@inproceedings{nair-etal-2024-creative,
title = "Creative Problem Solving in Large Language and Vision Models - What Would it Take?",
author = "Nair, Lakshmi and
Gizzi, Evana and
Sinapov, Jivko",
editor = "Al-Onaizan, Yaser and
Bansal, Mohit and
Chen, Yun-Nung",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2024",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-emnlp.700",
pages = "11978--11994",
abstract = "We advocate for a strong integration of Computational Creativity (CC) with research in large language and vision models (LLVMs) to address a key limitation of these models, i.e., creative problem solving. We present preliminary experiments showing how CC principles can be applied to address this limitation. Our goal is to foster discussions on creative problem solving in LLVMs and CC at prestigious ML venues.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="nair-etal-2024-creative">
<titleInfo>
<title>Creative Problem Solving in Large Language and Vision Models - What Would it Take?</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lakshmi</namePart>
<namePart type="family">Nair</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Evana</namePart>
<namePart type="family">Gizzi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jivko</namePart>
<namePart type="family">Sinapov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yaser</namePart>
<namePart type="family">Al-Onaizan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohit</namePart>
<namePart type="family">Bansal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yun-Nung</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We advocate for a strong integration of Computational Creativity (CC) with research in large language and vision models (LLVMs) to address a key limitation of these models, i.e., creative problem solving. We present preliminary experiments showing how CC principles can be applied to address this limitation. Our goal is to foster discussions on creative problem solving in LLVMs and CC at prestigious ML venues.</abstract>
<identifier type="citekey">nair-etal-2024-creative</identifier>
<location>
<url>https://aclanthology.org/2024.findings-emnlp.700</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>11978</start>
<end>11994</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Creative Problem Solving in Large Language and Vision Models - What Would it Take?
%A Nair, Lakshmi
%A Gizzi, Evana
%A Sinapov, Jivko
%Y Al-Onaizan, Yaser
%Y Bansal, Mohit
%Y Chen, Yun-Nung
%S Findings of the Association for Computational Linguistics: EMNLP 2024
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F nair-etal-2024-creative
%X We advocate for a strong integration of Computational Creativity (CC) with research in large language and vision models (LLVMs) to address a key limitation of these models, i.e., creative problem solving. We present preliminary experiments showing how CC principles can be applied to address this limitation. Our goal is to foster discussions on creative problem solving in LLVMs and CC at prestigious ML venues.
%U https://aclanthology.org/2024.findings-emnlp.700
%P 11978-11994
Markdown (Informal)
[Creative Problem Solving in Large Language and Vision Models - What Would it Take?](https://aclanthology.org/2024.findings-emnlp.700) (Nair et al., Findings 2024)
ACL