040
http://arxiv.org/abs/2310.15040
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/2021.findings-emnlp.54
https://doi.org/10.18653/v1/2021.findings-emnlp.54
https://aclanthology.org/J93-2004
https://aclanthology.org/J93-2004
https://doi.org/10.18653/v1/S19-1024
https://doi.org/10.18653/v1/S19-1024
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135


Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik Narasimhan, and Shunyu Yao. 2023. Re-
flexion: language agents with verbal reinforcement
learning. In Advances in Neural Information Process-
ing Systems, volume 36, pages 8634–8652. Curran
Associates, Inc.

Vincent Van Asch and Walter Daelemans. 2010. Us-
ing domain similarity for performance estimation.
In Proceedings of the 2010 Workshop on Domain
Adaptation for Natural Language Processing, pages
31–36, Uppsala, Sweden. Association for Computa-
tional Linguistics.

Neeraj Varshney and Chitta Baral. 2023. Post-
abstention: Towards reliably re-attempting the ab-
stained instances in QA. In Proceedings of the 61st
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 967–982,
Toronto, Canada. Association for Computational Lin-
guistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik R Narasimhan, and Yuan Cao. 2023.
React: Synergizing reasoning and acting in language
models. In The Eleventh International Conference
on Learning Representations.

Yuekun Yao and Alexander Koller. 2022. Structural gen-
eralization is hard for sequence-to-sequence models.
In Proceedings of the 2022 Conference on Empiri-
cal Methods in Natural Language Processing, pages
5048–5062, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

Pengcheng Yin and Graham Neubig. 2019. Reranking
for neural semantic parsing. In Proceedings of the
57th Annual Meeting of the Association for Computa-
tional Linguistics, pages 4553–4559, Florence, Italy.
Association for Computational Linguistics.

Yaodong Yu, Zitong Yang, Alexander Wei, Yi Ma,
and Jacob Steinhardt. 2022. Predicting out-of-
distribution error with the projection norm. In In-
ternational Conference on Machine Learning, pages
25721–25746. PMLR.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2023.
Judging llm-as-a-judge with mt-bench and chatbot
arena. arXiv preprint arXiv:2306.05685.

Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou,
Robert Lo, Abishek Sridhar, Xianyi Cheng, Tianyue
Ou, Yonatan Bisk, Daniel Fried, Uri Alon, and Gra-
ham Neubig. 2024. Webarena: A realistic web en-
vironment for building autonomous agents. In The
Twelfth International Conference on Learning Repre-
sentations.

A Dataset details

We introduce details of our used datasets here.
Statistics of datasets are reported in Table 5. The
license of datasets are reported in Table 6.

COGS (Kim and Linzen, 2020) is a synthetic
English semantic parsing task. The task in-
put is a sentence and the output is a logical
form (e.g. The baby on a tray in the house
screamed. → scream(agent=*baby(nmod.on=
tray(nmod.in=*house)))). It provides a training
set generated by a probabilistic context-free gram-
mar (PCFG) and a OOD test set with 21-typed data,
which are generated by different PCFGs to test the
different generalization abilities of the parser.

POS-COGS (Yao and Koller, 2022) is a syn-
thetic English part-of-speech tagging task gener-
ated based on COGS. The task input is a sentence
and the output is the POS tag sequence (e.g. The
baby on a tray in the house screamed. → Det N P
Det N P Det N V). POS-COGS shares the same
split of train and test sets as COGS.

CFQ (Keysers et al., 2020) is a synthetic English
semantic parsing task. The task input is a sentence
and the output is a SPARQL query (e.g. Did M0

’ s writer write M1 and M2 → SELECT count(*)
WHERE {?x0 film.writer.film M0...}). We
use the MCD1 and MCD2 splits of CFQ, where the
test set is designed to compositionally diverge from
the training set but share similar atom distributions.

TOPv2 (Chen et al., 2020) is a natural English
semantic parsing task. The task input is a sen-
tence and the output is a hierarchical semantic rep-
resentation (Gupta et al., 2018) (e.g. Will there be
snowfall this week? → [in:get_weather will
there be [sl:weather_attribute snowfall]
[sl:date_time this week] ?]). The TOPv2
training set consists of data from multiple domains
including two low-resource domains (e.g. reminder
and weather), and the test set consists of data
from the two domains to test low-resource domain
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Dataset Split # train # dev. # test # gen Vocab. size Train len. Test len. Gen len.

COGS - 24155 3000 3000 21000 809 22/48 19/40 61/144

CFQ MCD1 95743 11968 11968 - 171 29/133 30/103 -
MCD2 95743 11968 11968 - 171 29/133 30/103 -

TOP weather 84372 - 484 - 29462 51/82 21/60 -
AMR 2 - 36251 1368 1371 - 79651 216/615 159/583 -
POS-WSJ - 39832 1700 2416 - 46378 141/141 67/67 -
POS-Brown - - - 24243 - 29564 - 172/172 -
POS-COGS - 24155 3000 3000 21000 753 22/21 22/21 61/60
Syn-WSJ - 39832 1700 2416 - 46404 141/903 67/429 -
Syn-Brown - - - 24243 - 29596 - 172/1135 -

Table 5: Statistics for all our datasets. # denotes the number of instances in the dataset. Vocab.size denotes the size
of vocabulary for the dataset, which consists of input tokens and output tokens. Train.len denotes the maximum
length of the input tokens and output tokens in the train set. Test.len and Gen.len denote the maximum length in the
test and generalization set.

Dataset License

COGS MIT
CFQ CC-BY
TOP CC-BY-SA
AMR 2 LDC
PTB LDC
POS-COGS MIT

Table 6: Licenses for used datasets.

adaptation ability of the parser. We focused on
theweather domain in our experiments.

AMR 2.0 (Banarescu et al., 2013) is an
English semantic parsing task. The input is
a sentence and output is an abstract mean-
ing representation (e.g. I will stick around
until the end→(stick-around-03 :ARG0(i)
:time(until :op1(end-01)))).

Penn Treebank 3 (PTB) (Marcus et al., 1993)
is an English constituency parsing task. The input
is a sentence and the output is the constituency
parse tree (e.g. Vice President → (TOP(NP(NNP
Vice)(NNP President)))).

B Training details

B.1 Hyperparameters
Parser. We finetune t5-base2 (220M parameters)
as our parser for all tasks. We use Adam (Kingma
and Ba, 2015) as the optimizer. For most tasks,
the learning rate is set to 1e-5. For CFQ, AMR,
PennTreebank tasks, the learning rate is set to 1e-4
to make the training faster. For tasks that provide
a development set, early stopping is used and the
best checkpoint is selected based on the evaluation
metrics on the development set. Otherwise, the
checkpoint at the end of training is used to report
results. For AMR, the evaluation metric is Smatch

2https://huggingface.co/t5-base

F1 score. For syntactic parsing, the evaluation
metric is EVALB F1 score3. For other tasks, exact
match accuracy is used as the evaluation metric.
We use weight decay 1e-3 for all datasets. No
learning rate scheduler is used for all experiments.
During evaluation, we use beam search with beam
size 4.

Discriminator. We finetune t5-base (220M pa-
rameters), roberta-base (125M parameters) and
Vicuna-7b-v1.54 (7B parameters) as our discrimi-
nators. To collect training data, we use the first 5
checkpoints of the parser and validate them on the
parser’s training set. We select negative examples
from beam predictions of these checkpoints as the
training data of the discriminator. If a task provides
an in-distribution development set for the parser,
we use the same method to create the development
set for the discriminator.

For T5, we follow the same hyperparameter set-
tings described for T5 parser. For RoBERTa, we
adopt learning rate 1e-5 for all tasks except PTB.
On PTB tasks, the learning rate is set to 5e-5. For
both T5 and RoBERTa, we validate the AUC score
on the development set to select the best checkpoint
of the discriminator when a development set is
available. Otherwise, we train the discriminator un-
til its training loss converges with fixed steps. Note
that although CFQ provides an out-of-distribution
development set, we did not use it since we assume
we do not have the access to the OOD data.

We use QLoRA (Dettmers et al., 2023) to fine-
tune Vicuna discriminators. For datasets except
POS-COGS, the learning rate is set to 3e-4. For
POS-COGS dataset, the learning rate is set to 2e-5.
We use linear scheduler with warmup as our learn-

3https://nlp.cs.nyu.edu/evalb/
4https://huggingface.co/lmsys/vicuna-7b-v1.5
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ing rate scheduler. We use weight decay 1e-3 for
all datasets. For LoRA, we set the rank value to 8,
the alpha value to 32 and the dropout value to 0.1.

B.2 Other details
We use AllenNLP (Gardner et al., 2018) to imple-
ment T5 and RoBERTa finetuning and Huggingface
(Wolf et al., 2020) to implement Vicuna finetuning.
Experiments are run on Tesla A100 GPU cards
(80GB). Table 8 shows the training time cost to
train a single discriminator on one GPU.

C Results of Vicuna-based discriminators

Here we report the results of Vicuna discriminators
in Table 9. In this setting, we finetune Vicuna-7B
on the same datasets we used in Section 4.1.

Similar to the observation in Section 4, Vicuna-
based discriminators achieve high recall scores on
most datasets, indicating that they can still make
correct judgements for most instances. We also re-
port estimation errors of this discriminator in Table
7, 10, 11. According to the results, we can ob-
serve that Vicuna-based discriminators still achieve
very low estimation errors across different datasets.
The predicted upper and lower bounds captures
the gold accuracy on all datasets. These results
are consistent with our observations when using
T5 and RoBERTa discriminators, which suggests
that our method is robust with regard to different
discriminator architectures.

D Results of discriminators on subsets of
test sets

We report results of T5 and RoBERTa discrimina-
tors on different subsets of the test set in Figure
5, 6. Both discriminators predict lower and up-
per bounds that capture the gold accuracy robustly,
which is consistent with our observation in Section
5.
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OOD ID

MCD1 MCD2 COGS TOP AMR 2.0

Acc AE ↓ Acc AE ↓ Acc AE ↓ Acc AE ↓ Acc AE ↓
Ours (Vicuna)

Meandiscrim 56.4 1.4 23.6 0.7 93.0 1.6 76.2 3.2 18.3 4.0
Upper. 60.0 - 28.1 - 94.7 - 87.9 - 28.0 -
Lower. 51.5 - 18.4 - 87.8 - 57.4 - 4.2 -
Meanbounds 55.8 2.0 23.3 0.4 91.3 0.2 72.7 0.3 16.1 1.8

Gold 57.8 0.0 22.9 0.0 91.4 0.0 73.0 0.0 14.3 0.0

Table 7: Predicted test-set accuracy with Vicuna-based discriminators on semantic parsing tasks.

(a) MCD1 (b) MCD2 (c) COGS (d) TOP

(e) POS-COGS (f) POS-Brown (g) POS-WSJ (h) POS-COGS

(i) Syn-Brown (j) Syn-WSJ

Figure 5: Predicted accuracy by T5 discriminators w.r.t. the number of test-set instances. For each subset we
randomly sample 50 times and show its confidence interval with 95% confidence.

Time (hours)
Dataset T5 Roberta Vicuna

MCD1 10 8 12
MCD2 10 8 12
COGS 3 3 5
Top 2 5 2
AMR 16 18 50
POS-WSJ 16 16 100
POS-COGS 2 3 5
Syn-WSj 15 10 100

Table 8: Training time for our model on each dataset (1
run) in our experiments.

Single Upperbound Lowerbound

CR IR CR IR CR IR

OOD

MCD1 94.3 96.7 98.7 93.0 88.4 98.9
MCD2 81.3 94.7 95.9 92.0 68.1 96.4
COGS 98.8 78.0 99.9 60.2 95.6 95.5
TOP 82.5 71.1 97.1 36.8 72.8 84.2
POS-Brown 68.6 60.5 92.1 26.5 24.7 94.6
POS-COGS 97.9 86.4 98.9 72.6 96.3 91.5
Syn-Brown 56.9 59.3 88.0 27.5 25.3 75.0

ID
AMR 2.0 51.3 89.9 57.5 76.9 26.4 99.5
POS-WSJ 70.4 58.2 91.2 26.6 33.6 93.0
Syn-WSJ 63.9 52.4 91.7 23.8 32.2 68.1

Table 9: Correct recall and incorrect recall scores of
Vicuna-based discriminators.
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(d) TOP
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(e) POS-COGS
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(h) POS-COGS
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(i) Syn-Brown
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Figure 6: Predicted accuracy by RoBERTa discriminators w.r.t. the number of test-set instances. For each subset we
randomly sample 50 times and show its confidence interval with 95% confidence.

OOD ID

POS-Brown POS-COGS POS-WSJ

Acc AE Acc AE Acc AE

Ours (Vicuna)

Meandiscrim 51.5 9.5 86.8 1.1 55.2 10.1
Single 57.3 3.7 85.3 0.4 60.5 4.8
Upper. 84.8 - 86.6 - 85.0 -
Lower. 17.2 - 83.8 - 24.4 -
Meanbounds 51.0 10.0 85.2 0.5 54.7 10.6

Gold 61.0 0.0 85.7 0.0 65.3 0.0

Table 10: Predicted accuracy on POS tagging tasks.

OOD ID

Syn-Brown Syn-WSJ

Acc AE Acc AE

Ours (Vicuna)

Meandiscrim 51.5 17.7 56.7 19.1
Upper. 77.8 - 82.1 -
Lower. 25.1 - 31.2 -
Meanbounds 51.5 17.7 56.7 19.1

Gold 33.8 0.0 37.6 0.0

Table 11: Predicted accuracy on parsing tasks.
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