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Abstract

Combining large language models during train-
ing or at inference time has shown substan-
tial performance gain over component LLMs.
This paper presents LLM-TOPLA, a diversity-
optimized LLM ensemble method with three
unique properties: (i) We introduce the fo-
cal diversity metric to capture the diversity-
performance correlation among component
LLMs of an ensemble. (ii) We develop a
diversity-optimized ensemble pruning algo-
rithm to select the top-k sub-ensembles from a
pool of N base LLMs. Our pruning method rec-
ommends top-performing LLM subensembles
of size S, often much smaller than N . (iii) We
generate new output for each prompt query by
utilizing a learn-to-ensemble approach, which
learns to detect and resolve the output incon-
sistency among all component LLMs of an
ensemble. Extensive evaluation on four dif-
ferent benchmarks shows good performance
gain over the best LLM ensemble methods:
(i) In constrained solution set problems, LLM-
TOPLA outperforms the best-performing en-
semble (Mixtral) by 2.2% in accuracy on
MMLU and the best-performing LLM ensem-
ble (MoreAgent) on GSM8k by 2.1%. (ii) In
generative tasks, LLM-TOPLA outperforms
the top-2 performers (Llama70b/Mixtral) on
SearchQA by 3.9x in F1, and on XSum by
more than 38 in ROUGE-1. Our code and
dataset, which contains outputs of 8 modern
LLMs on 4 benchmarks is available at https:
//github.com/git-disl/llm-topla

1 Introduction

Modern Large Language Models (Achiam et al.,
2023; Jiang et al., 2024; Touvron et al., 2023; Team
et al., 2024) are characterized by architectures with
billions of parameters, massive training datasets,
and remarkable performance across many zero and
one-shot tasks. Recently, there has been a myr-
iad of open-sourced models, aiming for improving
generalizability in a subset of tasks e.g., question

answering, code generation, multi-agent, and sum-
marization, with smaller sizes (1b to 70b), and yet
performing equally or better compared to larger
sizes on that particular task (Zhao et al., 2023; Has-
sid et al., 2024; Mei et al., 2024; Hu et al., 2024).
This enables LLM consumers to access many open-
source LLMs of various sizes and choose to run
them locally or via an API from an LLM infer-
ence service provider. A widely recognized chal-
lenge is how to select among the large collection
of open/close-sourced LLMs the best model com-
bination, and how to combine possibly conflicting
output answers from multiple LLMs to reach the
best generative output for the target learning task.

We argue that a practical LLM ensemble method
should provide an efficient solution approach to an-
swer both of the above questions. To this end, first,
we introduce LLM-TOPLA, a diversity-optimized
LLM ensemble method with three unique proper-
ties: (i) a focal diversity metric to capture the error
diversity and the diversity-performance correlation
among component LLMs of an ensemble; (ii) a
diversity-optimized ensemble pruning algorithm to
identify and select the top-k sub-ensembles from a
pool of N base LLMs, which shows equal or bet-
ter performance compared to the ensemble of N
models; (iii) a learn-to-combine approach, which
learns to detect and resolve the output inconsistency
among all component LLMs of an ensemble, and
generate the LLM-TOPLA output for each prompt
query.

2 Related Work

We broadly categorize the related work in achiev-
ing better generalization performance of LLMs into
two threads: ensemble with unsupervised or super-
vised learning.

In unsupervised methods, prompt engineering,
exemplified by Chain of Thought (CoT) (Wang
et al., 2022), generates multiple solution passes,
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with majority voting used to ensemble the final
output. The downside of majority voting is the defi-
nition of equality between divergent answers. Com-
pared to math problems or multiple-choice prob-
lems, consensus-based approaches like weighted
majority voting may do poorly for generative
queries. Recently, two threads of research to fur-
ther improve CoT. One advocates integrating more
agents (models) from different LLM producers (Li
et al., 2024) and utilizing the BLEU score as the
heuristic to compare answers. Another is to en-
hance the BLEU score-based answer combination
method by either assigning weights (Yao et al.,
2024) or by creating a debate environment (Wan
et al., 2024). One caveat in common for these unsu-
pervised methods is that they require lengthy and
complex prompt strategies.

Several supervised LLM ensemble methods are
proposed: LLM-Blender (Jiang et al., 2023) per-
forming two steps of training; one for model selec-
tion and one for generation. Yet, the proposed rank-
ing model requires pairwise comparison of models
in the pool and the ensemble method has a lim-
ited context window with the high cost of training.
Alternatively, a distillation strategy is proposed in
(Wan et al., 2024) by performing a token alignment
on the probability distributions of the models. In
addition to the high computational cost, this paper
only ensembles LLama-2 architectures. Regarding
the model selection, (Chen et al., 2023) reduced
the cost of inference by performing prompt adap-
tation, caching, and model tuning to choose the
strongest model in the pool. We extensively evalu-
ate on multiple-choice, open-ended, and generative
question benchmarks to show that the proposed
LLM-TOPLA outperforms the best LLM ensem-
ble methods on MMLU, GSM8k, SearchQA and
XSum.

3 Problem Definition

Let x denote an input query for task T under an
LLM M and y represent the desired output. We
assume a dataset D to be the collection of samples
for task T , such that (x, y) ∈ D. For a pool of
LLMs with the size N , denoted as M1, . . . ,MN ,
we utilize D to find the optimal ensemble func-
tion. This function takes outputs of each LLM
and yields one final answer, denoted as ỹ, given
by f(M1(x), . . . ,MN (x)) = ỹ, such that the dif-
ference between desired output is minimized, mea-
sured by the loss function L(ỹ, y). However, based

on the task T , the desired output y can represent
different solution spaces. Here, we define three
different types of solution spaces.

In the first type, y(1) ∈ {1, . . . ,m} represents
the choices in a multiple-choice question (MCQ),
where m is typically a small integer, such as 4.
The second type of outputs represents the type of
open-ended question (OEQ), such as an answer
to a multi-step descriptive math problem where
the expected answer is a real number and denoted
as y(2) ∈ R or the expected answer can be a
word representing the short answer to a trivia ques-
tion denoted as y(2) ∈ {w1, . . . , w|V |}, where |V |
is the size of the vocabulary. Lastly, the third
type represents the outputs of generative question
(GQ) tasks such as machine translation, summariza-
tion, and open question-answering. The solution
space consists of a sequence of words, given by
y(3) = {w1, . . . , wt}. As illustrated in Figure 1,
the key difference between other solution sets is
that the third solution type is a sequence of words
whereas the second solution set consists of an ex-
act word or a number. Next, we describe how our
proposed methodology addresses all the solution
sets by introducing ensemble learning functions for
each type of problem.

4 Ensemble Learning Functions

We propose two learn-to-ensemble methods. The
first method, TOPLA-WEIGHTED, is lightweight
and applicable only to the first two types of out-
puts y(1) and y(2). The second method, TOPLA-
SUMMARY, applies to all three types at a higher
cost of complexity.

4.1 LLM-TOPLA-Weighted
An autoregressive language model predicts the next
token, wt, based on the probability mass condi-
tioned on the input query, x, and the formerly gen-
erated tokens, w<t, i.e. it models:

p(wt|x,w<t) =
exp(ct−1)∑|V |
j=1 exp(cj)

, (1)

where c represents the output vector of the final
linear layer of a language model. For an MC ques-
tion, as proposed in (Hendrycks et al., 2020), the
probabilities assigned to choices are obtained by
calculating the probability of the choice’s token
using equation 1. For instance, p(wt = A|x,w<t)
is calculated for choice A. However, a more popu-
lar methodology proposed by (Gao et al., 2023) is
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Figure 1: We present the different types of tasks with their solution spaces.

used by the HuggingFace Leader Board (Beeching
et al., 2023) and also in our paper. We aggregate
the probabilities of the tokens creating the whole
choice to compute the probability of an answer. Af-
ter repeating the procedure for all the choices, we
obtain the probability distribution over the choices,
denoted by q = [q1, . . . , qm], where q represents
the probability of a choice and m is the number of
choices.

As shown by(Holtzman et al., 2021), the high-
est probability answer may not lead to a correct
decision, and the probabilities assigned to other
choices carry equal significance. Furthermore, we
defend that the probability distribution of a model
defines its characteristics and multiple models can
be leveraged to reach the correct answer. To this
end, we aim for the most robust way to combine
N different probability distributions, denoted by
Mi(x) = qi where i = 1, . . . , N to generate the
ensemble output, ỹ, against the query x sampled
from a dataset D. Our goal is to maximize the
probability of the correct choice conditioned on the
probabilities of base models:

max
∑

(x,y)∈D
p(y|M1(x), . . . ,MN (x)). (2)

We approximate this likelihood using an ensemble
learner parameterized by θ: f(q1, . . . ,qN ; θ) = ỹ.
This ensemble learner can be a machine learn-
ing model such as decision trees, or a neural net-
work. In this paper, we use a Multi-layer Percep-
tron (MLP) containing multiple layers of fully con-
nected weights with sigmoid activation functions.
At the final layer, the model performs softmax to
produce the output probability:

ỹ = softmax(WH(. . . σ(W1[q1, . . . ,qN ]) . . . )),
(3)

where H is the number of layers. The first layer
takes the concatenation of the probabilities as the
input, i.e., W1 ∈ R(mN)×d where d is the input
dimension of the second layer. We want to find the
best parameters θ = (W1, . . . ,WH) to maximize
the likelihood, which can be reduced to minimize
the cross-entropy loss on a dataset which is the col-
lection of probabilities for each component model.
Thus, we split the dataset into train, validation, and

test and use the training set to train the ensemble
model, the validation set to stop the training, and
finally, we use the test set to calculate the perfor-
mance. In each iteration of training, the parameters
are updated by minimizing the loss function:

θbest = argmin
θ

∑

x,y∈Dtrain

Lvote(y, ỹ),

ỹ = f(M1(x), . . . ,MN (x); θ),

Lvote(y, ỹ) = −
m∑

i=1

yi log(ỹi).

(4)

We use SGD to perform updates on the parame-
ters for every iteration. The ensemble learner an-
alyzes the probabilities assigned by each model
and their confidence level. Thus, we train the
learn-to-ensemble model to learn how to efficiently
recognize the patterns among the predictions of
each component model. This allows the ensemble
learner to learn to make the correct choice even in
the absence of consensus, instead of blindly relying
on consensus voting algorithms, such as majority
or plurality voting.

Generalizing the formulation for y(2): Con-
sidering the size of the solution set for y(2) can be
large, concatenating probabilities for each token is
impractical, especially since an answer may com-
prise a long sequence of tokens. It is essential to
reduce the size of the solution set. Inspired by the
Chain-of-Thought (CoT) prompting (Wang et al.,
2022), we consider two scenarios: (i) If a model is
certain of its answer, multiple passes of the same
query would result in the same reasoning paths
with the same answers. (ii) When a model is uncer-
tain, the decision is dispersed into multiple paths
with different answers. Hence, we need a mech-
anism to find the correct output when the model
is uncertain. To address both problems, we iterate
the input query K times with CoT prompting and
count the occurrences of answers and divide by K
indicating the probability distribution of the model
for that query. The answers sampled from a model
create its solution set. For N number of models,
we can have at most K ×N different answers. Let
Yj = {ŷ1, . . . , ŷK} represent the solution set of
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jth model where ŷi is the ith answer of the model.
We define a counting function to count the occur-
rence of an answer in the solution set denoted by
g(ŷi, Yj) =

∑
y∈Yj

1(ŷi = y). However, each
model can have its own solution set that is different
than the others. By selecting the top-K answers
in all of the solution sets, we create one final so-
lution set, denoted by Y final. Next, we compute
the probability distribution for the final solution set
generated by each model. This is done by dividing
the frequency of each answer in the solution set of
the model by the total number of passes, given by:

qj = [q1, . . . , qK ], j = 1, . . . , N

qi =
g(ŷi, Yj)

K
, ŷi ∈ Y final,

(5)

where qj is the probability distribution of the
jth model on the solution set. By obtaining the
probabilities, we use the same ensemble learner in
equation 3 to learn the correct answer, leveraging
the confidences of models for the input query.

4.2 LLM-TOPLA-Summary
We design the LLM-TOPLA learn-to-ensemble by
summarization (LLM-TOPLA-Summary for short)
with two objectives in mind. First, considering
certain generative tasks, such as machine transla-
tion, and question-answering, the LLM-TOPLA-
Weighted is not applicable without relaxing the
definition of equality between different solutions.
Even if the definition is relaxed by using compari-
son metrics such as BLEU score or distance metrics
on the vector representation of the outputs, the use
of TOPLA-weighted will select one of the answers
generated by the best component model of the en-
semble to create a TOPLA solution set. This may
fail to produce the best generative output, even by
utilizing heuristics on the relaxed definition. Sec-
ond, our goal with TOPLA-Summary is to create
an ensemble learner that applies to all types of tasks
and generates its own output.

LLM-TOPLA-summary performs learn to en-
semble as follows. First, we employ another lan-
guage model to generate a summary of the outputs
produced by each model. Next, we use a sequence-
to-sequence (seq2seq) model with encoder-decoder
architecture (Jiang et al., 2023) by concatenating
the outputs of the component models of a chosen
ensemble of S base models with the input query
and generating the final output of LLM-TOPLA.
The fitness of the solution is limited by constraints
such as context length, computation complexity,

and training complexity. When the input length
is short, it limits the number of models that can
be fused and forces truncation on the outputs of
component models. Also the self-attention mech-
anisms in encoder-decoder models have quadratic
complexity (Beltagy et al., 2020). In response to
these limitations, we implement sparse attention
and global attention such that we can increase the
context length up to 16396 tokens with 149 mil-
lion parameters, and utilize a small training dataset.
Recall, y(3) = {w1, . . . , wT }, where T is the se-
quence length of the desired output. Each model in
the pool generates the predicted sequence denoted
by Mi(x) = {ŵ1, . . . , ŵTi} = zi and Ti is the
sequence length of the ith model output which can
be different than T . Let h be the seq2seq model
with ϕ parameters, and Z = {z1, . . . , zN} be the
collection of candidates. Our goal is to approxi-
mate the desired sequence probability conditioned
on the input query and the model outputs, given by:

p(y|x,Z) ≈ h(x,Z;ϕ). (6)

We give the input sequence, xs, to the seq2seq
model in the format of xs = concat(x, z1, . . . , zN )
and use special tokens as separators to indicate the
beginning and end of the question or an answer.
Consider an ensemble from 3 base models, the
input below is sent to the TOPLA-summary model:

xs = < boq >x< eoq >< boc1 >z1< eoc1 >

< boc2 >z2< eoc2 >< boc3 >z3< eoc3 >.
(7)

We use distinct tokens to indicate which model each
candidate belongs to. As the number of models
in an ensemble increases, the length of the input
sequence to the seq2seq model, ℓ, grows, resulting
in a high computational cost in self-attention:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (8)

where the operations are performed in each layer
of the Transformer model architecture (Vaswani
et al., 2017) and Q, K, and V contain query, key,
and value vectors for all the tokens. The result
of the softmax function produces scores for each
token. These scores are then multiplied by V , scor-
ing each token in the input sentence against every
other token. This process results in the complexity
of O(ℓ2× d), where d is the embedding dimension.

To reduce the complexity and increase the con-
text length, we employ the sliding window attention
pattern by (Beltagy et al., 2020). A fixed-sized win-
dow slides through tokens in each layer increasing
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the receptive field towards the top layers. For a win-
dow of size a, each token attends to the surrounding
tokens within a range of a/2. This reduces the com-
putation complexity to O(ℓ× d× a) which scales
linearly with the input sequence.

Finally, the TOPLA ensemble learner evaluates
the relation between the question and the answer
given by each model to decide which answer suits
the best. To stress the relation between the question
and each candidate’s answer, we employ selective
global attention on the tokens of x of the input
question. The global attention is the standard self-
attention by scoring each token against every other
token. With the sliding and global attention mech-
anism, we increase the context window length, re-
duce the computational complexity, and improve
the performance.

Overall, LLM-TOPLA-summary is optimized by
finding the best model parameter ϕ that will max-
imize the joint distribution over the target tokens
p(y|x, z1, . . . , zN ;ϕ). It performs auto-regressive
generation using the following cross-entropy loss
for a target summary y = {w1, . . . , wT }:

Lsum = −
T∑

t=1

log p(wt|w<t−1, x,Z;ϕ) (9)

We use SGD to perform updates on the parameters
in each iteration. As the LLM-TOPLA-Summary
model is trained, it learns to generate the correct
token sequence by utilizing the information pro-
vided by each candidate answer and the TOPLA-
summary evaluation results.

5 Focal Diversity and Ensemble Pruning

Given a pool of base LLMs as an ensemble, LLM-
TOPLA first performs the focal diversity-based en-
semble pruning for two reasons: First, the diversity
among base models improves the ensemble perfor-
mance (Breiman, 1996; Dietterich, 2000). Second,
as we add more models to the ensemble pool, it be-
comes more expensive to prompt each model, and
the input length of the ensemble model increases.
Thus, the model selection for an ensemble set is
essential. Consider a pool of N base models, the
total number of possible ensemble teams with size
S (2 ≤ S ≤ N ) is 2N −N−1 (Wu et al., 2021). A
key question is how to perform ensemble pruning
efficiently. We argue that the smaller ensemble size
and the higher ensemble diversity, the better the
generation performance of the ensemble.

Focal Negative Correlation & Focal Diversity.
The focal negative correlation metric, ρfocal is used
to quantify the level of error diversity among the
component models of an ensemble concerning each
model within the ensemble. The focal diversity
metric λfocal is used to quantify the general error
diversity of the ensemble by taking into account
all focal negative correlation scores of an ensem-
ble. Let ES denote an LLM ensemble composed
of S models: {M1, . . . ,MS}, we choose one of
the S base models each time as the focal model to
compute the focal negative correlation score of this
ensemble, denoted as ρfocal(Mi; ES). We define
the focal diversity of this ensemble team by the
average of the S focal negative correlation scores.
The procedure of computing the focal negative cor-
relation score of ρfocal is as follows: (i) select a
base model among the set of S base models as the
focal model, (ii) take all the validation episodes that
the focal model has failed and calculate the focal
negative correlation score, (iii) repeat the previous
steps until all S focal negative correlation scores
are obtained. {ρfocal1 , . . . , ρfocalS }, and (iv) com-
pute the average over the scores to obtain the focal
diversity of ensemble ES , denoted by λfocal(ES):

λfocal(ES) =
1

S

∑

Mi∈ES

ρfocal(Mi; ES)

ρfocal(Mi; ES) = 1− P (2)

P (1)

P (2) =
S∑

j=1

j(j − 1)

S(S − 1)
pj , P (1) =

S∑

j=1

j

M
pj

(10)

Here pi is the probability that i number of mod-
els fail together on a randomly chosen episode. We
calculate as pi = ni/L

val where ni is the total
number of episodes that i number of models failed
together on the validation set and Lval is the to-
tal number of validation episodes. The term P (2)
represents the probability of two randomly cho-
sen models simultaneously failing on an episode,
while the denominator, P (1), represents the proba-
bility of one randomly chosen model failing on an
episode. The terms beneath pj values are the proba-
bility of the chosen model being one of the failures.
For example, when S = 3, there are three cases
of model failures; one, two, or three models can
fail simultaneously. If one model fails, the chance
of selecting the failed model is 1/3. Similarly, for
two models, it is 2/3, and for three models, it is 1.
In the case of minimum diversity, the probability
of two randomly chosen models failing together
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Figure 2: An overview of TOPLA-Framework.

comes down to the probability of one of them fail-
ing, which makes the fraction term equal to 1 and
ρfocal = 0. Similarly, in the case of maximum di-
versity, there are no simultaneous failures. Hence,
the nominator equals 0 and ρfocal = 1. The defini-
tion of error changes according to the type of task
and its solution set y. For the MCQs and OEQs,
the errors are inequality between the prediction of
the model and the label, for the GQs, the errors
are missed 1-grams between the prediction and the
label. Thus, the focal diversity captures member
models that are not correlated solely by their error
diversity.

Figure 3: For each task, all candidate ensemble teams
from the base model pools are plotted with their focal
diversity scores and their performance metrics. The col-
ors represent the size of each team, and the dotted line
represents the best-performing individual model in the
pool. We also plot the best-fit line with Pearson’s Cor-
relation Coefficient ρ to show the correlation between
performance and the focal diversity.

Ensemble Pruning Optimization. Figure 3
shows the focal diversity scores for a given pool
of N = 8 base models with GSM8k (Cobbe et al.,
2021) and XSum (Dunn et al., 2017) respectively
(N = 6 and see Appendix-B for the base models
trained on other datasets). For GSM8k, we get 247
candidate ensemble teams from the pool of N = 8
base models. For XSum, we get 57 candidate teams
from the pool of N = 6 base LLMs.

We make three observations: (i) the focal-
diversity metric is correlated with the model perfor-

mance, (ii) there are multiple sub-ensemble teams
of size 2-4 that outperform the largest ensemble
of size 8, and (iii) a majority of the smaller en-
semble teams also outperform the best-performing
individual model in the base model pool.

To perform focal diversity-based ensemble prun-
ing, we need to compute the focal diversity scores
for all 2N −N−1 sub-ensemble teams when given
a pool of N base models. The brute force (BF) ap-
proach requires computing the focal diversity for
each candidate ensemble of size S (2 ≤ S ≤ N ).
For N = 20, we need to compute the focal diver-
sity score for all 1, 048, 555 candidate ensemble
teams. To speed up this process, we leverage the
Genetic Algorithm (GA) (Mirjalili and Mirjalili,
2019), which takes significantly less time to reach
the best combination. Table 1 shows a comparison.
For a pool of N = 15 base models, we complete
the focal diversity-based ensemble pruning in under
a minute, achieving 5 orders of magnitude speed
up (see Appendix C for further illustration and de-
tails).

# Base
Models

Time(s)
BF GA Gain%

5 9.4 9.9 -5.50
10 228.2 24.5 828
15 508.99 41.8 1116

Table 1: Brute Force (BF) and GA pruning comparison.

6 LLM-TOPLA Framework
The framework for LLM-TOPLA is shown in Fig-
ure 2. The user inputs the training data, which
includes queries with the desired outputs and a list
of N LLMs available in the pool. TOPLA will first
send α% of the queries to each LLM and generate
N outputs for each query. Each question and multi-
ple answer pairs are stored to create Dtrain. In the
second step, the focal diversity ensemble pruning
module selects the best ensemble set combination
to decrease pool size from N to S number of mod-
els, where S < N . It performs the Genetic Algo-
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rithm boosted diversity pruning algorithm and out-
puts top-k ensemble sets. Among top-k candidates,
an ensemble set is selected randomly. Then, Dtrain

is updated based on the new S model selection. At
this point, the dataset can be populated with more
samples if α < 100%, yet our experiments show
that a small-sized dataset is enough to train a per-
formant ensemble learner. According to the task
type, TOPLA-framework will match the generated
train data with either TOPLA-Summary or TOPLA-
Weighted ensemble learner. After the training, the
framework outputs LLM-TOPLA model which can
be directly used by the user during inference time.

7 Experiments
We validate the effectiveness of LLM-TOPLA
through extensive evaluations on MCQ, OEQ, and
GQ benchmarks. We show that LLM-TOPLA out-
performs the state-of-the-art LLM ensemble meth-
ods. Due to the space constraint, we include the
details on the datasets and experimental setups in
Appendix D.

7.1 Performance of LLM-TOPLA
Table 2 shows experiments on MMLU and GSM8k
datasets, where we compare scores of each base
model in the pool with the ensemble learners
TOPLA-Weighted and Summary. The Model IDs
of TOPLA denote the models in the ensemble set
which is selected by focal diversity pruning. The
inference time is the average response latency for a
sample by each model in the pool. TOPLA frame-
work sends each response in a parallel process,
thus, the bottleneck is the slowest model, Llama-
70b. In the MMLU dataset, TOPLA-Weighted
reaches the best performance by surpassing the
best-performing model Mixtral-8x7b by 2%. Since
the HF leader-board provides only the probabil-
ity distribution of choices, we could only use the
TOPLA-Weighted model for the predictions com-
ing from HF. To test TOPLA-Summary we gather
outputs from Together-AI API, however, the per-
formance improvement on the best base model is
marginal < 1%. We observe that the returned out-
puts do not change across multiple passes (K > 1),
thus preventing the ensemble model from consider-
ing alternative thoughts. In the GSM8k dataset, we
provide scores when K = 1 and K = 10, where
the outputs have high variation. While the TOPLA-
Weighted model can improve the best-performing
model by up to 6 − 8%, TOPLA-Summary im-
proves 4 − 5%. As K increases, the number of

outputs leading to wrong thoughts rises, affecting
the TOPLA-Summary model to reach the wrong
conclusion, however, this effect is minimized by
the frequency-based probability generation in the
TOPLA-Weighted model. The full effect of K on
the performance is shown in Figure 4.

Table 3 shows experiments on SearchQA and
XSum datasets, where the TOPLA-Summary
model ensembles the base models selected by fo-
cal diversity pruning. In the SearchQA dataset,
TOPLA largely improves the best-performing
model by up to > 30% in the F1 score. When we
look at the outputs generated by the models and the
ensemble model as shown in Table 10 in Appendix
F, we observe that the base models can gather re-
lated information about the question but the ex-
act term is missing or either model is wordy and
provides lots of unrelated information. TOPLA-
Summary successfully detects the asked informa-
tion gathered by each base model and generates
the correct output. Each model has its expertise
due to its training dataset’s coverage and its learn-
ing capability. TOPLA can summarize and detect
the asked information by exploiting the wisdom
of models. Similarly, TOPLA-Summary surpasses
the best-performing base model, Gemma-7b, by
up to > 30% in ROGUE-L score. By looking at
the examples shown in Table 11 in Appendix F,
TOPLA-Summary provides a dense answer cover-
ing all the base model outputs and removing the
redundancy. Using multiple base models allows
the ensemble model to reach more-grained details
on the sample document.

7.2 Comparison with SOTA
Table 4 and Table 8 (see Appendix E) presents a
comparison of performance and time cost between
LLM-TOPLA and other ensemble methods in the
literature. More Agents (Li et al., 2024) and LLM-
Blender (Jiang et al., 2023) are the two well-known
existing representative ensemble methods of pre-
trained LLMs. We also add the majority voting
method as a baseline to our approach.

More Agents is the previous SOTA and it uses
a majority voting consensus method to combine
multiple pre-trained LLMs, therefore, there is no
training time. In open-ended questions, the au-
thors adopt a BLEU score to find and select the
closest answer with the highest accumulated sim-
ilarity score. The approach is not generative and
is bounded by the one of answers in the candidate
set. Moreover, during inference, it must calcu-
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Model Name Model ID Inf. Time (s)↓ MMLU* test split (Acc %)↑ GSM8k† (Acc %) ↑
MMLU GSM8k HuggingFace LB Together-AI K = 1 K = 10

Phi-2 1 - 1.29 56.530.91 - 51.09 65.93
Gemma-2b 2 0.72 0.82 40.780.57 31.410.56 9.92 19.56
Gemma-7b 3 1.44 0.87 65.260.35 47.560.53 53.50 70.63
Llama-7b 4 4.82 1.58 42.620.88 25.050.60 8.08 10.87
Mistral-7b 5 0.87 2.11 58.700.86 40.040.64 40.22 54.02
Llama-13b 6 12.46 2.80 53.770.53 44.400.48 13.73 19.02
Llama-70b 7 7.74 3.15 69.390.96 51.600.58 49.04 56.52
Mixtral-8x7b 8 1.25 1.55 70.530.95 64.820.54 60.83 71.16

LLM-TOPLA-Summary 378*| 138 † 13.76 4.21 - 65.440.96 65.40 75.57
LLM-TOPLA-Weighted 378*| 138 † 12.46 4.05 72.771.18 65.750.93 66.82 79.01

Table 2: LLMTopla performance in MMLU and GSM8k dataset. We create the ensemble sets using focal-diversity
on * MMLU and † GSM8k

Model Name Model ID Inf. Time (s)↓ SearchQA* XSum†

SearchQA XSum BLEU-1↑ EM (%)↑ F1↑ ROUGE-1↑ ROUGE-2↑ ROUGE-L↑
Gemma-7b 3 0.41 0.83 10.60 4.43 12.39 26.43 7.43 20.13
Mistral-7b 5 0.36 1.59 4.12 0.47 5.15 22.4 5.49 15.72
Llama-13b 6 0.39 1.97 8.77 0.63 10.6 22.99 6.25 15.85
Llama-70b 7 0.32 1.64 13.97 5.55 15.95 26.46 7.70 19.21
Mixtral-8x7b 8 0.38 1.21 13.13 2.20 16.04 19.29 5.47 14.28

LLM-TOPLA-Summary 378*| 3678 † 0.43 2.01 47.24 33.64 48.13 54.32 27.29 51.87

Table 3: LLMTopla performance in SearchQA and XSum dataset. We create the ensemble sets using focal-diversity
on * SearchQA and † XSum

Figure 4: The effect of Focal-diversity Pruning is shown in the first two figures, and the effect of sliding window
and selective global attention is shown in the third plot. Lastly, we show the effect of K on TOPLA-Summary, and
Weighted models in the GSM8k dataset.

Method Model ID MMLU (Acc%) * GSM8k (Acc%) †

More Agents 6 51.09 61.00
More Agents 7 60.05 77.00
LLM-Blender 12345678 44.01 40.41
Majority Voting 12345678 68.06 72.31
Mixtral-8x7b 8 70.53 71.16

LLM-TOPLA 378*|138† 72.77 79.01

Table 4: We compare our approach with the other en-
semble methods in the literature.

Method
XSum

ROUGE-1↑ ROUGE-2↑ ROUGE-L↑
Pegasus 2B + SLiC 49.77 27.09 42.08
BRIO 49.07 25.59 40.40
LLM-TOPLA 54.32 27.29 51.87

Table 5: We compare our approach with previous SOTA
methods of XSum, (Zhao et al., 2022) and (Liu et al.,
2022).

late the BLEU score for each pair in the candidate
set of n base models, the resulting complexity of
O(n2). We showed that our LLM-TOPLA method
outperforms More Agents on both closed QA and
open-ended QA datasets.

LLMBlender combines two supervised models:
PairRanker, which ranks model outputs by pair-
wise comparison using a Deberta-v3-large (340M)
backbone trained on 170k samples, and FLAN-T5-
XL (3B) for output generation, trained on a large
dataset. Using the top 3 candidates, LLMBlender
concatenates outputs for final prediction. As shown
in Table 4 our approach outperforms LLMBlender
on both datasets. Additionally, our Focal Diver-
sity pruning, which requires no training, ranks 10
models in 9.9 seconds, compared to PairRanker’s
20.38-minute inference time and training on 170k
samples.

Furthermore, to place TOPLA performance on
XSUM dataset, we compare with the SOTA summa-
rization methods in Table 5. LLM-TOPLA outper-
forms the SOTA on XSum dataset in all measures.

7.3 Finetuning Base Models

We also compare the performance of finetuned
base models and TOPLA-Summary in the gen-
erative tasks, SearchQA and XSUM, using the
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Method-finetuned ROUGE-1 ROUGE-2 ROUGE-L
Gemma-2 15.5 2.95 11.98
T5-large 26.82 6.94 21.28
LED 51.36 24.05 48.56
TOPLA-Summary 54.32 27.29 51.87

Table 6: We compare our approach with finetuned ver-
sions of LLMs on XSum dataset.

Method Model ID BBH (Acc%) ARC (Acc%)
phi-2b 1 44.55 56.29
gemma-7b 3 36.22 56.64
Mistral-7B 5 39.65 54.55
Llama-2-70b 7 28.02 48.95
Mixtral-8x7B 8 44.12 63.29
TOPLA-Weighted 13578 54.05 64.19

Table 7: The performance of base models and TOPLA-
Weighted on BBH and ARC datasets.

same training data and a similar number of pa-
rameters. Therefore, we select FLAN-T5-Base
(Chung et al., 2022) having 220 million parameters,
Longformer encoder-decoder model (LED) (Belt-
agy et al., 2020) with 149 million parameters, and
Gemma-2 (Team et al., 2024) containing 2 billion
parameters with LoRA optimization the number
of parameters significantly reduced to few million
(Hu et al., 2021). As shown in Table 6, even though
TOPLA uses less number of parameters, it outper-
forms finetuned versions of the base models. Partic-
ularly, Gemma-2 has a shorter training time (2.35
hours) compared to our approach (2.41 hours) but
performs inferior compared to TOPLA. The cause
is that the Gemma model is decoder-only, has a low
context length, and LoRA reduces the number of
trainable parameters.

7.4 Experiments on BBH and ARC

We expand our experiments on two challenging
datasets, as shown in Table 7. Big-Bench Hard
(Suzgun et al., 2022) contains 23 challenging Big-
Bench (Srivastava et al., 2022) tasks, which lan-
guage models have struggled to surpass compared
to the average human rater. ARC (Clark et al.,
2018) contains grade-school-level reasoning ques-
tions divided into two partitions: Easy and Chal-
lenge, with our focus on the latter. Both datasets
are in multiple-choice (MC) format, and the base
model predictions are obtained from the HF leader-
board. As shown in Table 7, TOPLA-Weighted
surpasses the best-performing base model in both
datasets.

7.5 Ablation Studies
To further observe the effect of the pruning and at-
tention mechanisms, we execute two ablation stud-
ies in Figure 4. First, we ensemble all the models
in the pool and compare their performances with
the ensemble model selected by the pruning mech-
anism. As shown in the first two figures, pruning
improves the TOPLA-Weighted and -Summary in
MMLU and GSM8k tasks and keeps the perfor-
mance in SearchQA and XSum tasks. Although
there is no improvement in the last two tasks, the
pruned ensemble set is reaching the equivalent per-
formance with fewer models. Second, we show
the effect of the Seq2seq model, BART(Lewis
et al., 2019), sliding window attention, and selec-
tive global attention in the third figure by removing
them in order and observing the resulting model
performance in every dataset. In all of the tasks, all
three combinations show the best performance.

8 Conclusion

In this paper, we tackled the problem of ensem-
bling modern LLMs from a wide perspective. The
problem was defined as a mapping from three types
of solution sets into the correct solution, and we
introduced two different models. First, TOPLA-
Weighted, the model attends weights to each base
model output based on their confidence, and in
the second type, we introduce a Seq2seq model,
TOPLA-Summary, to perform summarization on
concatenated outputs and generate one final an-
swer. To stress the diversity, we created our en-
semble set with the most diverse selection within
seconds by Genetic Algorithm. The seq2seq model
is further improved by employing sliding window
attention to increase the context length and selec-
tive global attention to stress the relation between
questions and answers. Our evaluation on 6 dif-
ferent benchmarks and 8 different modern LLMs
shows that LLM-TOPLA framework outperforms
the compared models and reaches SOTA.

Additionally, we provide a benchmark dataset
that includes answers to MMLU, GSM8k,
SearchQA, and Xsum, generated by the most pop-
ular large language models. This comprehensive
dataset serves as a valuable resource for evaluating
and comparing ensemble methods.

Acknowledgments This research is partially
sponsored by the NSF CISE grants 2302720,
2312758, and 2038029, an IBM faculty award, and
a CISCO Edge AI program grant.
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Figure 5: The effect of training data size to the performance.

9 Limitations

The limitations of our study can be listed as the
computational complexity and number of obser-
vational examples Dtrain. First, the main source
of complexity is the cost of using multiple LLMs.
In terms of user perspective, this burden is trans-
ferred to servers by the available inference services.
The user can access each LLM with an API re-
quest. However, this aggregates the communica-
tion latency to the whole system. Therefore, we
implement our framework in parallel so that the
bottleneck is the slowest model. Second, we target
the complexity of the pruning algorithm by em-
ploying the Genetic Algorithm, which allowed us
to speed up the search by > 100×. Third, the com-
plexity of the Seq2seq model is reduced by using a
million-sized model, and we reduce the complex-
ity coming from long input sequences by sliding
window attention.

On the other hand, we assume an observational
data Dtrain which requires labeled samples. To in-
vestigate the effect of the training data size, we plot
the effect of training data against performance in
Figure 5. The x-axis shows the percentage of train-
ing data we used from our dataset, e.g. in a total
of 40,000 XSum samples and we used 5% of them
(8,000) to train and test it on the full portion of
the test samples. The results demonstrate that even
with a small ratio, the ensemble model enhances
the performance of the best base model. However,
as more data is used, the performance improves
significantly. As a future direction, we will inves-
tigate the usage of synthetic data to decrease the
dependency on labeled samples.
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A Appendix

B Reproducibility Statement

We make the following effort to enhance the reproducibility of our results.

• For LLM-TOPLA implementation, a link to a downloadable source is included in our abstract. The
link also includes the dataset of LLM outputs for each subtask.

• Our experiment details are given in Appendix D, containing selected hyperparameters.

• We also show the example outputs and prompts used in our paper in Appendix F.

C Speeding-up Ensemble Pruning with Genetic Algorithm

The Genetic algorithm requires (i) the representation of a candidate solution, α, and (ii) a fitness function,
r, to evaluate the solutions. We represent each solution as a binary vector, where each index represents
the presence of the base model in the ensemble set. For the fitness function, we create a focal pruning
score metric on the validation dataset, by taking the convex combination of the focal diversity and other
metrics such as the validation accuracy of each ensemble set (validation accuracy is applicable only for
MCQ and OEQ, thus we used only focal-diversity score in GQ) or cost of models.

The pruning score calculation is given by, r(αi) = w1λi+w2ai, where ai is the validation accuracy, w1

and w2 are the significance of each metric for pruning score such that w1 + w2 = 1 and w1, w2 ∈ [0, 1].
The initial population contains randomly created candidate solutions. During selection, the most fitted
solutions survive to the next population. As the last step, we reproduce new solutions by performing
a cross-over among the best-fitted solutions. The procedure is repeated until we reach a plateau or a
predetermined fitness function value.

Figure 6: For MMLU and SearchQA tasks, we show all ensemble teams with their focal diversity scores and their
performance metrics. The colors represent the size of each team, and the dotted line represents the best-performing
individual model in the pool. We also plot the best-fit line with Pearson’s Correlation Coefficient ρ to show the
correlation between performance and the focal diversity.

D Datasets and Solution Spaces.

The experiments contain three different datasets targeting each type of solution space. For y(1), we use
MMLU (Hendrycks et al., 2020) which contains MCQs covering 57 subjects from STEM to social sciences
with varying difficulties and total 14,042 samples. Our experiments on this dataset coming from two
sources. The first is HuggingFace leader board (Beeching et al., 2023) providing probability distribution
of choices for each test sample. We also mimic a user who has only access to open-source LLMs through
an API such as Together-AI (TogetherAI, 2023) or DeepInfra (DeepInfra, 2023). However, currently,
these APIs do not support next token probability distribution. Therefore, we performed regular expression
parsing, plus, the highest BLUE-1 score between model output and the choices to find the output choice
of the model. Performing multiple passes (K > 1) allows us to obtain probability distribution for each
sample, as we shown in equation 5. The dataset does not contain training samples; therefore, we perform
a train-test split with a 70% to 30% ratio, repeat the procedure 20 times, and report the mean test score
and standard deviation.
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For y(2) type of solution spaces, we use GSM8k (Cobbe et al., 2021). The GSM8k dataset contains
7,472 training samples and 1,318 test samples, each with open-ended mathematical questions and multi-
step solutions. Following (Wang et al., 2022), we perform CoT prompting on the base models up to
K = 10.

Lastly, for y(3), we measure the performance on generative tasks by employing SearchQA (Dunn et al.,
2017) and XSum (Narayan et al., 2018) datasets. The SearchQA dataset contains 172,908 train and 43,228
test samples where each sample is question-answer pairs with contexts. The questions are fromJeopardy!
and answers are 1-4 words length. We remove the contexts and performed closed-book prompting (see
Appendix for examples and prompts). We used only 20,000 samples from train dataset to train our models
and all the test samples to measure performance. On the other hand, the XSum contains 204,045 train
and 11,334 test samples. Each sample includes a news article and one sentence summary. We used only
40,000 samples from train dataset to train our models and all the test samples to measure performance.

Evaluation. We use accuracy to evaluate MMLU and GSM8k datasets. In SearchQA, we use BLUE-1,
Exact Match (EM), and F1 scores, while in XSum, we use ROGUE-(1, 2, L) scores for evaluation of
models.

Model Pool. In our model pool selection, we aim for three elements and their effect on performance:
(i) size of the model, (ii) model variety, and (iii) being open-source.

Fusion Model. LLM-TOPLA-Weighted model contains two fully-connected hidden layers with 100
neurons and sigmoid activations between the layers. The model weights starts from Xavier initialization
and converges in 200 epochs optimized by Adam. To implement LLM-TOPLA-Summary, we employ
Longformer-Encoder-Decoder (Beltagy et al., 2020) model which is initialized from BART weights
(Lewis et al., 2019).

Ensemble Pruning. We selected w1 = 0.6 and w2 = 0.4 while scoring a candidate ensemble set to
give more importance to the diversity in MMLU and GSM8k datasets. In SearchQA and XSum datasets,
only focal diversity is used for pruning. The genetic algorithm stops when the fitness function does not
change for 100 consecutive generations.

E Improvement by the Ensemble

Ens-Method Dataset Train Time Inference Time
More Agents XSUM - 0.021 s
LLM-Blender XSUM 2 d 19.1 s
TOPLA-Weighted GSM8k 20.17 s 0.023 s
TOPLA-Summary XSUM 2.41 h 2.1 s

Table 8: The total time spent by each ensemble model.

Method
MMLU GSM8k SearchQA XSum

Accuracy↑ Accuracy↑ BLEU-1↑ EM (%)↑ F1↑ ROUGE-1↑ ROUGE-2↑ ROUGE-L↑
Longformer-Encoder-Decoder 54.27 3.34 15.92 4.04 16.39 51.36 24.05 48.56
LLM-TOPLA-Summary 65.44 75.57 47.24 33.64 48.13 54.32 27.29 51.87

Table 9: To analyze the improvement coming from the base models, we perform experiments on the Seq2Seq model,
Longformer-Encoder-Decoder, by removing outputs of base LLM in the pool.

Table 9 shows the results of an experiment on the effect of base models on performance. In each task,
we remove the outputs of each base LLM from the input sequence of the Seq2seq ensemble learner,
Longformer-Encoder-Decoder model. and fine-tune it purely by using the questions and their answers
or documents and their summaries. As shown in the results, LLM-TOPLA outperforms in every task
including summarization. This indicates that the ensemble learner can exploit the information gathered by
the base LLMs and provide correct results.
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Prompt: "Answer very briefly by using at most 4 words."
Question: In devising the periodic table, Mendeleev laid out the elements in rows & columns to show
the different relationships when read each way; he’s said to have been inspired by a version of this card
game.
Ground Truth: solitaire
Mixtral-8x7B: Solitaire, rearranging cards.
Gemma-7b: "Sure, here is the answer: The answer is "Uno".
Llama-2-70b: The periodic table was inspired by a version of the game Uno."
LLM-TOPLA: solitare

Table 10: A sample Jeopardy! question taken from the SearchQA dataset is shown with the ground truth, each base
LLM answer according to the prompt, and the answer of LLM-TOPLA.

F Samples from SearchQA and XSUM

Table 10 shows an example output by each model and TOPLA-summary for a question taken from the
SearchQA dataset. While the majority of the models give incorrect answers, TOPLA agrees with the
minority and produces the correct output.

Table 11 shows an example summarization task performed by each base model and the TOPLA-
summary. While every model produces the expected information in the ground truth, LLM-TOPLA
produces the most dense and similar to the ground truth.
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Prompt: "Try your best to summarize the main content of the given document.
And generate a short summary in 1 sentence only. Summary:"
Document: "A judge had made the request because efforts to get them through "political channels"
had failed, the lawyer said. France, the former colonial power, has not yet commented on the request.
Mr Sankara’s widow and supporters have repeatedly accused France of masterminding his 1987 killing
because he was a Marxist revolutionary. He was killed by soldiers in a hail of bullets shortly before
a meeting of his cabinet in Burkina Faso’s capital, Ouagadougou. Mr Sankara’s assassination led to
his second-in-command, Blaise Compaore, seizing power in a coup. Mr Compaore steered Burkina
Faso into a strong alliance with France, which retains close political, security and economic ties with
many of its former colonies in Africa. Burkina Faso opened an investigation into the killing after he
was ousted from power in 2014. Speaking at a press conference in Ouagadougou, the family lawyer,
Benewende Stanislas Sankara, said an investigating judge had formally asked French authorities to
declassify military documents to see whether France had played a role in the assassination. A request
had also been made to interview French officials who were involved in Burkina Faso’s affairs at the
time, the lawyer added. Burkina Faso issued an arrest warrant for Mr Compaore in 2015, accusing
him of involvement in Mr Sankara’s killing. He has repeatedly denied the allegation, but has refused
to return to Burkina Faso to stand trial. Mr Compaore is exiled in Ivory Coast, also a former French
colony."
Ground Truth: "Burkina Faso has asked France to declassify documents documents related the
assassination of former-President Thomas Sankara, a lawyer has the family has said. "
Mixtral-8x7b: " A lawyer for the family of Thomas Sankara, the former president of Burkina Faso who
was assassinated in 1987, has asked French authorities to declassify military documents and interview
French officials as part of an investigation into Sankara’s death, accusing France of playing a role in
the assassination."
Gemma-7b: **Summary:** Burkina Faso has requested that France declassify military documents
and interview officials regarding the 1987 assassination of its former president, Thomas Sankara. "
Llama-2-13b: Sure! Here is a summary of the given document in one sentence: A lawyer for the family
of former Burkina Faso President Thomas Sankara has requested that French authorities declassify
military documents to investigate whether France was involved in Sankara’s 1987 assassination, which
led to the coup by his successor Blaise Compaore, who has denied any involvement but is exiled in
Ivory Coast." Burkina Faso has requested that France declassify military documents and interview
French officials regarding the 1987 assassination of the country’s former president, Thomas Sankara,
amid allegations that France was involved in the killing. "
Llama-2-70b: Burkina Faso has requested that France declassify military documents and interview
French officials regarding the 1987 assassination of the country’s former president, Thomas Sankara,
amid allegations that France was involved in the killing.
LLM-TOPLA-Summary: Burkina Faso has asked France to declassify military documents about the
killing of ex-president Thomas Sankara, a lawyer for his family has said.

Table 11: A sample document taken from XSum dataset is shown with the ground truth, each base LLM summariza-
tion according to the prompt, and the answer of LLM-TOPLA.
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