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Abstract

Self-detection for Large Language Models
(LLMs) seeks to evaluate the trustworthiness of
the LLM’s output by leveraging its own capabil-
ities, thereby alleviating the issue of output hal-
lucination. However, existing self-detection ap-
proaches only retrospectively evaluate answers
generated by LLM, typically leading to the
over-trust in incorrectly generated answers. To
tackle this limitation, we propose a novel self-
detection paradigm that considers the compre-
hensive answer space beyond LLM-generated
answers. It thoroughly compares the trustwor-
thiness of multiple candidate answers to miti-
gate the over-trust in LLM-generated incorrect
answers. Building upon this paradigm, we in-
troduce a two-step framework, which firstly in-
structs LLM to reflect and provide justifications
for each candidate answer, and then aggregates
the justifications for comprehensive target an-
swer evaluation. This framework can be seam-
lessly integrated with existing approaches for
superior self-detection. Extensive experiments
on six datasets spanning three tasks demon-
strate the effectiveness of the proposed frame-
work.

1 Introduction

Large Language Model (LLM) typically suffers
from the hallucination issue, (Zhang et al., 2023c;
Li et al., 2023a; Golovneva et al., 2022; Bang et al.,
2023), which significantly undermines the trustwor-
thiness of LLM’s outputs. A promising research
direction for evaluating the output trustworthiness
and identifying incorrect outputs is self-detection
(Zhao et al., 2023c; Miao et al., 2023; Manakul
et al., 2023). Given a question, self-detection aims
to leverage LLM’s own ability to evaluate the trust-
worthiness of its generated answers, without rely-
ing on external knowledge sources or specifically
trained detection models. This paper investigates
self-detection methods tailored for black-box API
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Figure 1: An illustration of Think Twice before Trusting
framework for mitigating the over-trust issue in LLM
self-detection. LLM is instructed to reflect and generate
justification on the trustworthiness of each answers be-
fore evaluating the trustworthiness of the target answer.

LLMs due to their excellent performance and the
inherent challenge posed by limited output infor-
mation (Achiam et al., 2023; OpenAI, 2024).

Previous studies in self-detection can be broadly
categorized into two paradigms (cf. Figure 2). The
first paradigm is confidence calibration, aiming
to estimate LLM’s confidence on the generated
answer to align with the actual answer accuracy
via multi-answer sampling and aggregation (Xiong
et al., 2023; Tian et al., 2023b; Si et al., 2022; Jiang
et al., 2023). The second one is self-evaluation,
which directly examines the compatibility of ques-
tion and answer by designing various prompt strate-
gies (Miao et al., 2023; Kadavath et al., 2022; Weng
et al., 2023). These two paradigms have also been
combined to enhance self-detection capabilities
(Chen and Mueller, 2023; Ren et al., 2023a).

However, both self-detection paradigms have
shown a significant drawback: an inclination to-
wards over-trusting the incorrect answers generated
by LLM (Si et al., 2022; Xiong et al., 2023; Jiang
et al., 2023; Kadavath et al., 2022). We argue that
one reason may be that both paradigms merely eval-

11858



uate LLM-generated answers, while LLM contains
an inherent bias towards trusting its own genera-
tions (Mielke et al., 2022; Lin et al., 2022a), leading
to serious over-trust in LLM-generated incorrect
answers. An ideal self-detection paradigm should
consider a more comprehensive answer space be-
yond LLM’s generations. By evaluating on other
potentially correct answers in a broader answer
space, the strong validity in these answers can coun-
terbalance the excessive trust in the incorrect LLM
answers, thus alleviating the over-trust issue.

In this light, we introduce a new comprehen-
sive answer evaluation paradigm involving the con-
sideration of multiple candidate answers in the
answer space to enhance self-detection (cf. Fig-
ure 2). This paradigm meticulously evaluates each
answer’s trustworthiness as a correct answer to the
question and aggregates these evaluations to en-
hance the self-detection of the target LLM answer.
The biased trust in the LLM-generated incorrect
answers can be alleviated through the trustworthi-
ness comparison with other more trustable answers.
Our preliminary experiments reveal the efficacy of
considering more comprehensive answers to con-
front over-trust (cf. Section 2). To summarize,
two key considerations arise to instantiate this new
paradigm: 1) resisting the inherent bias of LLM
to precisely evaluate the trustworthiness of each
question-answer pair, and 2) aggregating these eval-
uations in the trustworthiness evaluation of the tar-
get answer.

To this end, we present a novel self-detection
framework to tackle the over-trust issue of LLMs,
named Think Twice before Trusting (T 3) (cf. Fig-
ure 1). Our framework pushes LLM to reflect and
justify from different answers’ perspectives before
arriving at the trustworthiness on the target answer.
Firstly, the LLM is instructed to generate justifi-
cations regarding the potential correctness of each
answer. Subsequently, a prompt-based method is
employed to integrate these justifications into joint
evaluation for the target answer. Extensive exper-
iments on six datasets across three tasks on three
different LLMs show improved performance of T 3

over methods from existing paradigms. Notably,
T 3 can be combined with existing methods for su-
perior self-detection. Our analysis also reveals T 3’s
strong robustness and effective over-trust mitiga-
tion. Our contributions are three-fold.

• We introduce a novel self-detection paradigm
for mitigating the over-trust issue in LLM, ad-

dressing the limitation of existing paradigms by
reflection in the broader answer space.

• We present a novel T 3 framework to implement
the comprehensive answer evaluation paradigm,
which can be seamlessly integrated with existing
self-detection methods.

• We conduct extensive experiments on three NLP
tasks with six datasets, validating the rationality
and effectiveness of the proposed framework.

2 Problem Formulation

LLM Self-Detection. We formulate the task of
self-detection for LLM as follows. Given the input
comprising of question q combined with prompt
p, which consists of an instruction and optional
in-context examples, LLM can generate the answer
a (Brown et al., 2020), denoted as the target an-
swer. Thereafter, self-detection aims to evaluate
the trustworthiness of a by LLM’s own ability, gen-
erally in the form of a detection score c ∈ R 1.
The detection score c can be used for indicating the
actual accuracy of a, where low c values indicate
potentially incorrect answers. Denoting the self-
detection strategy as a function SD(·), this process
can be abstracted as

a = LLM(p(q)), (1)

c = SD(LLM(·), q, a). (2)

In the following, we illustrate the existing two
paradigms for self-detection, i.e., confidence cali-
bration and self-evaluation, and introduce our pro-
posed comprehensive answer evaluation paradigm.

Confidence Calibration. Confidence calibration
aims to estimate LLM’s level of certainty on the an-
swer a, e.g., estimating the LLM output probability
of a, where the obtained confidence score as the
detection score c aims to calibrate with the actual
answer accuracy. Xiong et al. conclude a general
three-step confidence calibration process for LLM
as prompting, answer sampling, aggregation (cf.
Figure 2). Denoting the prompt for confidence cal-
ibration as pc(·) and the aggregation function as
Aggr(·), this paradigm can be abstracted as,

c = Aggr(a, {a1, ..., aD}), (3)

where ai = LLM(pc(q)), i ∈ {1, ..., D}.
1If the result of self-detection is a class label (trustable or

untrustable), the detection score can be formulated as 1 or 0.
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Figure 2: Two existing paradigms of self-detection and
our new comprehensive answer evaluation paradigm.

where D > 1 refers to the number of sampled an-
swers. For example, self-consistency (Wang et al.,
2022; Si et al., 2022) aggregates the probability of a
in the sampled outputs of p(q) (e.g., using nucleus
sampling (Holtzman et al., 2020)). Formally,

c =

∑D
i=1 1(ai = a)

D
, (4)

where ai = LLM(p(q)), i ∈ {1, ..., D}.

Besides, the Top-K verbalized methods (Lin et al.,
2022a; Tian et al., 2023b) leverage a well-designed
prompt pb (cf. Appendix A.3) to instruct the LLM
to sample the K most likely answers and output
their corresponding probabilities in one response:

[{a1, c1}, ...{aK , cK}] = LLM(pb(q)). (5)

where [·] denotes the concatenation of the K most
likely answers with their probabilities. The proba-
bility of a in the response is utilized as its detection
score c (c = 0 if a is not in the K answers).

However, confidence calibration methods are ob-
served with severe over-trust issue on LLM, as-
signing high confidence score in some incorrectly
generated answers (Si et al., 2022; Xiong et al.,
2023). In fact, LLM has a bias to blindly trust its
generated answers, leading to difficulties in distin-
guishing the correctness of its generated answers
(Huang et al., 2023b; Ling et al., 2023; Mielke et al.,
2022; Ren et al., 2023b). Although some attempts
have been made to reduce high confidence in LLM
and achieve better calibration (Jiang et al., 2023;
Zhao et al., 2024), the over-trust issue still remains
a severe problem towards effective self-detection.

Self-Evaluation. Self-evaluation methods con-
catenate q and a and leverage various designed
prompts to instruct LLM in self-evaluating the
correctness of a from different perspectives. The
prompt strategy examines the matching of q, a by
integrating the self-evaluation output o. Denoting
the prompt strategy as a function ES(·), this pro-
cess can be summarized as

c = ES(q, a, o), (6)

where o = LLM(pt(q, a)).

where pt represents one prompt for self-evaluation.
The shortcoming of self-evaluation is that many

approaches under this paradigm are specifically
designed for the mathematical question answer-
ing task, including step-wise checking on Chain-
of-Thoughts (CoT) reasoning (Miao et al., 2023),
completing masked q using a (Weng et al., 2023),
and natural program (Ling et al., 2023), limiting its
applicability. The general method P(True) (Kada-
vath et al., 2022) is straightforward and still demon-
strates over-trust to incorrect LLM-generated an-
swers. It directly asks LLM whether a is the true
answer to q via the prompt pr (cf. Appendix A.3),
and uses the probability of “True” in the sampled
responses as c. Formally,

c =

∑D
i=1 1(oi = True)

D
, (7)

where oi = LLM(pr(q, a)), i ∈ {1, ..., D}.

The two paradigms can be combined for better self-
detection (Xiong et al., 2023; Chen and Mueller,
2023; Ren et al., 2023a; Agrawal et al., 2023).

A New Comprehensive Answer Evaluation
Paradigm. A notable limitation of the existing
two paradigms is that their evaluation merely in-
volves LLM-generated answers ai, in which LLM
may exhibit over-trust. We argue that such bi-
ased over-trust could be alleviated if LLM had
thoroughly compared the trustworthiness of more
candidate answers of q beyond LLM-generated
answers. We consider the multi-choice question
answering setting where a comprehensive answer
space is provided. 2 If other answers in q’s an-
swer space had a strong tendency to be correct, the
high detection score for LLM-generated incorrect a
could be diminished, reducing the over-trust issue.

2For other settings, the answer space can be obtained via
answer retrieval or additional model prediction.
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Figure 3: Comparison of self-detection methods on
CAD. w/ cf denotes our strategy with counterfactual
data. The AUROC values are shown in the x-axis. The
boxes on the left and right represent the detection scores
of incorrect and correct instances, respectively.

In this light, we propose a novel comprehensive
answer evaluation paradigm that considers N po-
tential answers in q’s answer space, denoted as
{aq1, aq2, ..., aqN}. First, LLM evaluates the trust-
worthiness of each (q, aqi ) pair using the prompt
pe.

ei = LLM(pe(q, aqi )), i ∈ {1, ..., N}. (8)

Then, the obtained evaluations e1, ..., eN can be in-
tegrated into existing paradigms to derive a more re-
fined detection score for a by adjusting the prompts.
For example, by adjusting the pc for confidence
calibration (cf. Eq 3) into a new prompt pv, the
detection score for a can be derived as,

c = Aggr(a, {a1, ..., ai}), (9)

where ai = LLM(pv(q, e1, ..., eN )), i ∈ {1, ..., D}.

The evaluations can also be integrated into self-
evaluation by adjusting the prompt pt in Eq 6.

Preliminary Experiments. We conduct a prelim-
inary experiment to validate that considering more
answers in the answer space to adjust the detection
score is beneficial for self-detection.

Our hypothesis is that the evaluation of other an-
swers can be leveraged to mitigate over-trust in the
incorrect a. To demonstrate this, we employ coun-
terfactual questions q̄, which is minimally edited
from q to have a different label within q’s answer
space. We aim to utilize the label difference be-
tween q and q̄ to identify unreliable LLM-generated
answer for q and adjust its detection score. Sup-
pose the LLM-generated answers for q̄ and q are
ā and a, respectively. If ā equals a, a and ā must
have at least one wrong answer since q̄ and q have
different labels. Thus the detection score of a on

p(q) (denoted as ca) should be reduced according
to the detection score of ā on p(q̄) (denoted as cā)
because the increasing of cā indicates the weak-
ened ca. Conversely, if ā differs from a, a and ā
are relatively trustable, and ca can be an average of
itself and cā. Formally, ca is re-calculated as

c =

{
1
2(ca + cā) if a ̸= ā,
1
2(ca +O(cā)) else.

(10)

where O(cā) denotes the detection score that q̄’s
label is not ā. In a k-classification task, we roughly
estimate O(cā) =

1
k−1(1− cā).

We experiment with the CAD dataset (Kaushik
et al., 2019), which contains human-annotated
original and counterfactual data pairs for senti-
ment analysis (SA) and natural language inference
(NLI) tasks. We compare the AUROC with self-
consistency and Top-K verbalized methods to eval-
uate the self-detection performance on GPT-3.5
(see Section 5 and Appendix B for more details).

Figure 3 shows the AUROC and the statistics
of detection scores for correct and incorrect q, a
instances, respectively. We can observe that 1)
the self-consistency and Top-K verbalized meth-
ods have notable over-trust. The detection scores
for incorrect instances have large overlap with the
correct ones, making it challenging to distinguish
them. 2) Our strategy, denoted as w/ cf, improves
AUROC by lowering detection scores on incorrect
instances, showing that considering other answers
can potentially alleviate the over-trust in incorrect
answers. However, human-annotated counterfac-
tual data is not easily available (Li et al., 2023b),
motivating us to propose the following framework.

3 Think Twice Before Assure Framework

Implementing the proposed paradigm involves two
key considerations. First, given the potential bias
of LLM over-trust in the generated answer a, it is
essential to develop strategies to resist this bias and
thoroughly evaluate the trustworthiness of each an-
swer aqi . Secondly, it is crucial to derive strategies
to effectively combine these evaluations for effec-
tive self-detection of a. To address these concerns,
we introduce the following two-step framework.

Step 1: Reflection and Justification. We first
instruct LLM to reflect on the trustworthiness of
each answer aqi and force LLM to seek justification
for aqi as the correct answer of q, as defined by
Eq. 8. The LLM is instructed with the prompt pe in
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Table 1 to gather comprehensive evidence ei from
its knowledge, in order to support the rationality of
using aqi to answer q. The rationality of this step
is that pe instructs LLM to abduct the justification
from q and aqi , which avoids the LLM bias that lies
in the generation direction from p(q) to a. As a
minor clue, generating CoT explanations from p(q)
before a has been validated to be ineffective for
calibration (Zhang et al., 2023a).

pe
The task is to [task description].
Question: [q]. Answer choices: [aq1, ..., a

q
N ].

The answer is [aqi ].
Please generate an explanation to try to justify the
answer judgment.

pv

The task is to [task description].
Provide your N best guesses and the probability that
each is correct (0.0 to 1.0) for the following question...
Question: [q]. Answer choices: [aq1, ..., a

q
N ].

Possible explanation 1: [e1]
...
Possible explanation n: [eN ]

Table 1: Prompts used in our T 3 framework. pe prompts
LLM to reflect and generate justification ei for each aqi ,
and pv prompts LLM to estimate confidence according
to different ei.

Step 2: Joint Confidence Calibration. After ob-
taining the justification ei for each aqi , we choose
to integrate these ei with a confidence calibration
method, the Top-K verbalized (cf. Eq. 5) to derive
the confidence of answer a as the detection score.
We choose this method due to its capability to gen-
erate a set of K potential answers and their respec-
tive probabilities efficiently in a single response,
where we set K as the number of answers N . As
indicated in the prompt pv of Table 1, the gener-
ated justifications ei can be seamlessly integrated
for confidence calibration of Top-K verbalized.

An alternative approach to determine the final
detection score is to put one justification to each
pv, generating N distinct confidence scores for an-
swer a, and then compute the averaged confidence
score as the detection score. We do not choose
this setting as prompting LLM to estimate from
different perspectives via a unified prompt is more
efficient and effective than a simple average of the
confidence scores (further validated in Section 5.2).
Moreover, we find that the detection scores are sen-
sitive to the order of justification in pv, thus we
shuffle the order of ei in pv and compute the av-
eraged score. Notably, the T 3 framework can be
combined with existing approaches, such as prompt
ensemble (Jiang et al., 2023), and Hybrid method

which adjust the detection score based on the dif-
ference with other methods (Xiong et al., 2023).

4 Related Work

Confidence Calibration of LLM. Confidence
calibration has been previously studies in neural
networks (Guo et al., 2017) and applied in NLP
models (Desai and Durrett, 2020; Dan and Roth,
2021; Hu et al., 2023). After the advent of LLM,
many confidence calibration methods utilize the
output token probability, such as semantic uncer-
tainty (Kuhn et al., 2023), temperature scaling
(Shih et al., 2023), entropy-based (Huang et al.,
2023c), semantic significance (Duan et al., 2023),
and fine-tuning for calibration (Jiang et al., 2021;
Lin et al., 2022a). Zhang et al. (2023b) also employ
model ensemble for calibration. Our research is
orthogonal to them, since we focus on black-box
API LLM itself. Other recent work suitable for
black-box LLM includes fidelity elicitation (Zhang
et al., 2024), fact elicitation (Zhao et al., 2024) and
perturbation generation (Gao et al., 2024).

Self-Evaluation of LLM. LLM self-evaluation
often focuses on specific domains, e.g., code gen-
eration (Zhou et al., 2023), natural language gen-
eration (Lin et al., 2023) and fact checking (Man-
akul et al., 2023). The general methods include
P(True) (Kadavath et al., 2022) and directly asking
LLM (Li et al., 2024b). Feng et al. (2024) also
performs answer reflection and employs model col-
laboration, yet they still focus on answers generated
by LLM. Note that self-detect (Zhao et al., 2023c)
is also a general self-evaluation method following
the three-step confidence calibration pipeline.

Other works that are related but orthogonal to
us include training independent models for LLM
evaluation (Wang and Li, 2023; Li et al., 2023c;
Khalifa et al., 2023; Zhao et al., 2023b; Li et al.,
2024a), and using external tools for LLM verifica-
tion (Min et al., 2023; Ni et al., 2023). They are
usually applied to specific domains, while we aim
at LLM self-detection for general tasks. Also, fine-
tuning LLM for better trustworthiness (An et al.,
2023; Tian et al., 2023a) is orthogonal to us.

Application of LLM Self-Detection. The out-
come of self-detection can be applied in many ways
to avoid hallucination and erroneous outputs, such
as identifying potentially hallucinated generation
for knowledge retrieval and verification (Zhao et al.,
2023a), guided output decoding (Xie et al., 2023),
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identifying ambiguous questions (Hou et al., 2023),
selective generation (Ren et al., 2023a; Zablotskaia
et al., 2023), and LLM self-improve (Huang et al.,
2023a). More applications can be found in this
survey (Pan et al., 2023).

Generating Multiple-Side Rationale. Some ex-
isting research on LLM also utilizes multiple-side
rationales similar to T 3, such as Process of Elim-
ination (Balepur et al., 2023), Maieutic Prompt-
ing (Jung et al., 2022), and Debate (Michael et al.,
2023). Our T 3 differs from these work mainly in
that T 3 incorporates multiple side rationales into
LLM self-detection, by combining the rationales
with Top-K Verbalized confidence estimation with
designed prompts. Besides, the format of multi-
side rationale of T 3 is only similar to Jung et al.
(2022), while T 3 can handle a wider range of tasks.

5 Experiments

Setup. We conduct experiments on six datasets
across three tasks. IMDB (Maas et al., 2011) and
Flipkart (Vaghani and Thummar, 2023) for SA,
SNLI (Bowman et al., 2015) and HANS (McCoy
et al., 2019) for NLI, CommonsenseQA (Talmor
et al., 2019) and PIQA (Bisk et al., 2020) for com-
monsense question answering (CQA). For LLMs,
we utilize GPT-3.5 (gpt-3.5-turbo-1106) from Ope-
nAI3, GLM-4 (Du et al., 2022) from ZhipuAI4,
and Gemini (gemini-1.0-pro-001) from Google5.
Dataset statistics and LLM hyperparameters are
listed in Appendices A.1 and A.2.

Compared Methods. We utilize the following
categories of compared methods. For the first
paradigm, we include Self-cons (Wang et al., 2022)
(cf. Eq. 4), CoT-cons, an extension of Self-cons by
instructing LLM to output the CoT reasoning be-
fore the answer, Induced-cons (Xiong et al., 2023),
adding different misleading contexts to the input
to examine consistency. Top-K Verb (Tian et al.,
2023b) (cf. Eq. 5), Hybrid (Xiong et al., 2023), an
integration of Top-K Verb and Self-cons/CoT-cons,
where we show the better results, Self-detect (Zhao
et al., 2023c), taking the answer entropy of multiple
rephrased questions, and CAPE (Jiang et al., 2023),
a prompt ensemble method that we implement on
Top-K Verb. For the second paradigm, we utilize
the general P(True) (Kadavath et al., 2022), and

3https://openai.com/blog/openai-api.
4https://open.bigmodel.cn/.
5https://gemini.google.com/app.

Self-Probing (Xiong et al., 2023), directly asking
LLM to explain and evaluate the confidence of the
given answer. Finally, to show the flexibility of T 3

in combining with existing methods to further im-
prove self-detection, we show the performance of
Hybrid T 3 with Top-K Verb (T 3 + Top-K Verb),
and T 3 with prompt ensemble following CAPE
(T 3 + PE). For a fair comparison, we generate the
target answer for each dataset with LLM tempera-
ture as 0, and compare all methods based on this
target answer (cf. Eq 1). More details are in Ap-
pendices A.3 and A.4, including a comparison on
the number of API calls showing T 3’s reasonable
cost.

Evaluation Metrics. We mainly use AUROC
(Boyd et al., 2013) and PRAUC (Manning and
Schutze, 1999) to evaluate the self-detection ability.
They assess the effectiveness of detection scores in
distinguishing answer correctness using true pos-
itive/false positive and precision/recall curves, re-
spectively. Additionally, we use the Expected Cal-
ibration Error (ECE) to evaluate the calibration
performance for confidence calibration methods.

5.1 Results

Table 2 shows the performance of the compared
methods on GPT-3.5. We can observe the follow-
ings. 1) T 3 outperforms all compared methods in
AUROC and PRAUC on all datasets except HANS
and PIQA, and in ECE on all datasets except SNLI,
demonstrating its effectiveness. 2) After combin-
ing T 3 with other methods i.e., Top-K Verb and
PE, our method surpasses all compared methods on
all datasets in the three evaluation metrics, show-
ing the potential and flexibility of T 3 in combining
with others to further improve self-detection. 3)
Hybrid with Top-K Verb usually improves T 3’s
performance in AUROC and PRAUC, which is in
line with the performance improvement from Self-
cons/CoT-cons to Hybrid. 4) CAPE is very com-
petitive in AUROC and PRAUC, showing that the
self-detection is largely influenced by the prompt.
Combining T 3 with PE usually improves T 3 in
AUROC and PRAUC except for SNLI and Flip-
kart, which is in line with the performance decrease
from Top-K Verb to CAPE. This is potentially re-
lated to the prompt sensitivity of these methods and
the specific prompts adopted. 5) For other meth-
ods, CoT-cons outperforms Self-cons in AUROC
and PRAUC in 5 out of 6 datasets, as many tasks
performs better with CoT reasoning. P(True) has
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IMDB Flipkart

AUROC ↑ PRAUC ↑ ECE ↓ AUROC ↑ PRAUC ↑ ECE ↓
Self-cons 65.5 96.8 0.115 71.4 91.4 0.106
CoT-cons 75.6 97.7 0.104 72.8 91.9 0.133
Top-K Verb 82.8 98.5 0.242 79.3 93.7 0.131
P(True) 80.1 98.1 0.104 54.5 86.7 0.243
Hybrid 87.0 98.8 0.183 79.5 94.2 0.176
Self-detect 68.9 97.1 0.320 71.2 91.4 0.146
CAPE 87.7 98.9 0.096 76.4 93.9 0.107

T 3 87.9 98.9 0.045 81.3 94.5 0.015
+ Top-K Verb 88.0 98.9 0.052 81.6 94.9 0.019
+ PE 88.1 98.9 0.056 74.2 92.9 0.157

(a) SA.
SNLI HANS

AUROC ↑ PRAUC ↑ ECE ↓ AUROC ↑ PRAUC ↑ ECE ↓
Self-cons 63.3 71.4 0.047 56.0 64.8 0.051
CoT-cons 66.7 73.8 0.043 59.4 67.9 0.152
Top-K Verb 63.6 74.0 0.089 53.3 64.9 0.273
P(True) 55.4 67.4 0.117 60.8 70.1 0.067
Hybrid 66.7 78.8 0.029 62.0 71.1 0.193
Self-detect 59.3 68.5 0.142 55.3 64.5 0.063
CAPE 69.0 79.6 0.030 71.9 80.1 0.028

T 3 77.9 84.6 0.157 69.9 77.5 0.022
+ Top-K Verb 77.1 84.7 0.024 71.3 79.6 0.030
+ PE 70.8 76.7 0.130 74.5 81.2 0.034

(b) NLI.
CommonsenseQA PIQA

AUROC ↑ PRAUC ↑ ECE ↓ AUROC ↑ PRAUC ↑ ECE ↓
Self-cons 70.7 81.7 0.151 78.6 94.0 0.043
CoT-cons 81.8 88.9 0.049 76.7 94.2 0.097
Top-K Verb 69.4 81.5 0.026 76.8 93.3 0.060
P(True) 62.5 78.0 0.097 71.9 93.9 0.176
Hybrid 77.5 89.0 0.015 82.4 95.5 0.088
Self-detect 67.9 81.5 0.261 68.5 91.0 0.161
CAPE 78.7 88.8 0.021 87.9 97.8 0.067

T 3 83.5 90.7 0.009 83.4 95.2 0.016
+ Top-K Verb 85.8 93.4 0.017 85.3 96.2 0.010
+ PE 84.4 92.1 0.019 90.3 97.9 0.034

(c) CQA.

Table 2: Results of the compared methods on GPT-3.5.
Bold font and underline indicate the best and second
best performance, respectively.

ambivalent results which limits its applicability.

5.2 In-depth Analysis
Ablation Studies. We conduct the following ab-
lation studies to further validate the rationality of
our framework design. 1) w/ CoT expl: substitut-
ing e1, ..., e

N in pv with N different CoT reasoning
generated from p(q) to reveal the rationality of re-
flection on various answers. 2) sep expl: placing
a single ei in pv each time and calculating the av-
eraged detection score to reveal the effectiveness
of joint considering all ei in one pv. 3) w/o shuffle:
ablating the order shuffling of ei in pv.

From Table 3, we can observe that: 1) w/ CoT
expl largely underperforms T 3 on all three tasks,
demonstrating the rationality of pushing LLM to
reflect and justify from each answer’s perspective.
2) sep expl underperforms T 3 on both SA and NLI
tasks, showing that jointly considering multiple
justifications in one prompt is often more benefi-
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Figure 4: Visualization of bias mitigation effect of T 3

which largely reduces the detection score overlaps be-
tween correct (right) and incorrect (left) instances.

cial, and thus we choose this setting. It slightly
outperforms T 3 on the CQA task, potentially due
to the higher independency and objectivity of the
answer choices. 3) w/o shuffle also underperforms
T 3, indicating that there exists order sensitivity
for ei. Order shuffling and score average improve
self-detection by mitigating their position bias.

Effect on Bias Mitigation. Since our goal of im-
proving self-detection is to reduce the over-trust
on incorrect answers, we show the statistics of the
detection scores for each dataset regarding the an-
swer correctness in Figure 4 to reveal the mecha-
nism of T 3. We compare T 3 with Self-cons and
Top-K Verb which are witnessed with over-trust.
We can observe that T 3 clearly reduces the detec-
tion score overlaps between correct and incorrect
q, a instances on all datasets, and significantly de-
creases the detection scores on incorrect instances
in IMDB, Flipkart, SNLI and HANS. Thus, the
answer accuracy is more separable by the detection
score, achieving better self-detection.

Effect on Selective Prediction via Detection
Score. To show the utility of the detection score,
we conduct experiments in selective prediction.
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IMDB Flipkart SNLI HANS CommonsenseQA PIQA

AUROC↑ PRAUC↑ AUROC↑ PRAUC↑ AUROC ↑ PRAUC ↑ AUROC↑ PRAUC↑ AUROC↑ PRAUC↑ AUROC ↑ PRAUC ↑
T 3 87.9 98.9 81.3 94.5 77.9 84.6 69.9 77.5 83.5 90.7 83.4 95.2
w/ CoT expl 72.4 97.5 76.6 93.4 67.1 75.2 53.7 64.1 78.7 86.8 81.3 94.8
sep expl 86.5 98.8 79.5 94.2 68.5 75.3 54.1 63.8 80.3 87.8 84.0 95.8
w/o shuffle 75.9 98.3 71.7 92.0 70.6 77.6 60.7 67.9 83.3 92.0 80.4 94.3

Table 3: Ablation studies.
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Figure 5: Accuracy improvement of selective prediction
on T 3 detection scores.

The idea of selective prediction is to abstain the
LLM-generated answers with low detection score
to maintain better accuracy of the remaining in-
stances. In Figure 5, we show the accuracy of the
remaining instances by abstaining 0% - 50% of
instances with the lowest detection scores from T 3.
We can observe that by increasing the percentage of
abstained instances, the accuracy for these datasets
gradually improves around 10% - 30%, and IMDB
even achieves 100% accuracy. Naturally, the in-
crease for datasets with lower accuracy is generally
easier than datasets with higher accuracy. The re-
sult shows that T 3 possess strong potential to be
applied in selective prediction scenarios.

Analysis on the Robustness of T 3. We evaluate
the robustness of T 3 from three aspects: different
target answers, different LLMs, and parameter sen-
sitivity. In addition, we examine prompt sensitivity
of pe and pv in Appendix C.

Firstly, the generation of target answer a may
vary under LLM randomness, e.g., setting the tem-
perature greater than 0. We verify the robustness of
T 3 by utilizing different target answers, i.e., the
majority answer of Self-cons (asc) and CoT-cons
(acc), respectively, as shown in Table 4. We can
observe the following. 1) For both sets of target
answers, T 3 largely outperforms baselines, show-
ing its effectiveness. 2) Different target answers
may have very different self-detection performance.
Specifically, acc on CommonsenseQA has a sharp
decrease in AUROC of T 3 and CoT-cons compared
with the other target answers, which is potentially
due to the majority voting with CoT explanation

Flipkart HANS CommonsenseQA

asc

Self-cons 72.7 52.7 68.2
CoT-cons 74.4 57.5 80.4
Top-K Verb 80.4 51.8 69.2
T 3 82.2 69.5 82.7

acc

Self-cons 78.3 57.0 68.1
CoT-cons 79.2 57.8 74.3
Top-K Verb 83.9 53.3 67.5
T 3 84.3 69.2 75.0

Table 4: AUROC on two different target answers.
Flipkart HANS CommonsenseQA

AUROC↑ PRAUC↑ AUROC↑ PRAUC↑ AUROC ↑ PRAUC ↑
CoT Cons 73.4 88.8 66.4 87.5 83.1 97.0
Top-K Verb 81.1 92.1 65.4 88.0 72.3 95.3
Hybrid 80.4 92.0 69.9 89.4 79.4 97.2
CAPE 82.3 92.7 82.4 94.0 80.0 96.8

T 3 83.3 93.4 82.0 93.9 72.5 96.0
+ Top-K Verb 82.7 93.2 80.9 93.9 81.0 97.6
+ PE 83.8 93.4 84.9 95.7 76.9 96.6

Table 5: Performance comparison of Flipkart, HANS
and CommonsenseQA on GLM-4.
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Figure 6: Parameter sensitivity, i.e., changing the num-
ber of justifications and number of guesses in pv .

diminished the the effect of the explanations in T 3.
Secondly, we evaluate T 3 on different LLMs.

Table 5 shows the performance comparison of Flip-
kart, HANS and CommonsenseQA on GLM-4. We
can observe that across different LLMs, combin-
ing T 3 with PE or Top-K Verb outperforms com-
pared methods, validating its effectiveness. Be-
sides, the self-detection ability may vary greatly
across LLMs, e.g., T 3’s AUROC of HANS on
GLM-4 largely outperforms that on GPT-3.5. More
results on Gemini can be found in Appendix D.

Thirdly, we evaluate the parameter sensitivity
of T 3 by changing the number of justifications and
number of guesses in pv. We conduct experiments
on CommonsenseQA with five answer choices, and
SNLI with three answer choices. From Figure 6,
we can observe the followings. 1) A larger number
of justifications increases the performance on both
datasets, indicating a sufficient number of justifica-
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tions is vital for better self-detection. 2) Increasing
the number of guesses results in a significant perfor-
mance improvement on the SNLI dataset, revealing
that enough number of guesses is demanded for the
NLI task. 3) Comparably, the change in the number
of guesses has a slight effect on the performance of
the CommonsenseQA dataset, which is potentially
because the CQA task is more objective than NLI.

6 Conclusion

In this paper, we tackled the over-trust issue of
self-detection on black-box API LLMs. We cate-
gorized existing methods into two paradigms and
pointed out their limitation of merely evaluating on
LLM-generated answer with potential LLM over-
trust. We proposed a novel paradigm to address
this limitation by comprehensively evaluating the
trustworthiness of multiple candidate answers in
the answer space. Following our paradigm, we pre-
sented a two-step framework T 3 by asking LLM
to reflect and justify the validity of each answer
for joint confidence calibration. Our framework
achieved improved self-detection performance over
compared methods and was combined with exist-
ing methods for further improvement. In future
work, we will explore the combination of T 3 with
more methods, and its utility in white-box LLMs.
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Limitations

Our work has several limitations. Firstly, our re-
search scope is limited to the self-detection for
black-box API LLM. While our framework is suit-
able for many state-of-the-art LLMs in this form, it
might not be optimal for white-box LLMs, which
offer access to more model information, thus limit-
ing its broader applicability. Secondly, the utility
of self-detection is not primarily studies in this
work. Although we demonstrate the utility of de-
tection scores in selective prediction scenarios, the
challenge still lies in leveraging them to enhance
task accuracy or enable LLM self-correction, call-
ing for further exploration. Lastly, our framework
lacks consideration in prompt optimization for self-
detection, an area where future self-detection meth-
ods are expected to consider.

Ethics Statement

Our ethical concerns involve the following. First,
our experimental results are mainly obtained in
English datasets, where the applicability on other
languages are not comprehensively evaluated. Sec-
ondly, our research scope is black-box API LLMs,
where open-sourced LLMs are more advocated for
its reproducibility. Finally, the self-detection of
LLM may mislead people to blindly trust LLM and
easily accept untrustable answers, causing potential
harms.
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A Details for compared methods.

A.1 LLM Hyperparameters.
For all LLMs, we set the maximum token as 200.
For GPT-3.5 and Gemini, if sampling a single re-
sponse (N = 1), we set the temperature as 0, and
other hyperparameters as default. If sampling mul-
tiple responses, we sample N = 30 (N = 5 for
Gemini due to API call limitation) responses with
temperature as 1, which is only for Self-cons, CoT-
cons, and P(True). Specially, for Self-detect we
sample 15 rephrasing for each question with tem-
perature as 1, and one answer for each rephrased
question with temperature as 0, following the orig-
inal paper. For GLM-4, if sampling a single re-
sponse, we set the do_sample as False. If sampling
a variety of responses, we set temperature as 0.9,
top p as 0.9, and N = 5. Note that these LLM
hyperparameters are not carefully tuned.

A.2 Dataset Detail.
Due to the cost limitation, we randomly sample 300
training data for each dataset in our experiments.
For IMDB and SNLI datasets, we use the same
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N examples

IMDB 2 positive negative
Flipkart 2 positive negative
SNLI 3 entailment, neutral, contradiction
HANS 2 entailment, non entailment
CommonsenseQA 5 (a) yard, (b) basement,

(c) kitchen, (d) living room, (e) garden
PIQA 2 (a) pour it onto a plate, (b) pour it into a jar

Table 6: The number (N ) and examples of candidate
answers for each dataset.

randomly sampled 300 data sets as the CAD SA
and NLI in the preliminary experiments. We will
release the dataset splits. Table 6 shows the num-
ber and examples of candidate answers for each
dataset.

A.3 Prompts

The basic instructions for different datasets are
shown as below, where [] refers to specific task
inputs.

• IMDB:
Given a piece of movie review, classify the
attitude to the movie as Positive or Negative.
[text]

• Flipkart:
Given a piece of text, classify the sentiment as
Positive or Negative. [text]

• SNLI:
Determine whether the hypothesis is an en-
tailment (can be logically inferred from the
premise), a contradiction (cannot be true
given the premise), or neutral (does not have
enough information to determine its truth
value). Premise: [premise] Hypothesis: [hy-
popthesis].

• HANS:
Determine whether the second sentence in
each pair logically follows from the first sen-
tence. The output is either "entailment" if
the second sentence logically follows from
the first, or "not entailment" if it does not.
Sentence 1: [sentence1]. Sentence 2: [sen-
tence2].

• CommonsenseQA:
Read the given question and select the most
appropriate answer by indicating the asso-
ciated letter. Question: [question]. Answer
choices: (a) aq1 (b) aq2 (c) aq3 (d) aq4 (e) aq5.

• PIQA:
Read the given question and select the most
appropriate answer by indicating the asso-
ciated letter. Question: [question]. Answer
choices: (a) aq1 (b) aq2.

The prompts for compared methods are shown
below, where [instruction] denotes the task instruc-
tion with the task input, and [instruction_only]
denotes the instruction without task input.

• Self-cons: [instruction].

• CoT-cons:
[instruction]. Please output strictly following
this format: Explanation: [reasons for the
sentiment label] Answer: [Positive or Nega-
tive]

• Top-K Verb pb:
The task is to [instruction_only]. Provide your
n best guesses and the probability that each is
correct (0.0 to 1.0) for the following question.
Give ONLY the guesses and probabilities, no
other words or explanation. For example:
G1: <first most likely guess, as short as possi-
ble; not a complete sentence, just the guess!>
P1: <the probability between 0.0 and 1.0 that
G1 is correct, without any extra commentary
whatsoever; just the probability!> ... GN: <N-
th most likely guess, as short as possible; not
a complete sentence, just the guess!>
PN: <the probability between 0.0 and 1.0 that
GN is correct, without any extra commentary
whatsoever; just the probability!> [question]
[answer choices].

• P(True) pt:
The task is to [instruction]. Label: [label]. Is
the label correct or incorrect?

• Self-detect:
For question rephrasing: Paraphrase the given
sentence. Please make sure the paraphrased
sentence has exactly the same meaning as the
original sentence. [question]
For inference: [instruction].

• CAPE:
Provide your 2 best guesses and the proba-
bility that each is correct (0.0 to 1.0) for the
following task. Give ONLY the guesses and
probabilities, no other words or explanation.
For example:
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G1: <first most likely guess, as short as
possible; not a complete sentence, just the
guess!>
P1: <the probability between 0.0 and 1.0 that
G1 is correct, without any extra commentary
whatsoever; just the probability!> ... GN:
<N-th most likely guess, as short as possible;
not a complete sentence, just the guess!>
PN: <the probability between 0.0 and 1.0 that
GN is correct, without any extra commentary
whatsoever; just the probability!> Instruction:
[instruction_only] [question]
- aq1 (or A. aq1)
...
- aqN (or N. aqN )
Possible explanation 1: [e1]
...
Possible explanation N: [eN ]
Correct Choice:

• T 3 pv:
The task is to [instruction_only]. Provide your
n best guesses and the probability that each is
correct (0.0 to 1.0) for the following question.
Give ONLY the guesses and probabilities, no
other words or explanation. For example:
G1: <first most likely guess, as short as possi-
ble; not a complete sentence, just the guess!>
P1: <the probability between 0.0 and 1.0 that
G1 is correct, without any extra commentary
whatsoever; just the probability!> ... GN: <N-
th most likely guess, as short as possible; not
a complete sentence, just the guess!>
PN: <the probability between 0.0 and 1.0 that
GN is correct, without any extra commentary
whatsoever; just the probability!>
[question] [answer choices].
Possible explanation 1: [explanation 1].
...
Possible explanation N: [explanation N].

A.4 Additional Implementation Detail.

For T 3 and Top-K Verb, the N is set to the number
of candidate answers for each dataset as in Table 6.

For the shuffling of the justification order in pv,
we use one original and one reversed order for
T 3 on all datasets. For datasets with more than
two justifications (SNLI and CommonsenseQA),
we set the original justification order for SNLI as
“entailment, neutral, contradiction" and follow the
given answer choice order for CommonsenseQA

in the dataset.
CAPE is prompt ensemble for Top-K Verb. We

follow the original paper to adopt two multi-choice
template with alphabetic or itemized labels in addi-
tion to the original Top-K Verb prompt (See Sec-
tion A.3). For each multi-choice template, we use
the original and the reversed label orders. In total,
the confidence score is an average of five prompts.

For T 3 + PE, we put T 3 into the multi-choice
template with alphabetic labels, and use two re-
versed label orders and 2 reversed justification or-
ders, in total four prompts.

The number of API calls for different methods
are shown in Table 7. We can observe that com-
pared with other methods T 3 does not incur large
increase in number of calls. In our experiments,
the maximum value of N is 5. Considering its
effectiveness, the cost of T 3 is reasonable.

Self-cons CoT-cons Top-K Verb P(True) Hybrid

# call 30 30 1 30 31

Self-detect CAPE T 3 T 3 + Top-K Verb T 3 + PE

# call 30 5 N+2 N+3 N+4

Table 7: Comparison on the number of API calls of
compared methods, where N denotes the number of
choices for different datasets.

B Implementation Detail for Preliminary
Experiments.

For the preliminary experiments, we randomly sam-
ple 300 instances from the training set of CAD SA
and NLI, respectively. For those original ques-
tions with more than one counterfactual questions,
we randomly select one counterfactual question
for experiment. The prompts can be viewed in
Section A.3. CAD SA is annotated from IMDB,
and CAD NLI is annotated from SNLI. The w/
cf is based on Top-K Verb, which is better cal-
ibrated than Self-cons. For w/ cf, we obtain the
Top-K Verb outputs for counterfactual and original
questions, respectively. We use the guess with the
largest probability in the response as the answer to
q̄, and the probability as its confidence score. The
LLM is GPT-3.5 (gpt-3.5-1106). See Section A.1
for LLM hyperparameters.

PIQA HANS Flipkart

pe 84.2 ± 2.0 62.7 ± 4.3 78.0 ± 2.2
pv 83.0 ± 0.5 68.3 ± 1.7 81.2 ± 0.3

Table 8: The average and standard deviation of AUROC
for T 3 with different rephrasing of prompts on GPT-3.5.
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C Prompt Sensitivity

We examine the prompt sensitivity of pe and pv by
rephrasing each of them three times with ChatGPT6

and compute the average and standard deviation of
AUROC, as shown in Table 8. We can observe the
followings. 1) The variation of prompts has a mild
effect on the performance of T 3. Across the three
datasets, HANS is the most sensitive to prompt
rephrasing, potentially related to its lower AUROC
performance. 2) The change of pe has larger im-
pact on the detection performance than pv. This is
probably because the justifications generated by pe

have a larger space of variation than the outputs of
pv, i.e., guesses and probabilities.

Flipkart PIQA CommonsenseQA

AUROC PRAUC AUROC PRAUC AUROC PRAUC

CoT-cons 67.6 89.1 85.8 96.4 72.2 86.0
Top-K Verb 84.0 94.9 64.7 91.8 67.0 83.9
Hybrid 85.0 95.5 77.0 96.1 74.5 87.9
CAPE 81.5 94.5 86.5 97.8 77.3 89.5

T 3 82.0 93.9 82.6 96.5 73.4 89.3
+ Top-K Verb 83.1 94.6 77.2 96.1 76.3 91.2
+ CAPE 74.8 92.1 90.5 98.3 77.5 91.1

Table 9: Performance comparison of Gemini on Flipkart,
PIQA and CommonsenseQA.

D Additional Results on Different LLMs

In addition to GPT-3.5 and GLM-4, we show the
results of Gemini on three datasets. From Table 9,
we can observe that although T 3 outperforms all
compared methods in PIQA and CommonsenseQA,
it does not outperform all compared methods on
Flipkart. By analyzing the outputs, we discover
that Gemini cannot always follow the instruction
to perform reflection and generated justification for
the designated answer. Instead, it tends to perform
answer prediction and followed by an explanation
on its predicted answer. Without effective reflection
and justification from different answers’ perspec-
tives, the effectiveness of T 3 is diminished. There-
fore, the effectiveness of T 3 depends on the ability
of the specific LLM in following the instructions
in Table 1.

E Additional Baselines.

We present the results of more baselines on GPT-
3.5, including the white-box average token prob-
ability (Manakul et al., 2023), and the black-
box induced consistency and self-probing (Xiong
et al., 2023). From Table 10, we can observe that

6https://chat.openai.com/.

the white-box method largely underperforms the
black-box baselines across three tasks, indicating
its limited capability on large LLMs with strong
instruction-following abilities.

Flipkart HANS CommonsenseQA
AUROC PRAUC AUROC PRAUC AUROC PRAUC

Avg Tok Prob 32.4 78.0 56.0 65.5 43.3 67.3
Induced-cos 64.5 89.2 63.4 71.0 71.4 81.6
Self-Probe 72.8 92.3 58.2 66.1 58.6 75.1
T 3 81.3 94.5 69.9 77.5 83.5 90.7

Table 10: Performance comparison of additional white-
box and black-box baselines.

F Accuracy Statistics

We report the accuracy for each dataset in our ex-
periments, and the precision, recall and F1 with
T 3 confidence threshold of 0.5 (0.25 for SNLI), as
shown in Table 11. It is clear that the F1 value pos-
itively correlates to the accuracy. And the recall is
generally higher than precision, showing that LLM
still tends to over-trust the answer.

Dataset Accuracy Precision Recall F1

IMDB 0.95 0.96 0.99 0.98
Flipkart 0.85 0.88 0.98 0.93
SNLI 0.62 0.74 0.91 0.82
HANS 0.62 0.69 0.89 0.78
CommonsenseQA 0.71 0.81 0.92 0.86
PIQA 0.86 0.94 0.97 0.92

Table 11: The accuracy for each dataset, and the preci-
sion, recall, F1 of T 3.

G Results on Open-Ended QA

In addition to the multi-choice QA tasks where
candidate answers are given, we also conduct ex-
periments on the open-ended QA task of Truth-
fulQA (Lin et al., 2022b). Since the open-ended
QA has no candidate answer, we employ model
ensemble to generate candidate answers and form
the answer space. Specifically, for each question,
we start by generating one answer from GPT-3.5,
and then use an outstanding smaller LM GLM-
4, to sample one additional answer, forming the
answer space of two answers. We believe the an-
swer space contains more plausible answers than
those produced by GPT-3.5 alone, thus allowing
GPT-3.5 to reflect on its generated answers and
assign more calibrated confidence to them. We uti-
lize GPT-4 (gpt-4-0613) to annotate the factuality
of the generated answers. Performance of several
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strong baselines are shown in Table 12, demonstrat-
ing the outstanding self-detection ability of T 3 in
open-ended QA. We can also observe that Hybrid
with other method may be an effective approach
in improving the self-detection performance, and
the prompt ensemble of CAPE does not seem very
effective in this specific scenario, requiring further
prompt optimization.

TruthfulQA AUROC PRUAC ECE

Self-cons 61.1 73.8 0.096
CoT-cons 62.9 76.1 0.133
Top-K Verb 61.8 74.9 0.056
Hybrid 63.0 75.0 0.051
CAPE 54.7 72.6 0.156
T 3 62.3 75.2 0.060
T 3 + Top-K Verb 64.4 76.0 0.078

Table 12: Performance comparison on open-ended QA
task of TruthfulQA.

H Case study

We present two case study of PIQA. From Table 13,
we can observe that the detection score of the incor-
rect answer (a) is lowered by T 3 (0.7 → 0.45). The
justification (b) points out the reason why (b) is the
preferred answer, which increased the confidence
in (b) and in turn decreases (a)’s detection score.
From Table 14, we can observe that the LLM is
not sure whether the sponge should be dampened,
thus having an ambivalent confidence score of 0.5
is better than being 0.7 confident on (b).

Input: The task is to read the given question and
select the most appropriate answer by indicating the
associated letter. Provide your 2 best guesses and
the probability that each is correct (0.0 to 1.0) for
the following question. Give ONLY the guesses and
probabilities, no other words or explanation. For
example:
G1: <first most likely guess, as short as possible; not
a complete sentence, just the guess!>
P1: <the probability between 0.0 and 1.0 that G1 is
correct, without any extra commentary whatsoever;
just the probability!> ... G2: <2-th most likely guess,
as short as possible; not a complete sentence, just the
guess!>
P2: <the probability between 0.0 and 1.0 that G2 is
correct, without any extra commentary whatsoever;
just the probability!>
Question: How do you repair a torn shirt?
Answer Choices:
(a) To repair a torn shirt, prepare the needle with a
piece of thread tied to it. Pull together the fabric
where the shirt is torn and sew together.
(b) Prepare the needle with a piece of thread tied to
it. Flip the shirt inside-out, pull together the fabric
where the shirt is torn and sew together.
Prediction: (a). Ground truth: (b).

Top-K Verb Output: G1: A P1: 0.7 G2: B P2: 0.3.
Confidence: 0.7

Justification for (a): The most appropriate answer is
(a) because it provides a clear and direct explanation
of how to repair a torn shirt. It instructs to prepare
the needle with a piece of thread tied to it and then
pull together the fabric where the shirt is torn and sew
it together. This answer is straightforward and does
not include unnecessary steps, making it the most
appropriate choice.
pv output 1: G1: A P1: 0.6 G2: B P2: 0.4
Justification for (b): Option (b) is the most appro-
priate answer because it provides a more detailed
and accurate description of the process of repairing
a torn shirt. It includes the step of flipping the shirt
inside-out, which is an important step in order to hide
the stitches and make the repair less visible. This ad-
ditional detail makes option (b) the better choice for
repairing a torn shirt.
pv output 2: G1: B P1: 0.7 G2: A P2: 0.3
T 3 Detection Score: (0.6 + 0.3)/2 = 0.45

Table 13: Case study for PIQA. pv output 1 refers to
pv with explanation (a) before explanation (b), and pv

output 2 refers to the reversed order.
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Input: The task is to read the given question and
select the most appropriate answer by indicating the
associated letter. Provide your 2 best guesses and
the probability that each is correct (0.0 to 1.0) for
the following question. Give ONLY the guesses and
probabilities, no other words or explanation. For
example:
G1: <first most likely guess, as short as possible; not
a complete sentence, just the guess!>
P1: <the probability between 0.0 and 1.0 that G1 is
correct, without any extra commentary whatsoever;
just the probability!> ... G2: <2-th most likely guess,
as short as possible; not a complete sentence, just the
guess!>
P2: <the probability between 0.0 and 1.0 that G2 is
correct, without any extra commentary whatsoever;
just the probability!>
Question: How do I keep my favorite couch fur free?
Answer Choices:
(a) Purchase a dry sponge at a pet supply store and
use it to lightly wipe dog hair in a sweeping motion
from upholstery.
(b) Purchase a dry sponge at a pet supply store and
dampen it and use it to lightly wipe dog hair in a
sweeping motion from upholstery.
Prediction: (b). Ground truth: (a).

Top-K Verb Output: G1: B P1: 0.7 G2: A P2: 0.3.
Confidence: 0.7

Justification for (a): The most appropriate answer is
(a) because using a dry sponge to wipe dog hair in a
sweeping motion from upholstery will help to remove
the fur without getting the couch wet. Dampening
the sponge, as suggested in option (b), may lead to
the couch getting wet and potentially causing damage
to the upholstery. Therefore, option (a) is the best
choice for keeping the favorite couch fur free.
pv output 1: G1: A P1: 0.7 G2: B P2: 0.3
Justification for (b): The most appropriate answer
is (b) because dampening the dry sponge will help
to better pick up and remove the dog hair from the
upholstery. Using a dry sponge alone may not be as
effective in removing the fur. Therefore, dampening
the sponge will provide better results in keeping the
favorite couch fur free.
pv output 2: G1: B P1: 0.7 G2: A P2: 0.3
T 3 Detection Score: (0.3 + 0.7)/2 = 0.5

Table 14: Case study for PIQA. pv output 1 refers to
pv with justification (a) before justification (b), and pv

output 2 refers to the reversed order.

11875


