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Abstract

This position paper proposes a data-centric
viewpoint of AI research, focusing on large
language models (LLMs). We start by making
a key observation that data is instrumental in
the developmental (e.g., pretraining and fine-
tuning) and inferential stages (e.g., in-context
learning) of LLMs, and advocate that data-
centric research should receive more attention
from the community. We identify four specific
scenarios centered around data, covering data-
centric benchmarks and data curation, data attri-
bution, knowledge transfer, and inference con-
textualization. In each scenario, we underscore
the importance of data, highlight promising re-
search directions, and articulate the potential
impacts on the research community and, where
applicable, the society as a whole. For instance,
we advocate for a suite of data-centric bench-
marks tailored to the scale and complexity of
data for LLMs. These benchmarks can be used
to develop new data curation methods and doc-
ument research efforts and results, which can
help promote openness and transparency in AI
and LLM research.

1 Introduction

The latest large language models (LLMs) (Alayrac
et al., 2022; Anil et al., 2023b; OpenAI, 2023; Rad-
ford et al., 2021; Ramesh et al., 2021, 2022; Rom-
bach et al., 2022; Touvron et al., 2023) are typically
trained on extensive corpora of raw data scrapped
from the Internet and then fine-tuned on specialized
domain data. These LLMs have demonstrated not
only incredible performance on benchmarks (Lee
et al., 2023b; Liang et al., 2023), but also remark-
able abilities to follow and execute human instruc-
tions (Ouyang et al., 2022; Wang et al., 2022), and
to learn “in-context” (Dong et al., 2023) from the
contextual data given by the user along with the
query. At the core of these impressive achieve-
ments, we identify that data, in different forms,
scales, and usages, is a common denominator.

However, the bulk of research to date has fo-
cused on modeling improvements, and little is
known about how to best use data for the devel-
opmental stages (i.e., pretraining and fine-tuning)
and the inferential stage (using LLMs for inference
or generation). For pretraining, the exact composi-
tion of pretraining datasets used by many leading
foundation models is proprietary (Anil et al., 2023a;
Chen et al., 2021; Li et al., 2022b; OpenAI, 2023),
while data scrapped from the Internet is often noisy
and can pose legal and security risks (Barrett et al.,
2023; Carlini et al., 2023; Henderson et al., 2023;
Min et al., 2024). Moreover, since pretraining large
models is expensive (e.g., GPT-4 costs over $100
million to build (Knight, 2023)), it is prohibitively
costly to evaluate different choices of pretraining
data. These characteristics raise the difficulties of
identifying the factors that underlie an effective pre-
training dataset. Then, for fine-tuning, compared
to the array of modeling techniques (Zhang et al.,
2023), the methods for data curation are under-
explored (Chen and Mueller, 2024) and most prior
works adopt manual approaches (Honovich et al.,
2023; Wang et al., 2023e; Wei et al., 2022; Ye et al.,
2021) which are difficult to generalize and costly
to deploy at scale.

It is yet unclear how to push the LLMs’ limits
beyond what is achievable solely by better model-
ing techniques. Specifically, we propose to identify
a generalizable and cost-effective approach to de-
signing pretraining and fine-tuning datasets to com-
plement the model-centric techniques. Separately,
for the inferential stage, there are model-centric
efforts “optimizing the instructions” for LLMs to
improve how they utilize the user-provided contex-
tual data (Peng et al., 2023; Wang et al., 2023a)
but only relatively limited data-centric research on
improving the user-supplied contextual data itself,
even though the LLM’s performance is shown to
be sensitive to the contextual data’s quality (Liu
et al., 2023a) and ordering (Liu et al., 2023d; Lu
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et al., 2022a).
We advocate for data-centric research that can

turn the art of using data into science and unlock
the next generation of more effective and compact
LLMs. Our position is framed within the follow-
ing four scenarios of different interactions between
LLMs and data; refer to Fig. 1 for a diagram-
matic overview. For each scenario, we highlight
the unique characteristics and challenges, identify
motivating use cases and promising research direc-
tions, and discuss potential impacts. We do not
claim to be the first to propose these directions,
but rather aim to underscore the importance of the
data-centric perspective and its impacts. While our
exposition is not exhaustive, we hope our “first cut”
at a holistic viewpoint of data-centric research can
generate more discussion and inspire innovation.

Figure 1: Sec. 2 (indexed 1 in the figure) underscores
the importance of the training data (for both pretraining
and fine-tuning) and the data curation techniques. Sec. 3
(indexed 2 in the figure) highlights that the LLMs’ out-
puts depend on the training data. Sec. 4 (indexed 3 in
the figure) describes the “knowledge” of the LLMs to
be transferred from some training data. Sec. 5 (indexed
4 in the figure) demonstrates the usage of data by the
LLMs at inference (i.e., response to a query).

Benchmarks and curation for training data.
The recent successes of LLMs such as Chat-
GPT (OpenAI, 2023), PALM 2 (Anil et al., 2023b),
and LLaMA 2 (Touvron et al., 2023), as well as
vision-language models including CLIP (Radford
et al., 2021), Flamingo (Alayrac et al., 2022), Sta-
ble Diffusion (Rombach et al., 2022) and DALL-
E (Ramesh et al., 2021, 2022), are powered by
large, heterogeneous datasets rather than solely by
advanced modeling techniques. CLIP is trained on
400 million image-text pairs (roughly 300× greater
than the size of ImageNet (Deng et al., 2009)), In-
structGPT is trained on thousands of user-supplied
and diverse prompts (Ouyang et al., 2022), and

LLaVA’s instruction dataset contains over 100 thou-
sand image-text pairs (Liu et al., 2023b).

These examples underscore the critical role of
better designed and curated training data in further
advancing the capabilities of LLMs. However, the
heterogeneity, scale, and proprietary nature (Bom-
masani et al., 2023) of the training data for most of
the currently best-performing LLMs significantly
impede the progress in developing and training
LLMs through curating better training data. To
advance the research on data curation, we advocate
for building towards rigorous data-centric bench-
marks (Sec. 2) on the foundation of existing efforts
like DataComp (Gadre et al., 2023).

Data attribution. The training data is a “source”
for the outputs generated by LLMs (Keskar et al.,
2019). The ability to support source attribution
and trace the generated outputs back to the specific
training data is imperative for legal and safety pur-
poses: (i) To respect the copyright/intellectual prop-
erty rights, by correctly accrediting the creators of
writings (Eldan and Russinovich, 2023; Rahman
and Santacana, 2023), datasets (Li et al., 2022a; Liu
et al., 2023e), or code (Lee et al., 2023a). (ii) To
mitigate the issue of problematic outputs of the
LLMs (e.g., hateful, toxic, harmful messages (Sap
et al., 2019; Shelby et al., 2023; Weidinger et al.,
2022) or dangerous information (Bommasani et al.,
2022)), by identifying and removing the source.
Hence, we describe the promising directions for
data attribution and removal (Sec. 3).

Knowledge transfer. The costs of developing
and deploying LLMs make it challenging to democ-
ratize the benefits of LLMs: GPT-4 costs over $100
million to build (Knight, 2023) and is estimated
to cost over $21,000 a month for a small business
to use for customer service support (Chen et al.,
2023b). Hence, a smaller model distilled from its
larger counterparts for a specialized domain or task
presents a cost-effective alternative (Jiang et al.,
2023; Taori et al., 2023; Yu et al., 2024). The
Zephyr 7B beta outperforms the 70B Llama 2 in
coding, math, and roleplay (Tunstall et al., 2023)
while MiniLLM matches the performance in in-
struction following of an LLM twice its param-
eter count (Gu et al., 2024). These results open
up promising avenues for transferring the knowl-
edge of trained LLMs to compact and specialized
models, and we discuss existing efforts and new
opportunities where the outputs of a trained LLM
are treated as (synthesized) data (Sec. 4).
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Inference contextualization with data. In con-
trast to standard ML models, LLMs have a unique
capability of flexibly using data at inference to aug-
ment the outputs’ factuality (Wang et al., 2023b)
or quality (Borgeaud et al., 2022). For example, an
LLM can “acquire” a skill on the fly for a user’s
task via some user-provided examples (Brown
et al., 2020). As another example, when queried, an
LLM can search through a user-prepared datastore
for relevant information as supplementary informa-
tion for generating a response (Lewis et al., 2020).
This capability enables the user to establish the
right context for the LLM at inference through the
data (examples or datastore) and gives rise to an
inference contextualization paradigm that can sig-
nificantly streamline the applications of LLMs. We
elaborate on this paradigm w.r.t. two prevalent tech-
nical frameworks and highlight how it can improve
the personalization of LLMs (Sec. 5).

2 Rigorous Data-centric Benchmarks

There are increasing data-centric efforts on quanti-
tatively understanding how the training data affects
LLMs’ performance via identifying and improving
the scaling laws (DeepSeek-AI, 2024; Hoffmann
et al., 2022; Hu et al., 2024; Kaplan et al., 2020;
Sardana and Frankle, 2023). However, the datasets
that train the state-of-the-art LLMs are often pro-
prietary and closed-source while public datasets
do not seem to achieve comparable scaling behav-
ior to their proprietary counterparts (Cherti et al.,
2023). Moreover, even for public datasets like
C4 (Raffel et al., 2020) or LAION-2B (Schuhmann
et al., 2022), the critical factors underlying effec-
tive training datasets remain unclear. Indeed, differ-
ent training data compositions (i.e., proportions of
different sources) can lead to vastly different prop-
erties of the trained CLIP models (Nguyen et al.,
2022) and language models (Anil et al., 2023b; Xie
et al., 2023a), while data filtering and pruning can
sometimes even outperform the standard power-law
scaling (Abbas et al., 2023; Sorscher et al., 2022;
Toneva et al., 2018). There are also promising re-
sults by sourcing for “clean” data (Gunasekar et al.,
2023) or low-perplexity data (Marion et al., 2023).

These observations inspire several questions:
What factors (besides the scale) are important to a
training dataset (Sachdeva et al., 2024)? How do
the data compositions affect the performance (Xie
et al., 2023a)? What is a principled methodol-
ogy to reliably outperform the power-law scaling

trends (Sorscher et al., 2022)? While the above
works provide excellent starting points, comprehen-
sively addressing these questions requires a series
of well-documented results and a systematic ap-
proach to identifying and quantitatively analyzing
the key underlying factors of LLMs’ performance.
By building on the foundations in (Gadre et al.,
2023; Mazumder et al., 2023) which primarily tar-
get conventional ML, we advocate for rigorous
data-centric benchmarks catering to LLMs’ scale
and complexity. We also identify directions (that
leverage existing non-LLM-specific techniques) for
designing effective data curation methods.

2.1 Benchmarks and Data Curation

A cornerstone towards more efficient and effec-
tive LLM training powered by new data curation
methods is rigorous and large-scale benchmarks for
evaluation and results documentation. The conven-
tional ML benchmarking paradigm is completely
flipped in these data-centric benchmarks (Gadre
et al., 2023) where the training code and computa-
tional budget are held constant so that participants
innovate by proposing new training sets (e.g., new
sources (Gunasekar et al., 2023) or new filtering
techniques (Sachdeva et al., 2024)). We describe
two specialized benchmarks, respectively, for de-
signing training datasets and adapting to down-
stream domains and tasks, and further elaborate
how they can be leveraged to design better meth-
ods for dataset design and curation.

Benchmarks for heterogeneous and large-scale
pretraining data. Two key characteristics of the
pretraining data of LLMs are heterogeneity (e.g.,
multi-domain, multi-modality, multi-source) and
the unprecedented scale. They induce not only
an intricate interplay among the different domains,
modalities, and sources but also a high complexity
and cost of comprehensive evaluations (Lee et al.,
2023b; Liang et al., 2023), thus making designing
effective curation techniques challenging. Hence,
instead of tackling the problem of curating pre-
training data outright, we advocate for laying the
foundations first by building benchmarks for het-
erogeneous and large-scale pretraining data based
upon existing efforts such as DataComp (Gadre
et al., 2023), as a future direction. DataComp is a
benchmark for multimodal image-text dataset de-
sign for contrastive training of CLIP-like models.
Importantly, it spans several orders of magnitude in
compute and data scale and includes the largest pub-
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licly available collection of over 6 billion image-
text pairs, making it a suitable testbed for testing hy-
potheses and drawing insights w.r.t. the pretraining
data for LLMs. For example, one initial finding re-
ports that changing how the training data is filtered
led to significant improvements in CLIP-like mod-
els over OpenAI’s original CLIP models (Gadre
et al., 2023). Compared to the few existing bench-
marking efforts (often at a smaller data scale (Ng
et al., 2021)), DataComp is a more suitable starting
point due to its scale and the promising initial find-
ings. Additionally, another related future direction
is to investigate the efficiency of pretraining data
such as by building on (Warstadt et al., 2023).

Such benchmarking efforts can be comple-
mented by the efforts on open-source pretraining
datasets (Lozhkov et al., 2024; Penedo et al., 2024;
Soldaini et al., 2024) and can serve as a platform
for documenting model performance on specific
datasets for the purpose of analysis and comparison.
This can further aid the researchers in understand-
ing the overall "landscape" (of data and models)
and draw generalizable conclusions, for instance
about a quantitative relationship between the per-
plexity (PPL) of model w.r.t. vocab size, diversity
size and other key factors of a dataset. We acknowl-
edge there are challenges with holistic evaluation
of LLM performance (Lee et al., 2023b; Liang
et al., 2023) and believe these further motivate the
suggested benchmarking efforts (possibly paired
with existing evaluation frameworks) to implement
new evaluation metrics that may additionally de-
pend on independent components (e.g., a hold-out
validation dataset).

Benchmarks for adapting to downstream do-
mains and tasks. Users usually want to apply
LLMs to their downstream domains or tasks, mo-
tivating the investigation of how best to construct
domain- or task-specific datasets to fine-tune an
LLM pretrained on certain data. For example, if
we want to fine-tune a general-purpose LLM for
medical tasks, does that general-purpose LLM need
to have been pretrained on medical data (and if so,
in what proportion), or does it suffice to fine-tune
the LLM on a small amount of medical data? As an-
other example, to obtain an LLM for low-resource
languages such as Southeast Asian (IMDA, 2023)
or African languages (Nguyen et al., 2023), should
we fine-tune an LLM pretrained on a mix of lan-
guages or one pretrained only on the target lan-
guage? Due to the specialized nature of these

tasks, it is beneficial for future endeavours to ex-
plore more specialized adaptations of the existing
benchmarking efforts. We suggest the following
start points for future works in this direction. For
multi-lingual adaptations (e.g., to adapt an LLM
pretrained on English text to other languages), both
Xtreme (Hu et al., 2020) and TyDi QA (Clark et al.,
2020) benchmarks provide the resources for ade-
quate evaluation and are thus suitable potential op-
tions. For medical use cases, the CME (Liu et al.,
2023c) and MedEval (He et al., 2023) benchmarks
provide viable starting points.

Dataset design and curation. The next step is
developing methods for curating datasets for train-
ing LLMs and adapting them to downstream do-
mains and tasks (i.e., fine-tuning). While there is
on-going research in this direction, we further high-
light the importance and potential, by describing
some possible avenues of exploration.

For training general-purpose LLMs, the data
needs to be diverse and spanning multiple distinct
domains (e.g., books, Wikipedia, code, academic
papers, etc.) (Chowdhery et al., 2022) such that
each domain is sufficiently well-represented in the
training data to avoid overfitting (Xie et al., 2023b).

The inter-domain and intra-domain curation pro-
cesses have different requirements, so our pro-
posed future directions (below) have correspond-
ingly different emphases. The inter-domain cura-
tion process should maximize heterogeneity, for
instance, by incrementally selecting fine-grained
domains (Xie et al., 2023a) and adding in a new
domain only if it adds to the heterogeneity of the
pool of added domains. Statistical testing (Gret-
ton et al., 2012; Wei et al., 2021) or distributional
divergence (Ben-David et al., 2010; Wu et al.,
2022) are principled methods to determine if a
domain adds to the heterogeneity. On the other
hand, the intra-domain curation should maximize
diversity (Sachdeva et al., 2024), for instance, by
integrating classic approaches such as determinan-
tal point processes (Kulesza and Taskar, 2012) and
coreset selection (Sener and Savarese, 2018) with
existing ML-based data valuation methods (Amiri
et al., 2023; Sim et al., 2022).

For adapting to downstream target domains or
tasks, a core objective is to address the distribution
shift between the target domain and the available
training data; otherwise, the model learns irrelevant
information about the target domain. In this regard,
a “good” data source has a high distributional sim-
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ilarity to the target domain. Hence, as possible
future direction is to extend prior data valuation
works in standard, unimodal ML settings (Amiri
et al., 2023; Just et al., 2023) to efficiently handle
multi-modal data at scale. For selecting individual
data points, prior works demonstrate the usefulness
of influence scores (Choe et al., 2024; Grosse et al.,
2023; Guo et al., 2021; Kwon et al., 2024; Xia et al.,
2024).

In the proposed directions above, the underlying
principle centers around removing duplicates and
maximizing diversity, but they have different em-
phases because of the different intended scenarios.
The design of specific techniques (e.g., diversity
maximization, de-duplication and coreset selection)
should take into consideration of the characteristics
of the intended scenarios (e.g., the required scale of
data and computational resources for pretraining of-
ten implies a much more efficient approach than for
fine-tuning). We thus suggest separate benchmarks
for pretraining and fine-tuning.

2.2 Data-centric Open LLM Research

With the benchmarking efforts and data curation
methods, we hope to initiate a new brand of data-
centric LLM research, welcoming openness and
transparency. While many efforts have been made
to open-source the LLMs such as BLOOM (Scao
et al., 2023)1 and LLaMA 2 (Touvron et al., 2023)
and open-source model-centric benchmarks Bi-
derman et al., most of the training data is held
closed-source (Bommasani et al., 2023) with a
few recent exceptions: Groeneveld et al. (2024)
completely open-sourced their training data and
pipelines while (NVIDIA, 2024) have made pub-
lic the data generation pipeline for their aligning
process. With this new brand of data-centric open
research, we hope to encourage more transparency
in future research, which goes beyond the tech-
nological advancement itself but is also of great
importance towards responsible adoptions of the
technology and management of the ensuing socio-
economical implications (Bommasani et al., 2022,
2023). For instance, the recently launched National
AI Research Resource (NAIRR) by the U.S. Na-
tional Science Foundation (Alexandria, 2024) lists
open research (i.e., NAIRR open) as one of the four
focus areas.

1At time of writing, the efforts to open-sourcing the train-
ing data of BLOOM are underway: BigScience LM data.

3 Data Attribution

For copyright/intellectual property rights consider-
ations, data attribution is primarily motivated by
the need for credit attribution. For ensuring safe
applications of LLMs, the goal of attribution is to
trace (and then remove) the sources of potentially
problematic outputs. Notably, data attribution and
unlearning are useful to both these use cases.

Since most of the training data for the popular
LLMs is scraped from the Internet, it is almost
inevitable that the training data contains certain
copyrighted data (e.g., writing, code, or even entire
datasets). Then, it is important to design techniques
to mitigate potential copyright infringements, espe-
cially when the data owners or creators request take-
downs. This process involves first correctly identi-
fying the source through data attribution and then
removing it via unlearning (Eldan and Russinovich,
2023). For sources that lead to problematic outputs
by the LLMs, we first identify sources through attri-
bution and then remove (the effects of) the sources
through unlearning (Si et al., 2023). The challenge
in the unlearning step is to ensure its effective-
ness without compromising the performance of the
LLM (Chen and Yang, 2023), incurring prohibitive
costs from iterative retraining (Si et al., 2023) or
needing additional training data (Yao et al., 2023b).

3.1 Data Attribution and Unlearning
We describe data attribution followed by unlearn-
ing, which depends on data attribution.

Data attribution. We highlight two proposed ap-
proaches where the first targets attribution to in-
dividual training data (i.e., more granular), and
the second aims to identify a data source among
several data sources (i.e., less granular). For the
first approach, attribution is by tracing the influ-
ence (Koh and Liang, 2017) or determining the
value (Ghorbani and Zou, 2019) of individual train-
ing data to LLMs. While there have been successes
in applying the influence function to attribute the
prediction of an ML model to its training data (Koh
et al., 2019), there remain challenges in extend-
ing it to LLMs. The increasing complexity and
size of model architectures significantly raise the
computational cost (Grosse et al., 2023) and de-
teriorate the influence scores’ accuracy and util-
ity (Bae et al., 2022; Basu et al., 2021). Two
promising approaches to address these computa-
tional challenges are efficient approximations (Guo
et al., 2021; Grosse et al., 2023), and direct em-
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pirical estimators (Guu et al., 2023; Ilyas et al.,
2022; Pruthi et al., 2020). Preliminary results
demonstrate a computational speedup by reducing
the original problem to a much smaller subprob-
lem (Guo et al., 2021) or exploiting certain training
structures (Choe et al., 2024; Kwon et al., 2024).

The existing data valuation methods (Ghorbani
and Zou, 2019; Jia et al., 2019b; Schoch et al.,
2022; Sim et al., 2022; Yoon et al., 2020) can pro-
vide attribution by identifying the “most valuable”
training data of a model (e.g., LLM). However,
a similar scaling issue is encountered when ap-
plying these methods to LLMs, especially if they
require multiple re-training of the LLM (Schoch
et al., 2023). Similarly, potential solutions include
efficient approximations (Jia et al., 2019a; Schoch
et al., 2023) and training-free surrogates (Just et al.,
2023; Nohyun et al., 2023; Wu et al., 2022) for de-
signing scalable data valuation methods for LLMs.

For the second approach, source attribution dif-
fers from data attribution in being less granular and
aiming to identify a data source instead of individ-
ual data. This approach is particularly relevant in
use cases involving copyrights or intellectual prop-
erty rights, where the data source is the intellectual
creator. For source attribution, a natural idea is
to adopt watermarking as a unique identifier for
a piece of writing or design. For LLMs, water-
marking techniques are used to identify or pinpoint
the data sources that contribute most significantly
to a given output (Marra et al., 2018; Yu et al.,
2019, 2021). Conceptually, a unique watermark
is first assigned to each data source and then in-
serted into the training data from this source during
training. Subsequently, given a generated output
during inference, the most influential sources can
be identified and correctly attributed by observing
which of these watermarks are present in the output.
Some specific types of watermarks include linguis-
tic watermarks (Kirchenbauer et al., 2023; Kudi-
tipudi et al., 2023) and (non-linguistic) Unicode
character-based watermarks (Wang et al., 2023c).

Unlearning of data. To remove (the effects of)
certain identified training data (called target data),
the set of unlearning techniques is suitable. The
gold standard is to remove the target data and re-
train the entire model from scratch on the remain-
ing data, but it is prohibitively expensive for large
models (Cao and Yang, 2015; Si et al., 2023) and
infeasible when regulations stipulate a short execu-
tion time (Graves et al., 2021). Then, one alterna-

tive direction is to perform additional fine-tuning
of the LLMs using only the remaining data to erase
the effect of the target data (Mehta et al., 2022;
Neel et al., 2021). Another more directed approach
is to leverage the knowledge of the target data to
design cost-effective and efficient solutions, e.g.,
target data-oriented fine-tuning (Yao et al., 2023b)
and in-context unlearning to “mimic” unlearning
(the knowledge of specific tokens) via careful con-
textualization at inference time (Pawelczyk et al.,
2023).

3.2 Safe and Responsible Deployment of LLM
Technologies

The ex-post data attribution and removal are useful
for the safe and responsible deployment of LLMs
by respecting the copyrights/intellectual property
rights and mitigating problematic outputs. These
ex-post methods are complementary to possible ex-
ante data-centric approaches (e.g., conditioning on
certain types of data (Keskar et al., 2019)) or other
ex-post approaches (e.g., mitigation at decoding
or inference time (Krause et al., 2021; Liu et al.,
2021)). Importantly, these methods target different
stages of the LLM pipeline (i.e., before training, af-
ter training, and during inference) and collectively
form “multiple layers of defense” against problem-
atic outputs. Hence, we hope to inspire research to-
wards “multi-layered” approaches for the safe and
responsible deployments of LLM technologies.

4 Knowledge Transfer

Given the prohibitive costs of deploying full-
fledged LLMs (Chen et al., 2023b; Patterson et al.,
2021), and that most users may not need such
powerful general-purpose LLMs, the cost-effective
adaptations of LLMs to users’ specialized tasks
are more appealing. In many cases, the general-
purpose LLM already has the necessary “knowl-
edge” to perform the specialized task (Li et al.,
2023; Xu et al., 2024), which can be transferred
to a more compact and specialized model. Knowl-
edge transfer can be performed by first distilling
the knowledge from the LLM as synthesized data,
then instilled into the specialized model by training
it on the synthesized data. Since data synthesis is
a niche setting arising from the generative capa-
bilities of LLMs and its quality is key to effective
knowledge transfers, we focus on data synthesis,
specifically label and input syntheses.
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4.1 Cost-effective Data Synthesis

We elaborate on label and input syntheses, focusing
on the cost-effectiveness (i.e., the size/quantity and
quality of the synthesized data).

Label synthesis. The simpler case is where the
user starts with a large pool of unlabeled data
(e.g., performing sentiment analysis for public
comments) and requires the LLM to synthesize
the labels. This case resembles the setting of ac-
tive learning (Gal et al., 2017) where the goal is
cost-effectiveness (i.e., using a small number of
synthesized labels to achieve a high learning per-
formance). The emphasis on cost-effectiveness
(which is similar to in active learning) stems from
that many current approaches incur a considerable
manual involvement to inspect and ensure the qual-
ity of the labels, evidenced by methods specifi-
cally designed to minimize such manual involve-
ment (Honovich et al., 2023; Wang et al., 2023e;
Wei et al., 2022; Ye et al., 2021). The core idea
of this proposed direction is to select and annotate
only the most “useful” data, which can be imple-
mented via unsupervised data valuation techniques
such as feature-based diversity (Amiri et al., 2023;
Xu et al., 2021), uncertainty modeling (Lewis and
Catlett, 1994), and optimized heuristics (Bairi et al.,
2015). Additionally and different from the conven-
tional unimodal settings, multi-modal classifiers
like CLIP (Ilharco et al., 2021; Radford et al., 2021)
can be leveraged to perform cross-modal (e.g., im-
age to text) or multi-modal (e.g., image-text to text)
label synthesis.

Moreover, the unique explanatory capabilities
of LLMs can be exploited (i) to augment the syn-
thesis with additional generated explanations and
rationales (Hsieh et al., 2023), and (ii) to be used,
not as a “label generator” for direct label synthesis
(as above), but as a labeled data “selector”. Specifi-
cally, from a pool of labeled data (with labels pos-
sibly synthesized by an LLM), the LLM is asked to
select the high-quality ones. It is useful when the
original LLM cannot synthesize labels very accu-
rately but is able to filter out the low-quality, noisy,
or incorrect labels (Sachdeva et al., 2024).

Input synthesis. The more challenging scenario
arises when no initial data is available, not even
unlabeled data, possibly because the specialized
task is niche or less well-established and the user
does not know what unlabeled data to collect. In
this direction, we propose to fully utilize the gener-

ative capabilities of LLMs to synthesize coherent
and diverse inputs (Ding et al., 2024), such as via
prompt engineering and fine-tuning procedures (Li
and Liang, 2021) and sophisticated prompting tech-
niques (Naseh et al., 2024). Then, the aforemen-
tioned label synthesis techniques can be applied,
making label and input syntheses complementary
to each other and suggesting it is possible to de-
velop integrated treatments, such as jointly using
existing unlabeled input and the generation of new
input or using LLMs to complete a partial input
with a randomly generated label (Xu and nad Wen-
peng Yin, 2022). Notably, the 1.3B phi-1.5 trained
(almost) exclusively on synthesized data can out-
perform models 5× larger (Li et al., 2023) and
the recently released Nemotron-4 family (NVIDIA,
2024) further showcase the potential of synthesized
data where over 98% of data in their alignment pro-
cess is synthesized. Nevertheless, we note the im-
portance of identifying and investigating the limita-
tions of LLM-generated/synthesized data (Dohma-
tob et al., 2024), presenting an opportunity for re-
search.

4.2 Democratization of the LLM Technologies

The true testament to the impact of LLMs lies not
in the streak of impressive metrics they score (Ope-
nAI, 2023; Srivastava et al., 2023) but rather in
the concrete real-life successes (Carbonell, 1992;
Wagstaff, 2012, Impact Challenges). To do so re-
quires the technology to be democratized and made
accessible, not only through online API function
calls but also in offline and resource-constrained
environments, which is important to level the play-
ing field for small organizations and individuals.
We envision that the research directions of knowl-
edge transfer can further widen the adoptions of
LLMs (i) into different specialized domains includ-
ing healthcare (Savova et al., 2010; Yang et al.,
2023), law (Dahl et al., 2024), and education (Mind,
2024), (ii) at different scales, including consumer-
grade hardware such as laptops (Hannun et al.,
2023) and smart-phones (Sreeraman, 2023), and
(iii) in different scenarios where internet accessibil-
ity, data security and privacy concerns can present
obstacles to users making use of the API function
calls online (Hao et al., 2022; Liu and Liu, 2023).

5 Inference Contextualization with Data

As in the two examples in Sec. 1 on how data can
be used to contextualize the inference process of
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LLMs (Brown et al., 2020; Lewis et al., 2020),
LLMs have the demonstrated remarkable ability to
utilize information “in-context” (Dong et al., 2023)
where the context here is often in the form of a few
example data points for demonstration or supple-
mentary information (Brown et al., 2020). Such
unique and unseen abilities present exciting use
cases of data as an “anchor” to establish the right
context at inference and enable the users to make
certain specifications with flexibility and ease.

We illustrate such contextualization as follows:
(i) If a user prompts the LLM to generate a piece
of writing while providing writings from Shake-
speare, then the LLM’s generated output can ap-
pear “Shakespearean” even though the LLM is not
necessarily (extensively) trained on the writings
from Shakespeare. (ii) If a user asks the LLM
to solve a mathematical question while providing
data containing similar questions and the reasoning
steps, then the generated output can also contain
reasoning steps, even though the LLM might not
have been explicitly trained to do so.

5.1 Data Selection for the Right Context

For two technical frameworks that enable an
LLM to utilize data at inference, namely retrieval-
augmented generation (RAG) and in-context learn-
ing (ICL), we outline how LLMs utilize the data
and then describe the corresponding research direc-
tions of data selection for contextualization.

Retrieval-augmented generation. RAG con-
sists of two main components: the datastore and
the retriever. The datastore is a collection of un-
structured data (e.g., documents and their chunks),
and structured data (e.g., as databases or knowl-
edge graphs). Given a user query, (i) the retriever
selects the most relevant and informative data from
the datastore to (ii) contextualize the query for
the LLM to generate an output (Asai et al., 2024).
These two steps can be targeted as follows.

For (i), a more effective data selection (i.e., bet-
ter relevance and informativeness) can be achieved
by improving the indexing system of the datas-
tore. Currently, the data (e.g., documents) in the
datastore each has an indexing “key” (typically
a vector in some embedding space (Lewis et al.,
2020; Salton et al., 1975) containing some of the
data’s semantic meaning). However, for a Q&A
task, this indexing system can be ineffective for the
retriever to identify the correct answer (i.e., data) to
the question (i.e., query) since typically questions

and answers have different semantic meanings. A
future direction is to improve its effectiveness, such
as by developing vector embeddings with built-in
relevance in addition to the semantic meaning of
data (Formal et al., 2021; Zamani et al., 2018) and
pair them with the more classic approach of in-
verted index (Zobel and Moffat, 2006) based on
keywords and metadata.

For (ii), there are promising avenues of improve-
ments targeting the different ways of how LLMs
contextualize the query (i.e., utilizing the retrieved
data) such as by improving the augmentation of
the query with the retrieved data (Shi et al., 2024;
Yao et al., 2023a), and designing more effective re-
trieval methods and ways of utilizing the retrieved
information (e.g., Borgeaud et al. (2022) use local
similarity of consecutive document chunks to im-
prove retrieval and model predictions, Wang et al.
(2023a,b) demonstrate the effectiveness of pretrain-
ing LLMs/decoder-only LMs with retrieval).

In-context learning. From a few user-provided
demonstrations (i.e., data) in the query alone,
LLMs can learn the hidden patterns and respond
accordingly (Dong et al., 2023). For example, to
teach an LLM to solve mathematical questions, a
user can query the LLM following this template:
Your goal is to solve math problems.

Here are some examples: [EXAMPLES]. Now
solve [QUESTION].

The demonstration data, denoted as
[EXAMPLES], establishes the right context
for the LLM. Indeed the choice and quality of this
demonstration data have a significant impact on
the LLM’s response quality (i.e., the correctness
of the LLM’s solution to [QUESTION]) (Lu et al.,
2022b; Zhang et al., 2022). Existing methods have
shown the effectiveness of heuristics, including
similarity (Liu et al., 2022), uncertainty (Diao et al.,
2023) and entropy (Lu et al., 2022b). These results
suggest opportunities for integrated frameworks
with provable guarantees as future directions. For
instance, optimization-based techniques have
achieved preliminary successes in instruction
optimization of LLMs (e.g., reinforcement learn-
ing (Deng et al., 2022), Bayesian optimization (Lin
et al., 2024) and evolutionary algorithms (Guo
et al., 2024)), but have yet to be adopted for
demonstration optimization or selection in ICL.
Recently, Wu et al. (2024) utilize neural bandits
for the joint optimization of instructions and
demonstrations while Zhou et al. (2024) exploit the
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internal mechanism of transformers to optimize the
selection of the demonstrations via their influences.

Note that RAG and ICL are not competing but
rather complementary frameworks. With RAG,
the user can leverage the size of the datastore for
keeping more information while with ICL the user
has an on-the-fly flexibility to direct specify the
data with the query.

5.2 Personalized Usages of LLMs

Such contextualization (i.e., setting the context via
specifying the data such as in RAG or ICL) has two
hallmark practical benefits of being (i) simple and
flexible via specifying the data and (ii) lightweight
(i.e., no or minimal training/fine-tuning). For a user,
the data need not be static. For instance, a company
using a RAG-powered Q&A agent would, from
time to time, update its product or service-related
information. To ensure the Q&A agent has updated
information, updating the datastore would suffice.
In contrast, updating the LLM via either training
or fine-tuning can be time-consuming, costly, and
technically complex, so personalization approaches
(e.g., via RAG or ICL) that minimize or sidestep
updating the LLM are more appealing in practice.

Such features can simplify and make feasible the
personalization of LLM technologies, which can
have a significant impact on domains such as educa-
tion (Alqahtani et al., 2023a; Gan et al., 2023; Latif
et al., 2023) and healthcare (Abbasian et al., 2023;
Belyaeva et al., 2023). LLMs-powered personal-
ized curriculum designs can cater to the different
needs of the students and educators can use LLMs
to help prepare personalized feedback with signifi-
cant time-saving benefits (Alqahtani et al., 2023b).
LLMs-based chatbots can provide timely personal-
ized health assessments (Cascella et al., 2024).

6 Conclusion and Future Outlook

This position paper has outlined a data-centric ap-
proach towards AI research with a focus on large
language models (LLMs). We highlight the multi-
faceted role of data in the different developmen-
tal (e.g., pretraining, fine-tuning) and inferential
(e.g., data synthesis, inference contextualization)
stages of LLMs. In particular, we have identi-
fied four scenarios centered around data: rigorous
data-centric benchmarks and data curation, data
attribution, knowledge transfer, and inference con-
textualization with data. They each have unique
challenges that require careful consideration, and

present opportunities for innovation.
The impacts are described within each scenario

for concreteness and clarity, but they are certainly
not restricted to each of the scenarios and can some-
times “cross over”. For instance, while we have
identified democratization of the LLM technolo-
gies as an impact of Sec. 4, it is also applicable
to Sec. 5, which has highlighted the practical via-
bility of personalized usages of LLMs. Similarly,
these scenarios (and the research directions therein)
should not be viewed in isolation because there are
indeed relationships and connections between the
components. For instance, to mitigate problematic
outputs by LLMs, a holistic treatment comprising
both ex-ante and ex-post data-centric methods can
perhaps be most effective (e.g., a more targeted data
curation method from Sec. 2 paired with attribution
and unlearning methods from Sec. 3).

This initial exploration into a data-centric AI re-
search paradigm in the age of LLMs is necessarily
non-exhaustive and intended to catalyze broader
discussions, stimulate further inquiry, and spark
innovation that will expand the current limits of
LLMs and, more broadly, AI, and build toward de-
ployment of such technologies that promote greater
democratization.

7 Limitations and Impact Statement

This section organizes the limitations and alterna-
tive viewpoints following the same organization as
the main paper.

On Sec. 2. One limitation of the outlined research
directions is that these directions do not specifi-
cally account for the interplay between different
steps (e.g., pretraining data and fine-tuning data)
or between model (e.g., architecture and size) and
data (Hoffmann et al., 2022; Sardana and Frankle,
2023). It is an appealing next step to develop inte-
grated pipelines covering data curation methods for
different steps and jointly leverage model-centric
and data-centric insights.

On Sec. 3. One specific limitation of using fine-
tuning to achieve unlearning is that its effectiveness
is limited if there are only a small number of fine-
tuning iterations due to a short stipulated execution
time or a small fine-tuning dataset (Golatkar et al.,
2020). As a result, after unlearning via fine-tuning,
the model might still contain traces of the “deleted”
target data. This limitation can be mitigated by
adopting more directed unlearning techniques such
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as those described in Sec. 3.
We differentiate our described data-centric

watermarking approaches (for data attribution)
from existing model-oriented watermarking meth-
ods (Huang et al., 2024; Kuditipudi et al., 2023;
Zhao et al., 2023a,b) (for determining whether a
given output is generated by LLMs or a specific
LLM). Additionally, we differentiate our described
unlearning approaches (for removing or erasing
certain target data) from knowledge unlearning (Si
et al., 2023), whose goal is to forget an abstract def-
inition of knowledge (Chen and Yang, 2023; Jang
et al., 2023; Wang et al., 2023d).

On Sec. 4. A key requirement for effective knowl-
edge transfer is that the general-purpose LLM has
the “necessary” knowledge. This requirement is
not always satisfied as there are areas where even
the most advanced LLMs are lacking (e.g., reason-
ing and planning (Dziri et al., 2023; Valmeekam
et al., 2023)). Nevertheless, there are many ar-
eas and use cases for which existing open-sourced
LLMs are very capable (Groeneveld et al., 2024;
NVIDIA, 2024) and can be used for knowledge
transfer, and data synthesis in general. Further-
more, even if the LLM is not able to perform label
synthesis optimally, it can still be useful for filtering
out low-quality labels and leaving the good labels
for training, as in “impossible distillation” (Jung
et al., 2023). We note that our discussion on data
synthesis has a specific focus on the quality of syn-
thesized data w.r.t. the learning performance of ML
models or LLMs and there are other important con-
siderations not covered here due to page limits (e.g.,
safety considerations).

Another possible limitation in practice is due to
the possible legal restrictions of how/whether ex-
isting proprietary and closed-source LLMs can be
used, especially for commercial purposes.234 Nev-
ertheless, there are more efforts underway to open-
source and democratize LLM technologies (Chiang
et al., 2023; Liu et al., 2023b; Taori et al., 2023;
Touvron et al., 2023). For instance, Groeneveld
et al. (2024) completely open-sourced their LLM,
including the pretraining data, model architecture,
and trained weights, and the entire training logs, un-
der the Apache-2.0 license, permitting a “free” use
of this trained model, such as for knowledge trans-
fer. As another example, NVIDIA (2024) released

2Terms of use, OpenAI.
3Terms of Service, Anthropic.
4Generative AI APIs Additional Terms of Service, Google.

the Nemotron-4 family and their entire synthetic
data generation pipeline under the NVIDIA Open
Model License,5 allowing the distribution, modifi-
cation, and use of the models and its outputs.

On Sec. 5. One limitation of the inference contex-
tualization is that it is difficult to design foolproof
techniques or guarantees due to the complexity
and the intricate black-box internal working mech-
anism of LLMs. It may require additional future
investigation to understand and then leverage the
mechanism of LLMs to design techniques with
provable guarantees. Our position is to highlight a
practically simple and technically viable approach
for personalizing LLMs, as well as the promising
research directions and techniques.

Impact Statement
This position paper presents a data-centric view-
point towards AI research with a focus on LLMs,
outlining specific scenarios for future research and
highlighting the respective impacts therein.

Acknowledgement
This research is supported by the National Research
Foundation Singapore and the Singapore Ministry
of Digital Development and Innovation, National
AI Group under the AI Visiting Professorship Pro-
gramme (award number AIVP-2024-001). Xinyi
Xu is supported by the Institute for Infocomm Re-
search of Agency for Science, Technology and Re-
search (A*STAR).

References
Amro Abbas, Kushal Tirumala, Dániel Simig, Surya

Ganguli, and Ari S Morcos. 2023. SemDeDup: Data-
efficient learning at web-scale through semantic dedu-
plication. arXiv:2303.09540.

Mahyar Abbasian, Iman Azimi, Amir M Rahmani,
and Ramesh Jain. 2023. Conversational health
agents: A personalized LLM-powered agent frame-
work. arXiv:2310.02374.

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, An-
toine Miech, Iain Barr, Yana Hasson, Karel Lenc,
Arthur Mensch, Katie Millican, Malcolm Reynolds,
et al. 2022. Flamingo: a visual language model for
few-shot learning. In Proc. NeurIPS, pages 23716–
23736.

Virginia Alexandria. 2024. Democratizing the future
of AI R&D: NSF to launch National AI Research
Resource pilot.

5NVIDIA Open Model License Agreement.

11904

https://openai.com/policies/terms-of-use
https://console.anthropic.com/legal/terms
https://ai.google.dev/terms
https://new.nsf.gov/news/democratizing-future-ai-rd-nsf-launch-national-ai
https://new.nsf.gov/news/democratizing-future-ai-rd-nsf-launch-national-ai
https://new.nsf.gov/news/democratizing-future-ai-rd-nsf-launch-national-ai
https://developer.download.nvidia.com/licenses/nvidia-open-model-license-agreement-june-2024.pdf


Tariq Alqahtani, Hisham A Badreldin, Mohammed Al-
rashed, Abdulrahman I Alshaya, Sahar S Alghamdi,
Khalid Bin Saleh, Shuroug A Alowais, Omar A Al-
shaya, Ishrat Rahman, Majed S Al Yami, and Ab-
dulkareem M Albekairy. 2023a. The emergent role
of artificial intelligence, natural learning processing,
and large language models in higher education and re-
search. Research in Social and Administrative Phar-
macy, 19(8):1236—1242.

Tariq Alqahtani, Hisham A. Badreldin, Mohammed Al-
rashed, Abdulrahman I. Alshaya, Sahar S. Alghamdi,
Khalid bin Saleh, Shuroug A. Alowais, Omar A. Al-
shaya, Ishrat Rahman, Majed S. Al Yami, and Ab-
dulkareem M. Albekairy. 2023b. The emergent role
of artificial intelligence, natural learning processing,
and large language models in higher education and re-
search. Research in Social and Administrative Phar-
macy, 19(8):1236–1242.

Mohammad Mohammadi Amiri, Frédéric Berdoz, and
Ramesh Raskar. 2023. Fundamentals of task-
agnostic data valuation. In Proc. AAAI/IAAI/EAAI.

Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan
Schalkwyk, Andrew M. Dai, Anja Hauth, Katie Mil-
lican, David Silver, Slav Petrov, Melvin Johnson,
et al. 2023a. Gemini: A family of highly capable
multimodal models. arXiv:2312.11805.

Rohan Anil, Andrew M. Dai, Orhan Firat, Melvin John-
son, Dmitry Lepikhin, Alexandre Passos, Siamak
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng
Chen, Eric Chu, Jonathan H. Clark, Laurent El
Shafey, Yanping Huang, Kathy Meier-Hellstern, Gau-
rav Mishra, Erica Moreira, Mark Omernick, Kevin
Robinson, Sebastian Ruder, et al. 2023b. PaLM 2
technical report. arXiv:2305.10403.

Akari Asai, Zexuan Zhong, Danqi Chen, Pang Wei Koh,
Luke Zettlemoyer, Hannaneh Hajishirzi, and Wen
tau Yih. 2024. Reliable, adaptable, and attributable
language models with retrieval. arXiv:2403.03187.

Juhan Bae, Nathan Hoyen Ng, Alston Lo, Marzyeh
Ghassemi, and Roger Baker Grosse. 2022. If in-
fluence functions are the answer, then what is the
question? In Proc. NeurIPS.

Ramakrishna Bairi, Rishabh Iyer, Ganesh Ramakrish-
nan, and Jeff Bilmes. 2015. Summarization of multi-
document topic hierarchies using submodular mix-
tures. In Proc. ACL-IJCNLP, pages 553–563.

Clark Barrett, Brad Boyd, Elie Bursztein, Nicholas Car-
lini, Brad Chen, Jihye Choi, Amrita Roy Chowdhury,
Mihai Christodorescu, Anupam Datta, Soheil Feizi,
et al. 2023. Identifying and mitigating the security
risks of generative AI. Foundations and Trends® in
Privacy and Security, 6(1):1–52.

Samyadeep Basu, Phil Pope, and Soheil Feizi. 2021.
Influence functions in deep learning are fragile. In
Proc. ICLR.

Anastasiya Belyaeva, Justin Cosentino, Farhad Hormoz-
diari, Krish Eswaran, Shravya Shetty, Greg Corrado,
Andrew Carroll, Cory Y. McLean, and Nicholas A.
Furlotte. 2023. Multimodal llms for health grounded
in individual-specific data. arXiv:2307.09018.

Shai Ben-David, John Blitzer, Koby Crammer, Alex
Kulesza, Fernando Pereira, and Jennifer Wortman
Vaughan. 2010. A theory of learning from different
domains. Machine Learning, 79(1–2):151–175.

Stella Biderman, Hailey Schoelkopf, Quentin Anthony,
Herbie Bradley, Kyle O’Brien, Eric Hallahan, Mo-
hammad Aflah Khan, Shivanshu Purohit, USVSN Sai
Prashanth, Edward Raff, et al. 2023. Pythia: A suite
for analyzing large language models across training
and scaling. In Proc. ICML.

Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ
Altman, Simran Arora, Sydney von Arx, Michael S.
Bernstein, Jeannette Bohg, Antoine Bosselut, Emma
Brunskill, Erik Brynjolfsson, Shyamal Buch, Dal-
las Card, Rodrigo Castellon, Niladri Chatterji, An-
nie Chen, Kathleen Creel, Jared Quincy Davis,
Dora Demszky, Chris Donahue, et al. 2022. On
the opportunities and risks of foundation models.
arXiv:2108.07258.

Rishi Bommasani, Kevin Klyman, Shayne Longpre,
Sayash Kapoor, Nestor Maslej, Betty Xiong, Daniel
Zhang, and Percy Liang. 2023. The foundation
model transparency index. arXiv:2310.12941.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoff-
mann, Trevor Cai, Eliza Rutherford, Katie Milli-
can, George Bm Van Den Driessche, Jean-Baptiste
Lespiau, Bogdan Damoc, Aidan Clark, et al. 2022.
Improving language models by retrieving from tril-
lions of tokens. In Proc. ICML, pages 2206–2240.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. In Proc. NeurIPS, pages 1877–1901.

Yinzhi Cao and Junfeng Yang. 2015. Towards making
systems forget with machine unlearning. In Proc. SP,
pages 463–480.

Jaime Carbonell. 1992. Machine learning: A maturing
field. Machine Learning, 9:5–7.

Nicholas Carlini, Matthew Jagielski, Christopher A
Choquette-Choo, Daniel Paleka, Will Pearce, Hyrum
Anderson, Andreas Terzis, Kurt Thomas, and Florian
Tramèr. 2023. Poisoning web-scale training datasets
is practical. arXiv:2302.10149.

Marco Cascella, Federico Semeraro, Jonathan Monto-
moli, Valentina Bellini, Ornella Piazza, and Elena
Bignami. 2024. The breakthrough of large language
models release for medical applications: 1-year time-
line and perspectives. Journal of Medical Systems,
48(22).

11905

https://doi.org/10.1016/j.sapharm.2023.05.016
https://doi.org/10.1016/j.sapharm.2023.05.016
https://doi.org/10.1016/j.sapharm.2023.05.016
https://doi.org/10.1016/j.sapharm.2023.05.016


Jiaao Chen and Diyi Yang. 2023. Unlearn what you
want to forget: Efficient unlearning for LLMs. In
Proc. EMNLP, pages 12041–12052.

Jiuhai Chen and Jonas Mueller. 2024. Automated
data curation for robust language model fine-tuning.
arXiv:2403.12776.

Lingjiao Chen, Bilge Acun, Newsha Ardalani, Yifan
Sun, Feiyang Kang, Hanrui Lyu, Yongchan Kwon,
Ruoxi Jia, Carole-Jean Wu, Matei Zaharia, and James
Zou. 2023a. Data acquisition: A new frontier in data-
centric AI. arXiv:2311.13712.

Lingjiao Chen, Matei Zaharia, and James Zou. 2023b.
Frugalgpt: How to use large language models
while reducing cost and improving performance.
arXiv:2305.05176.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, et al. 2021. Evaluating large language
models trained on code. arXiv:2107.03374.

Mehdi Cherti, Romain Beaumont, Ross Wightman,
Mitchell Wortsman, Gabriel Ilharco, Cade Gordon,
Christoph Schuhmann, Ludwig Schmidt, and Jenia
Jitsev. 2023. Reproducible scaling laws for con-
trastive language-image learning. In Proc. CVPR,
pages 2818–2829.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion
Stoica, and Eric P. Xing. 2023. Vicuna: An open-
source chatbot impressing GPT-4 with 90%* Chat-
GPT quality.

Sang Keun Choe, Hwijeen Ahn, Juhan Bae, Kewen
Zhao, Minsoo Kang, Youngseog Chung, Adithya
Pratapa, Willie Neiswanger, Emma Strubell, Teruko
Mitamura, Jeff Schneider, Eduard Hovy, Roger
Grosse, and Eric Xing. 2024. What is your data
worth to GPT? LLM-scale data valuation with influ-
ence functions. arXiv:2405.13954.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, et al. 2022. PaLM: Scaling language
modeling with pathways. arXiv:2204.02311.

J. H. Clark, E. Choi, M. Collins, D. Garrette,
T. Kwiatkowski, V. Nikolaev, and J. Palomaki. 2020.
Tydi QA: A benchmark for information-seeking ques-
tion answering in typologically diverse languages.
Transactions of the Association for Computational
Linguistics, 8:454–470.

Matthew Dahl, Varun Magesh, Mirac Suzgun, and
Daniel E. Ho. 2024. Hallucinating law: Legal mis-
takes with large language models are pervasive.

DeepSeek-AI. 2024. Deepseek LLM: Scaling
open-source language models with longtermism.
arXiv:2401.02954.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai
Li, and Li Fei-Fei. 2009. ImageNet: A large-scale
hierarchical image database. In Proc. CVPR, pages
248–255.

Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yihan
Wang, Han Guo, Tianmin Shu, Meng Song, Eric
Xing, and Zhiting Hu. 2022. RLPrompt: Optimizing
discrete text prompts with reinforcement learning. In
Proc. EMNLP, pages 3369–3391.

Shizhe Diao, Pengcheng Wang, Yong Lin, and
Tong Zhang. 2023. Active prompting with
chain-of-thought for large language models.
arXiv:2302.12246.

Bosheng Ding, Chengwei Qin, Ruochen Zhao, Tianze
Luo, Xinze Li, Guizhen Chen, Wenhan Xia, Junjie
Hu, Anh Tuan Luu, and Shafiq Joty. 2024. Data aug-
mentation using LLMs: Data perspectives, learning
paradigms and challenges. arXiv:2403.02990.

Elvis Dohmatob, Yunzhen Feng, Pu Yang, Francois
Charton, and Julia Kempe. 2024. A tale of tails:
Model collapse as a change of scaling laws. In Proc.
ICML.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong
Wu, Baobao Chang, Xu Sun, Jingjing Xu, Lei Li, and
Zhifang Sui. 2023. A survey on in-context learning.
arXiv:2301.00234.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang (Lor-
raine) Li, Liwei Jiang, Bill Yuchen Lin, Sean Welleck,
Peter West, Chandra Bhagavatula, Ronan Le Bras,
Jena Hwang, Soumya Sanyal, Xiang Ren, Allyson Et-
tinger, Zaid Harchaoui, and Yejin Choi. 2023. Faith
and fate: Limits of transformers on compositionality.
In Proc. NeurIPS, volume 36, pages 70293–70332.

Ronen Eldan and Mark Russinovich. 2023. Who’s
Harry Potter? approximate unlearning in LLMs.
arXiv:2310.02238.

Thibault Formal, Benjamin Piwowarski, and Stéphane
Clinchant. 2021. Splade: Sparse lexical and expan-
sion model for first stage ranking. In Proc. SIGIR,
pages 2288–2292.

Samir Yitzhak Gadre, Gabriel Ilharco, Alex Fang,
Jonathan Hayase, Georgios Smyrnis, Thao Nguyen,
Ryan Marten, Mitchell Wortsman, Dhruba Ghosh,
Jieyu Zhang, Eyal Orgad, Rahim Entezari, Giannis
Daras, Sarah Pratt, Vivek Ramanujan, Yonatan Bit-
ton, Kalyani Marathe, Stephen Mussmann, Richard
Vencu, Mehdi Cherti, Ranjay Krishna, Pang Wei Koh,
Olga Saukh, Alexander Ratner, Shuran Song, Han-
naneh Hajishirzi, Ali Farhadi, Romain Beaumont,
Sewoong Oh, Alex Dimakis, Jenia Jitsev, Yair Car-
mon, Vaishaal Shankar, and Ludwig Schmidt. 2023.
DataComp: In search of the next generation of multi-
modal datasets. arXiv:2304.14108.

Yarin Gal, Riashat Islam, and Zoubin Ghahramani. 2017.
Deep bayesian active learning with image data. In
Proc. ICML, pages 1183–1192.

11906

https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://hai.stanford.edu/news/hallucinating-law-legal-mistakes-large-language-models-are-pervasive
https://hai.stanford.edu/news/hallucinating-law-legal-mistakes-large-language-models-are-pervasive
https://github.com/deepseek-ai/DeepSeek-LLM
https://github.com/deepseek-ai/DeepSeek-LLM


Wensheng Gan, Zhenlian Qi, Jiayang Wu, and Jerry
Chun-Wei Lin. 2023. Large language models in ed-
ucation: Vision and opportunities. In Proc. IEEE
BigData.

Amirata Ghorbani and James Zou. 2019. Data Shapley:
Equitable valuation of data for machine learning. In
Proc. ICML, pages 2242–2251.

Aditya Golatkar, Alessandro Achille, and Stefano
Soatto. 2020. Eternal sunshine of the spotless net: Se-
lective forgetting in deep networks. In Proc. CVPR,
pages 9301–9309.

Laura Graves, Vineel Nagisetty, and Vijay Ganesh. 2021.
Amnesiac machine learning. In Proc. AAAI, pages
11516–11524.

Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch,
Bernhard Schölkopf, and Alexander Smola. 2012. A
kernel two-sample test. Journal of Machine Learning
Research, 13:723–773.

Dirk Groeneveld, Iz Beltagy, Pete Walsh, Akshita Bha-
gia, Rodney Kinney, Oyvind Tafjord, Ananya Harsh
Jha, Hamish Ivison, Ian Magnusson, Yizhong Wang,
Shane Arora, David Atkinson, Russell Authur, Khy-
athi Raghavi Chandu, Arman Cohan, Jennifer Dumas,
Yanai Elazar, Yuling Gu, Jack Hessel, Tushar Khot,
et al. 2024. OLMo: Accelerating the science of lan-
guage models.

Roger Grosse, Juhan Bae, Cem Anil, Nelson Elhage,
Alex Tamkin, Amirhossein Tajdini, Benoit Steiner,
Dustin Li, Esin Durmus, Ethan Perez, et al. 2023.
Studying large language model generalization with
influence functions. arXiv:2308.03296.

Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang. 2024.
MiniLLM: Knowledge distillation of large language
models. In Proc. ICLR.

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio
César Teodoro Mendes, Allie Del Giorno, Sivakanth
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo
de Rosa, Olli Saarikivi, Adil Salim, Shital Shah,
Harkirat Singh Behl, Xin Wang, Sébastien Bubeck,
Ronen Eldan, Adam Tauman Kalai, Yin Tat Lee,
and Yuanzhi Li. 2023. Textbooks are all you need.
arXiv:2306.11644.

Han Guo, Nazneen Rajani, Peter Hase, Mohit Bansal,
and Caiming Xiong. 2021. FastIF: Scalable influ-
ence functions for efficient model interpretation and
debugging. In Proc. EMNLP, pages 10333–10350.

Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao
Song, Xu Tan, Guoqing Liu, Jiang Bian, and Yu-
jiu Yang. 2024. Connecting large language models
with evolutionary algorithms yields powerful prompt
optimizers. In Proc. ICLR.

Kelvin Guu, Albert Webson, Ellie Pavlick, Lucas Dixon,
Ian Tenney, and Tolga Bolukbasi. 2023. Simfluence:
Modeling the influence of individual training exam-
ples by simulating training runs. arXiv:2303.08114.

Awni Hannun, Jagrit Digani, Angelos Katharopoulos,
and Ronan Collobert. 2023. MLX: Efficient and
flexible machine learning on Apple silicon. Open-
sourced software. Version 0.0.

Meng Hao, Hongwei Li, Hanxiao Chen, Pengzhi Xing,
Guowen Xu, and Tianwei Zhang. 2022. Iron: Private
inference on transformers. In Proc. NeurIPS.

Zexue He, Yu Wang, An Yan, Yao Liu, Eric Y. Chang,
Amilcare Gentili, Julian McAuley, and Chun-Nan
Hsu. 2023. Medeval: A multi-level, multi-task,
and multi-domain medical benchmark for language
model evaluation. In Proc. EMNLP.

Peter Henderson, Xuechen Li, Dan Jurafsky, Tatsunori
Hashimoto, Mark A Lemley, and Percy Liang. 2023.
Foundation models and fair use. arXiv:2303.15715.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch,
Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de las Casas, Lisa Anne Hendricks, Johannes
Welbl, Aidan Clark, Tom Hennigan, Eric Noland,
Katherine Millican, George van den Driessche, Bog-
dan Damoc, Aurelia Guy, Simon Osindero, Karen
Simonyan, Erich Elsen, Oriol Vinyals, Jack William
Rae, and Laurent Sifre. 2022. An empirical analysis
of compute-optimal large language model training.
In Proc. NeurIPS.

Or Honovich, Thomas Scialom, Omer Levy, and Timo
Schick. 2023. Unnatural instructions: Tuning lan-
guage models with (almost) no human labor. In Proc.
ACL, volume 1, pages 14409–14428.

Cheng-Yu Hsieh, Chun-Liang Li, Chih-Kuan Yeh,
Hootan Nakhost, Yasuhisa Fujii, Alexander Ratner,
Ranjay Krishna, Chen-Yu Lee, and Tomas Pfister.
2023. Distilling step-by-step! outperforming larger
language models with less training data and smaller
model sizes. arXiv:2305.02301.

J. Hu, S. Ruder, A. Siddhant, G. Neubig, O. Firat, and
M. Johnson. 2020. Xtreme: A massively multilingual
multi-task benchmark for evaluating cross-lingual
generalization. In Proc. ICML.

Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu
Cui, Xiang Long, Zhi Zheng, Yewei Fang, Yuxiang
Huang, Weilin Zhao, Xinrong Zhang, Zheng Leng
Thai, Kaihuo Zhang, Chongyi Wang, Yuan Yao,
Chenyang Zhao, Jie Zhou, Jie Cai, Zhongwu Zhai,
Ning Ding, Chao Jia, Guoyang Zeng, Dahai Li,
Zhiyuan Liu, and Maosong Sun. 2024. Minicpm:
Unveiling the potential of small language models
with scalable training strategies. arXiv:2404.06395.

Baihe Huang, Banghua Zhu, Hanlin Zhu, Jason D. Lee,
Jiantao Jiao, and Michael I. Jordan. 2024. Towards
optimal statistical watermarking. arXiv:2312.07930.

Gabriel Ilharco, Mitchell Wortsman, Ross Wightman,
Cade Gordon, Nicholas Carlini, Rohan Taori, Achal
Dave, Vaishaal Shankar, Hongseok Namkoong, John
Miller, Hannaneh Hajishirzi, Ali Farhadi, and Lud-
wig Schmidt. 2021. OpenCLIP.

11907

https://allenai.org/olmo/olmo-paper.pdf
https://allenai.org/olmo/olmo-paper.pdf
https://github.com/ml-explore
https://github.com/ml-explore
https://github.com/OpenBMB/MiniCPM/blob/main/README-en.md
https://github.com/OpenBMB/MiniCPM/blob/main/README-en.md
https://github.com/OpenBMB/MiniCPM/blob/main/README-en.md
https://doi.org/10.5281/zenodo.5143773


Andrew Ilyas, Sung Min Park, Logan Engstrom, Guil-
laume Leclerc, and Aleksander Madry. 2022. Data-
models: Understanding predictions with data and
data with predictions. In Proc. ICML, pages 9525–
9587.

IMDA. 2023. Singapore pioneers S$70m flagship AI
initiative to develop Southeast Asia’s first large lan-
guage model ecosystem catering to the region’s di-
verse culture and languages. IMDA Press Releases.

Joel Jang, Dongkeun Yoon, Sohee Yang, Sungmin Cha,
Moontae Lee, Lajanugen Logeswaran, and Minjoon
Seo. 2023. Knowledge unlearning for mitigating
privacy risks in language models. In Proc. ACL,
pages 14389–14408.

Ruoxi Jia, David Dao, Boxin Wang, Frances Ann Hubis,
Nezihe Merve Gurel, Bo Li, Ce Zhang, Costas J
Spanos, and Dawn Song. 2019a. Efficient task-
specific data valuation for nearest neighbor algo-
rithms. In Proc. VLDB, pages 1610–1623.

Ruoxi Jia, David Dao, Boxin Wang, Frances Ann Hubis,
Nick Hynes, Nezihe Merve Gürel, Bo Li, Ce Zhang,
Dawn Song, and Costas J. Spanos. 2019b. Towards
efficient data valuation based on the Shapley value.
In Proc. AISTATS, volume 89, pages 1167–1176.

Yuxin Jiang, Chunkit Chan, Mingyang Chen, and Wei
Wang. 2023. Lion: Adversarial distillation of propri-
etary large language models. In Proc. EMNLP, pages
3134–3154.

Jaehun Jung, Peter West, Liwei Jiang, Faeze Brah-
man, Ximing Lu, Jillian Fisher, Taylor Sorensen, and
Yejin Choi. 2023. Impossible Distillation: from low-
quality model to high-quality dataset & model for
summarization and paraphrasing. arXiv:2305.16635.

Hoang Anh Just, Feiyang Kang, Tianhao Wang, Yi Zeng,
Myeongseob Ko, Ming Jin, and Ruoxi Jia. 2023.
LAVA: Data valuation without pre-specified learn-
ing algorithms. In Proc. ICLR.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B.
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei.
2020. Scaling laws for neural language models.
arXiv:2001.08361.

Nitish Shirish Keskar, Bryan McCann, Lav R. Varshney,
Caiming Xiong, and Richard Socher. 2019. CTRL:
A conditional transformer language model for con-
trollable generation. arXiv:1909.05858.

John Kirchenbauer, Jonas Geiping, Yuxin Wen,
Jonathan Katz, Ian Miers, and Tom Goldstein. 2023.
A watermark for large language models. In Proc.
ICML, pages 17061–17084.

Will Knight. 2023. OpenAI’s CEO says the age of giant
AI models is already over. WIRED.

Pang Wei Koh, Kai-Siang Ang, Hubert H. K. Teo,
and Percy Liang. 2019. On the accuracy of influ-
ence functions for measuring group effects. In Proc.
NeurIPS.

Pang Wei Koh and Percy Liang. 2017. Understanding
black-box predictions via influence functions. In
Proc. ICML, pages 1885–1894.

Ben Krause, Akhilesh Deepak Gotmare, Bryan McCann,
Nitish Shirish Keskar, Shafiq Joty, Richard Socher,
and Nazneen Fatema Rajani. 2021. GeDi: Gener-
ative discriminator guided sequence generation. In
Findings of EMNLP, pages 4929–4952.

Rohith Kuditipudi, John Thickstun, Tatsunori
Hashimoto, and Percy Liang. 2023. Robust
distortion-free watermarks for language models.
arXiv:2307.15593.

Alex Kulesza and Ben Taskar. 2012. Determinantal
Point Processes for Machine Learning. Now Publish-
ers Inc.

Yongchan Kwon, Eric Wu, Kevin Wu, and James Zou.
2024. DataInf: Efficiently estimating data influence
in LoRA-tuned LLMs and diffusion models. In Proc.
ICLR.

Ehsan Latif, Luyang Fang, Ping Ma, and Xiaoming Zhai.
2023. Knowledge distillation of LLM for education.
arXiv:2312.15842.

Taehyun Lee, Seokhee Hong, Jaewoo Ahn, Ilgee Hong,
Hwaran Lee, Sangdoo Yun, Jamin Shin, and Gunhee
Kim. 2023a. Who wrote this code? watermarking
for code generation. arXiv:2305.15060.

Tony Lee, Michihiro Yasunaga, Chenlin Meng, Yi-
fan Mai, Joon Sung Park, Agrim Gupta, Yunzhi
Zhang, Deepak Narayanan, Hannah Benita Teufel,
Marco Bellagente, Minguk Kang, Taesung Park, Jure
Leskovec, Jun-Yan Zhu, Li Fei-Fei, Jiajun Wu, Ste-
fano Ermon, and Percy Liang. 2023b. Holistic eval-
uation of text-to-image models. In Proc. NeurIPS
(Track on Datasets and Benchmarks).

David D Lewis and Jason Catlett. 1994. Heterogeneous
uncertainty sampling for supervised learning. In Ma-
chine learning proceedings 1994, pages 148–156.
Elsevier.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, et al. 2020. Retrieval-augmented genera-
tion for knowledge-intensive NLP tasks. In Proc.
NeurIPS, pages 9459–9474.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proc. ACL.

Yiming Li, Yang Bai, Yong Jiang, Yong Yang, Shu-
Tao Xia, and Bo Li. 2022a. Untargeted backdoor
watermark: Towards harmless and stealthy dataset
copyright protection. In Proc. NeurIPS.

11908

https://www.wired.com/story/openai-ceo-sam-altman-the-age-of-giant-ai-models-is-already-over/
https://www.wired.com/story/openai-ceo-sam-altman-the-age-of-giant-ai-models-is-already-over/


Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del
Giorno, Suriya Gunasekar, and Yin Tat Lee. 2023.
Textbooks are all you need II: phi-1.5 technical report.
arXiv:2309.05463.

Yujia Li, David Choi, Junyoung Chung, Nate Kush-
man, Julian Schrittwieser, Rémi Leblond, Tom Ec-
cles, James Keeling, Felix Gimeno, Agustin Dal
Lago, Thomas Hubert, Peter Choy, Cyprien de Mas-
son d’Autume, Igor Babuschkin, Xinyun Chen, Po-
Sen Huang, Johannes Welbl, Sven Gowal, Alexey
Cherepanov, James Molloy, Daniel J. Mankowitz,
Esme Sutherland Robson, Pushmeet Kohli, Nando
de Freitas, Koray Kavukcuoglu, and Oriol Vinyals.
2022b. Competition-level code generation with al-
phacode. Science, 378(6624):1092–1097.

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris
Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian
Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Ku-
mar, Benjamin Newman, Binhang Yuan, Bobby Yan,
Ce Zhang, Christian Alexander Cosgrove, Christo-
pher D Manning, Christopher Re, Diana Acosta-
Navas, Drew Arad Hudson, Eric Zelikman, Esin
Durmus, Faisal Ladhak, Frieda Rong, Hongyu Ren,
Huaxiu Yao, Jue WANG, Keshav Santhanam, Laurel
Orr, Lucia Zheng, Mert Yuksekgonul, Mirac Suzgun,
Nathan Kim, Neel Guha, Niladri S. Chatterji, Omar
Khattab, Peter Henderson, Qian Huang, Ryan An-
drew Chi, Sang Michael Xie, Shibani Santurkar,
Surya Ganguli, Tatsunori Hashimoto, Thomas Icard,
Tianyi Zhang, Vishrav Chaudhary, William Wang,
Xuechen Li, Yifan Mai, Yuhui Zhang, and Yuta Ko-
reeda. 2023. Holistic evaluation of language models.
Transactions on Machine Learning Research.

Xiaoqiang Lin, Zhaoxuan Wu, Zhongxiang Dai,
Wenyang Hu, Yao Shu, See-Kiong Ng, Patrick Jail-
let, and Bryan Kian Hsiang Low. 2024. Use Your
INSTINCT: INSTruction optimization usIng Neural
bandits Coupled with Transformers. In Proc. ICML.

Alisa Liu, Maarten Sap, Ximing Lu, Swabha
Swayamdipta, Chandra Bhagavatula, Noah A. Smith,
and Yejin Choi. 2021. DExperts: Decoding-time con-
trolled text generation with experts and anti-experts.
In Proc. IJCNLP, pages 6691–6706.

Hanxi Liu, Xiaokai Mao, Haocheng Xia, Jian Lou, and
Jinfei Liu. 2023a. Prompt valuation based on Shapley
values. arXiv:2312.15395.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae
Lee. 2023b. Visual instruction tuning. In Proc.
NeurIPS.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan,
Lawrence Carin, and Weizhu Chen. 2022. What
makes good in-context examples for GPT-3? In
In Proceedings of Deep Learning Inside Out (Dee-
LIO 2022): The 3rd Workshop on Knowledge Extrac-
tion and Integration for Deep Learning Architectures,
pages 100–114.

Junling Liu, Peilin Zhou, Yining Hua, Dading Chong,
Zhongyu Tian, Andrew Liu, Helin Wang, Chenyu

You, Zhenhua Guo, Zhu Lei, and Michael Lingzhi
Li. 2023c. Benchmarking large language models on
CMExam - a comprehensive chinese medical exam
dataset. In Proc. NeurIPS.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. 2023d. Lost in the middle: How language
models use long contexts. Transactions of the Asso-
ciation for Computational Linguistics.

Xuanqi Liu and Zhuotao Liu. 2023. LLMs can under-
stand encrypted prompt: Towards privacy-computing
friendly transformers. arXiv:2305.18396.

Yixin Liu, Hongsheng Hu, Xun Chen, Xuyun Zhang,
and Lichao Sun. 2023e. Watermarking classification
dataset for copyright protection. arXiv:2305.13257.

Anton Lozhkov, Loubna Ben Allal, Leandro von Werra,
and Thomas Wolf. 2024. FineWeb-Edu. Open-
source dataset.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel,
and Pontus Stenetorp. 2022a. Fantastically ordered
prompts and where to find them: Overcoming few-
shot prompt order sensitivity. In Proc. ACL.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel,
and Pontus Stenetorp. 2022b. Fantastically ordered
prompts and where to find them: Overcoming few-
shot prompt order sensitivity. In Proc. ACL, pages
8086–8098.

Max Marion, Ahmet Üstün, Luiza Pozzobon, Alex
Wang, Marzieh Fadaee, and Sara Hooker. 2023.
When less is more: Investigating data pruning for
pretraining llms at scale. arXiv:2309.04564.

Francesco Marra, Diego Gragnaniello, Luisa Verdoliva,
and Giovanni Poggi. 2018. Do GANs Leave Artifi-
cial Fingerprints? In Proc. MIPR, pages 506–511.

Mark Mazumder, Colby Banbury, Xiaozhe Yao, Bojan
Karlaš, William Gaviria Rojas, Sudnya Diamos, Greg
Diamos, Lynn He, Alicia Parrish, Hannah Rose Kirk,
Jessica Quaye, Charvi Rastogi, Douwe Kiela, David
Jurado, David Kanter, Rafael Mosquera, Juan Ciro,
Lora Aroyo, Bilge Acun, Lingjiao Chen, Mehul Sm-
riti Raje, Max Bartolo, Sabri Eyuboglu, Amirata
Ghorbani, Emmett Goodman, Oana Inel, Tariq Kane,
Christine R. Kirkpatrick, Tzu-Sheng Kuo, Jonas
Mueller, Tristan Thrush, Joaquin Vanschoren, Mar-
garet Warren, Adina Williams, Serena Yeung, New-
sha Ardalani, Praveen Paritosh, Lilith Bat-Leah,
Ce Zhang, James Zou, Carole-Jean Wu, Cody Cole-
man, Andrew Ng, Peter Mattson, and Vijay Janapa
Reddi. 2023. DataPerf: Benchmarks for data-centric
AI development. In Proc. NeurIPS. Track on
Datasets and Benchmarks.

Ronak Mehta, Sourav Pal, Vikas Singh, and Sathya N
Ravi. 2022. Deep unlearning via randomized condi-
tionally independent Hessians. In Proc. CVPR, pages
10422–10431.

11909

https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu


Sewon Min, Suchin Gururangan, Eric Wallace, Han-
naneh Hajishirzi, Noah A. Smith, and Luke Zettle-
moyer. 2024. SILO language models: Isolating legal
risk in a nonparametric datastore. In Proc. ICLR.

Merlyn Mind. 2024. First-ever education-specific lan-
guage models open door to trustworthy generative AI
for teachers and students.

Ali Naseh, Katherine Thai, Mohit Iyyer, and Amir
Houmansadr. 2024. Iteratively prompting multi-
modal llms to reproduce natural and AI-generated
images. arXiv:2404.13784.

Seth Neel, Aaron Roth, and Saeed Sharifi-Malvajerdi.
2021. Descent-to-delete: Gradient-based methods
for machine unlearning. In Proc. ALT, pages 931–
962.

Andrew Ng, Dillon Laird, and Lynn He. 2021. Data-
centric AI competition.

Thao Nguyen, Gabriel Ilharco, Mitchell Wortsman, Se-
woong Oh, and Ludwig Schmidt. 2022. Quality not
quantity: On the interaction between dataset design
and robustness of CLIP. In Proc. NeurIPS, pages
21455–21469.

Xuan-Phi Nguyen, Sharifah Mahani Aljunied, Shafiq
Joty, and Lidong Bing. 2023. Democratizing LLMs
for low-resource languages by leveraging their En-
glish dominant abilities with linguistically-diverse
prompts. arXiv:2306.11372.

Ki Nohyun, Hoyong Choi, and Hye Won Chung. 2023.
Data valuation without training of a model. In Proc.
ICLR.

NVIDIA. 2024. Nemotron-4 340B technical report.

OpenAI. 2023. GPT-4 technical report.
arXiv:2303.08774.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. In Proc. NeurIPS, pages
27730–27744.

David Patterson, Joseph Gonzalez, Quoc Le, Chen
Liang, Lluis-Miquel Munguia, Daniel Rothchild,
David So, Maud Texier, and Jeff Dean. 2021. Car-
bon emissions and large neural network training.
arXiv:2104.10350.

Martin Pawelczyk, Seth Neel, and Himabindu
Lakkaraju. 2023. In-context unlearning: Language
models as few shot unlearners. arXiv:2310.07579.

Guilherme Penedo, Hynek Kydlíček, Leandro von
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