
Findings of the Association for Computational Linguistics: EACL 2024, pages 12120–12136
November 12-16, 2024 ©2024 Association for Computational Linguistics

Numbers Matter! Bringing Quantity-awareness to Retrieval Systems

Satya Almasian, Milena Bruseva and Michael Gertz
Institute of Computer Science, Heidelberg University, Germany

{almasian,gertz}@informatik.uni-heidelberg.de
milena.k.bruseva@gmail.com

Abstract

Quantitative information plays a crucial role in
understanding and interpreting the content of
documents. Many user queries contain quanti-
ties and cannot be resolved without understand-
ing their semantics, e.g., “car that costs less
than $10k”. Yet, modern search engines apply
the same ranking mechanisms for both words
and quantities, overlooking magnitude and unit
information. In this paper, we introduce two
quantity-aware ranking techniques designed to
rank both the quantity and textual content ei-
ther jointly or independently. These techniques
incorporate quantity information in available
retrieval systems and can address queries with
numerical conditions equal, greater than, and
less than. To evaluate the effectiveness of
our proposed models, we introduce two novel
quantity-aware benchmark datasets in the do-
mains of finance and medicine and compare
our method against various lexical and neu-
ral models. The code and the benchmark
datasets are available under https://github.
com/satya77/QuantityAwareRankers.

1 Introduction

Despite advances in semantic search and sophisti-
cated neural network architectures, handling quan-
titative information in text remains challenging.
Specifically hard are quantity-centric queries in
which the query contains a quantity and a numeri-
cal condition, e.g., “BMW with more than 530hp”.
The reason for this is that Information Retrieval
(IR) systems are not aware of numbers and their
semantics, such as proximity, in particular in com-
bination with units. Numbers and units are treated
in the same way as any other text token that is
subject to subsequent processing, e.g., indexing or
embedding. What complicates treating numbers
and units in a proper way is that these objects can
also have different surface forms (e.g., 6k vs 6,000
and mph vs miles per hour) and require standardiza-
tion (Weikum, 2020). While there are approaches

that specifically focus on numbers in text, e.g., ex-
tracting quantities for entities (Ho et al., 2019; Li
et al., 2021), linking quantities in tables (Ibrahim
et al., 2019), or numerical reasoning (Ran et al.,
2019), they are tailored to specific tasks and not
semantic search in general. This applies to neu-
ral models supporting IR, which are trained on
general-purpose data without the focus on the quan-
tity semantics. Language Models (LM), forming
the basis for neural models, exhibit a limited under-
standing of number scales and proximity (Wallace
et al., 2019). Despite recent work on numerical
language models (Jin et al., 2021; Spokoyny et al.,
2022), these architectures are very specific and re-
quire changes in the architecture of popularly used
language models in IR, which indicates an expen-
sive pre-training. Moreover, the lack of accessible
quantity-centric benchmarks for training or com-
paring systems exacerbates the issue.
In this paper, we present two strategies to enhance
the quantity understanding of current IR systems.
We aim for a general-purpose model that is not
specific to quantity ranking but is also capable of
textual ranking. The two approaches differ in their
integration of quantity ranking with textual ranking.
The first employs a disjoint combination, while the
second focuses on the joint ranking of quantities
within the context of textual content. The disjoint
approach is based on a complete separation of quan-
tities from other textual tokens, from tokenization
to the definition of relevance. It is an unsupervised
and heuristic method, utilizing an index structure,
compatible with various lexical and semantic IR
models. On the other hand, in joint ranking, we
aim to learn quantity-aware document and query
representations through task-specific fine-tuning
of neural IR models, without specific architectural
changes. Further, we introduce two novel quantity-
centric benchmarks, focusing on queries involving
numerical conditions in the domains finance and
medicine. We evaluate our proposed approaches

12120

https://github.com/satya77/QuantityAwareRankers
https://github.com/satya77/QuantityAwareRankers

with various lexical and neural models and show
significant improvements over the baselines.

2 Related Work

Related work for quantity-centric search is limited.
(Ho et al., 2020, 2019) focus on quantity search
for named entities, using a deep neural network
for extracting quantity-centric tuples from text and
query and matching based on context similarity.
Their pipeline involves semantic role labeling and
named entity extraction, both resource-intensive
and reliant on sparsely available annotated data
for quantities. Further, focusing on named entities
limits the applicability to real-world scenarios.
QFinder (Almasian et al., 2022) integrates numer-
ical and lexical indexes to enhance numerical un-
derstanding in a lexical IR system. Our disjoint
model utilizes QFinder’s heuristic ranking func-
tion, but we extend the QFinder ranker to include
neural models and go beyond the limited query lan-
guage, allowing users to provide queries in plain
text. MQSearch (Maiya et al., 2015) extracts quan-
tities with a set of regular expressions to create a
rule-based system for finding documents contain-
ing certain keywords and ranges of values. Loosely
related to IR, (Li et al., 2021) and (Rybinski et al.,
2023) perform numerical summarization on un-
structured text in the form of plots and graphs.
In the area of databases, there has been some work
focusing on building numerical indices for queries
that contain numerical restrictions (Agrawal and
Srikant, 2003; Fontoura et al., 2007; Maiya et al.,
2015). However, the main focus of such systems
is the efficiency of the index structure and filtering
out irrelevant numbers from the results with hard
constraints rather than ranking.
Unlike quantity-aware IR, investigating numeracy
in LMs is well-established. (Wallace et al., 2019)
are among the first to highlight the limitations of
embedding models when handling numbers. Sub-
sequent efforts have led to dedicated embeddings
and LMs for understanding scales, basic arithmetic,
and numerical common sense knowledge (Jiang
et al., 2020; Jin et al., 2021; Nogueira et al., 2021;
Spithourakis and Riedel, 2018; Spokoyny et al.,
2022; Sundararaman et al., 2020; Thawani et al.,
2021). These LMs are specific to numeracy and not
IR in general. While using them can enhance per-
formance, we focus on improving quantity under-
standing in current IR models without architectural
changes or training an LM from scratch.

3 Quantity-aware Model

A quantity-centric query contains a numerical con-
dition, a value, and a unit, e.g., “iPhone XS with
price under $1500 ”. Queries like “What is the
price of iPhone XS?” are not considered quantity-
centric as they do not require an understanding
of scales and units. In the following, we as-
sume a document collection where each document
consists of a sequence of sentences. Following
previous work (Almasian et al., 2022; Ho et al.,
2019), we focus on sentences as retrieval units. A
sentence si := (Ti, Qi) is a sequence of tokens
Ti = (t1, ..., tl) and quantities Qi = (q1, ..., qk),
where a quantity qi = (ui, vi) is a tuple of a unit
ui and a value vi. A quantity query is denoted
by X = (Tx, c, qx), where Tx = (tx1 , .., txn)
are the search terms related to the query quantity
qx = (ux, vx). c ∈ {=, <,>} represents a nu-
merical condition, defining equal, less than, and
greater than conditions. Less than and greater than
indicate open bounds with values strictly less or
greater than the query value. The equal condition
pertains to values strictly equal to a query value.
The relevance, r(si|X), of sentence si to the query
X is given in Eq 1. The similarity function simc

is dependent on the query condition c, where τ is a
generic function that maps a query and a document
to their representations. Here, we explore differ-
ent ways to define τ , which can be an embedding
vector or a heuristic scoring function.

r(si|X) ∼ simc(τ(Tx, qx), τ(Ti, Qi)) (1)

In current IR systems, the notion of relevance in is
based on textual similarity that does not account
for values or units. Lexical retrieval systems priori-
tize word overlap, while semantic models focus on
topic similarity. Neither approach is well-suited for
handling numerical comparisons. For example, in
the query “car with more than 320hp”, a lexical sys-
tem would search for the exact value “320” while
a semantic model would focus on results related to
car attributes, overlooking the quantity comparison.
We need to alter the notion of relevance in these
models in such a way that numerical conditions
and unit matching plays a role in ranking.
We begin with a disjoint quantity-ranking method.
Leveraging heuristic and supervised functions from
(Almasian et al., 2022), we extend this approach to
neural models. This model completely separates
the ranking of quantities and textual element, such
that a quantity proximity score can be added to

12121

Figure 1: Disjoint quantity-ranking. A separate quantity
index is used to compute quantity proximity and a term-
based lexical or semantic index ranks the search terms.

a textual score. The independence of quantities
and text has its shortcomings. To overcome those
and also motivated by the learning capabilities of
neural models, we propose a quantity-centric fine-
tuning approach for neural IR systems. In the joint
model, quantities and text are not treated separately,
instead a neural model is fine-tuned to place an em-
phasis on numerical conditions during ranking.

3.1 Quantity Extraction
To facilitate both approaches, a prerequisite is a
quantity extractor capable of identifying values (v),
units (u), numerical conditions (c), and concepts
(cn) associated with quantities. Concepts repre-
sent objects or events that numerical values refer to.
For instance, in the sentence “The iPhone 11 has
64GB of storage”, the concept is “iPhone 11 stor-
age”. For this purpose, we use the Comprehensive
Quantity Extractor (CQE) framework (Almasian
et al., 2023), a rule-based system capable of ex-
tracting all the mentioned components. However,
this module can be substituted with any alternative
well-performing quantity extractor.

3.2 Disjoint Quantity Ranking
The disjoint model is based on the separation of
quantity and term ranking. We assume that the
textual relevance of a sentence to query terms is
independent of the proximity of query value and
sentence values under the query condition. Then,
the relevance of a sentence can be the summation
of (1) textual similarity, and (2) quantity proximity
under the query condition, as shown in Eq 2. Note
that here, sim computes the similarity of search
terms to a textual tokens of a sentence independent
of simc, which computes the quantity proximities
given query condition c. τ and τ

′
signify that rep-

resentations for query and document are not nec-
essarily created from the same model. If the query
is not quantity-centric, by removing the quantity

score simc, the models fall back to term scoring.

r(si|X) ∼ sim(τ(Tx), τ(Ti)) + simc(τ
′
(qx), τ

′
(Qi))

(2)

In the following, we describe the computation
of (1) term (sim(τ(Tx), τ(Ti))), and (2) quan-
tity (simc(τ

′
(qx), τ

′
(Qi)) scorings. The general

pipeline is illustrated in Fig. 1.

3.2.1 Quantity Scoring
Using a quantity index containing explicit informa-
tion about values and units in normalized form, we
use heuristic functions to compute the proximity
of query and sentence values based on different
numerical conditions.
Index creation: Documents are split into sentences
that are processed independently by CQE, which
outputs standardized values, e.g., $300 million is
converted to $300,000,000, and normalized units,
e.g., kilometer per hour and km/h are mapped to the
same unit. A quantity index with unit/value pairs
as keys is built from this output and resembles a
lexical index. Each unique unit/value pair points to
a list of sentences it occurs in.
Scoring functions: simc(τ(qx), τ(Qi)) is esti-
mated by a scoring function qs that ranks the value
in a sentence based on the value in the query given
a numerical condition, where higher values indicate
higher relevance. qs is dependent on the numeri-
cal condition c, resulting in different scores for the
same values under different conditions. The quan-
tity score only matters if the units match, otherwise,
the values are not comparable and refer to different
aspects of an object, e.g., the horsepower of a car is
different from the km/h it reaches. qs is formulated
in Eq 3. The indicator function 1ui(ux) enforces
the match between the units of the query and the
sentence, and Φc is the condition-dependent scor-
ing function. To obtain a value between 0 and 1,
the score is normalized by the number of quantities
|Qi| in si. For brevity, from now on we refer to
qs(s, c,X) simply as qs.

qs(si, c,X) :=
1

|Qi|

|Qi|∑

i=1

1ui(ux)Φc(vx, vi) (3)

Φc refers to one of the three heuristic functions,
one for each numerical condition (equal, less than,
greater than), adapted from (Almasian et al., 2022).
The study in (Almasian et al., 2022) explores vari-
ous Φ functions and their implications for sorting
of results (refer to App. A.1). Simply by changing
Φ, results can be rearranged, independent of the

12122

training data. Nonetheless, for the evaluation of
our model against other baselines, we focus only on
the most intuitive variant, which ranks quantities
with values closer to the query value in descending
order. Φ for different conditions are shown in Eq 4.
vx is the query value, and vi is the sentence value.

Φ=(vx, vi) =: exp(−|vx − vi|)

Φ>(vx, vi) =:

{
vx/vi vx>vi

0 else

Φ<(vx, vi) =:

{
vi/vx vx<vi

0 else

(4)

Φ= assesses the proximity of vx to vi by employ-
ing the exponential decay of their difference. The
resulting score ranges between 0 and 1, with larger
absolute differences yielding lower scores.
The scoring functions Φ< and Φ> determine nu-
merical proximity based on the ratio of the query
value vx to the sentence value vi, resulting in a
score between 0 and 1. This ratio, independent of
magnitude, yields higher scores for closer values.

3.2.2 Term Scoring
Term scoring, sim(τ(Tx), τ(Ti)), can come from
any lexical or semantic ranker, requiring only nor-
malized scores. Yet, IR systems typically do not
normalize their scores, as it has no influence on the
final ranking. Here, we discuss ways to normalize
scores of lexical and semantic systems and com-
bine them with qs. For a lexical model, we use
BM25 (Robertson and Zaragoza, 2009), and for
dense and sparse neural rankers, ColBERT (Khat-
tab and Zaharia, 2020) and SPLADE (Formal et al.,
2021) are employed. Other rankers can be em-
ployed following similar techniques.
Lexical model: Following (Almasian et al., 2022),
we combine qs with the BM25 score. The com-
bined score, represented in Eq 5, is constrained
to sentences containing the search terms, as indi-
cated by 1Tx(si). The parameter α controls the
influence of the quantity scoring, falling back to
pure term-based scoring when α is zero. The
BM25(si, Tx) score is normalized per query by
dividing each sentence’s score by the maximum
BM25 score retrieved for the specified search terms
maxX = maxs∈S(BM25(s, Tx)).

QBM25(si, c,X) :=
BM25(si, Tx)

maxX
+ α1Tx(si)qs

(5)

Neural dense model: Representing a dense neural
model, ColBERT is selected for the term scoring.
This choice is due to the same model being used
for joint quantity ranking, where token-level inter-
actions are crucial. A contextualized term score
is computed with the similarity computation be-
tween token embeddings of query and sentence, as
in Eq 6. A ColBERT utilizes two BERT (Devlin
et al., 2019) encoders for the query (BERT (Tx))
and document (BERT (si)) (sentence), where each
encoder outputs a list of token embeddings.

ColBERT(si, Tx) =∑

k∈[|BERT(Tx)|]
maxj∈[|BERT](si)|BERT(Tx)k · BERT(si)j

(6)

A ColBERT score comes from the MaxSim oper-
ation between the token embeddings of query and
sentence. MaxSim calculates an unbounded score
for the maximum cosine similarity between the
token embeddings. To normalize this score, we
need the maximum score. However, calculating the
maximum score for the entire collection is imprac-
tical. For ranking, ColBERT leverages the pruning-
friendly nature of the MaxSim in an approximate
nearest neighbor search (Johnson et al., 2019) to re-
turn the top-k most relevant candidate sentences Sk.
We compute the maximum score based on these
candidate sentences maxX = maxs∈Sk

(ColBERT)
to normalize the score between 0 and 1. qs is then
exclusively applied to the top-k candidates, serving
as a second-stage re-ranker for numerical proxim-
ity. The final score is defined in Eq 7, where α
again controls the impact of quantity scoring.

QColBERT(si, c,X) :=
ColBERT(si, Tx)

maxX
+ α · qs

(7)
Note that qs only affects the top-k sentences. We
also present a neural sparse model, where qs is
integrated into the entire ranking.
Neural sparse model: The SPLADE model ex-
tends the document and query terms and uses an
inverted index for sparse dot products, allowing for
end-to-end integration with the quantity scoring.
Inside the index, instead of term frequencies, term
importance weights are computed by SPLADE. For
each sentence and query, the BERT embeddings
are passed through a ReLU non-linearity and log
function to produce a sparse vector over the en-
tire vocabulary, where the values of this vector are
the term importance scores. Then the relevance of
the query to a sentence is based on the sparse dot

12123

product of this vector, as shown in Eq 8.

SPLADE(si, Tx) :=

log(1+ ReLU(BERT(si))) · log(1+ ReLU(BERT(Tx)))
(8)

We normalize the SPLADE score by the max-
imum score for a given query, maxX =
maxsi∈S(SPLADE(si, Tx)), as defined in Eq 9. For
higher precision, the quantity score is only added
to sentences where there is a match between the
expanded query terms and documents, denoted by
the indicator function 1.

QSPLADE(si, c,X) :=
SPLADE(si, Tx)

maxX
+ α1(si)qs

(9)

3.3 Joint Textual and Quantity Ranking

The independence assumption between quantities
and terms allows to easily combine a quantity score
with various textual rankers. The heuristic nature
of quantity ranking functions allows for an easy
alteration of the notion of relevance, without any
fine tuning. However, it can also be problematic.
Consider the query “iPhone XR below C200”. In
a disjoint ranking, the following sentences can re-
ceive an inappropriately high score.
1) The price of an iPhone XR reached C236.50,
whereas Samsung A14 is C132.00. This sentence
has multiple quantities. The numerical condition is
satisfied for a value unrelated to “iPhone XR”.
2) Older iPhones, including iPhone XR have
dropped in price with iPhone 8 to C152.94. Here,
“iPhone XR” has no associated quantity.
These cases are due to a lack of correct association
between concept and quantity. We refer to this as
quantity-concept mismatch. To address this, we
need to rank sentences based on quantities in con-
text. Transformer-based models inherently capture
token inter-dependencies across the entire context.
However, current benchmarks lack quantity-centric
data. Therefore, it remains unclear whether the
deficiency in quantity understanding is due to the
absence of task-specific training data or if the cur-
rent architectures hinder numerical comparisons
altogether. To investigate this, we propose a data
generation approach to create synthetic quantity-
centric queries and positive and negative samples.
The data is created focusing on two common prob-
lems of neural models.
First is the inability to perform value comparisons
given numerical conditions. For the query “iPhone
XR below C200”, neural models often ignore the

less than (below) condition and focus on the se-
mantic or topic similarity of query text and sen-
tence. Second, the semantic similarity of units is
not well-defined. Therefore, results with “dollar”
and other currencies receive high scores due to the
context similarity of the currency units. Please see
App. B.6 for a more detailed discussion.
Our data generation paradigm is designed to en-
hance value comparisons and understanding of unit
surface forms, by generating contrastive positive
and negative sentences through data augmentation.
Data augmentation, widely used in computer vi-
sion, has also found applications in NLP tasks (Sen-
nrich et al., 2016). The GENBERT model (Geva
et al., 2020) is a relevant example, which employs
templates for generating pre-training data to en-
hance numerical reasoning in question-answering
systems without specialized architectures.
Similar to GENBERT, we fine-tune neural IR mod-
els, ColBERT and SPLADE, on synthetic data for
quantity-centric IR 1. Three stages of data genera-
tion is described in the following: quantity extrac-
tion, query generation, and sample generation.

3.3.1 Quantity Extraction
The documents are split into sentences and fed to
CQE to extract quantities and concepts. The cor-
pus is then transformed into an index-like structure
based on concepts and units. We refer to this struc-
ture as concept/unit index. The keys of the index
are concept/unit pairs that point to a list of values
associated with the pair and a list of respective
sentences they occur in. The list of values can be
viewed as the distribution of values for a concept
under a specific unit. An example entry is shown
in App. B.1. We utilize this index structure in the
subsequent steps for query and sample generation.

3.3.2 Query Generation
For each concept/unit pair, three queries, one for
each condition, are created with the template

query = {concept} {numerical_condition}
{unit_before}{value}{unit_after}.

The variables enclosed in the brackets are popu-
lated during query generation. These steps are
shown in the algorithm in App. B.2. Here, we
describe how each placeholder is filled.
Unit: A surface form of the query unit is chosen
randomly from a dictionary of unit surfaces pro-
vided by CQE, e.g., “C” is a surface of the unit

1Given that we are perturbing values and units in a sen-
tence, one might alternatively call this data perturbation.

12124

Figure 2: Sample generation. The input are the queries from the query generation step, concept/unit index and the
unit dictionary from CQE. Additional positive and negative samples are generated using value and unit permutation.

“euro”. unit_before and unit_after account for
symbols appearing before, e.g., “C” and abbrevia-
tions after a value, e.g., “EUR”.
Value: For sample generation, sentences contain-
ing values meeting the query condition are crucial.
Therefore, selecting query values with enough sup-
porting sentences is vital. We propose the follow-
ing strategy, based on the value distribution in the
concept/unit index for each concept/unit pair:
Equal query: Query values are chosen from the
most frequent values in the index (peak of value dis-
tributions), ensuring the availability of maximum
supporting sentences for a given concept/unit.
Less and greater than queries: For these bounds,
optimal candidates are close to the mean of the
value distribution, such that when the numerical
condition is applied more sentences fall within lim-
its. Infrequent values (tail of the distribution) may
have inadequate supporting sentences for the sam-
ple generation step. Refer to the App. B.3 for ex-
amples of the value selection.
To avoid systemic bias by focusing on the most
frequent values, we generate a second set of queries
for each concept/unit pair by picking the query
values at random for each condition.
To account for variability in representation, sur-
face forms of large values that have multiple writ-
ten forms are randomly replaced with their written
form. This takes the shape of a composite of num-
bers and postfixes, such as "10 million," or includes
commas for digit separation, e.g., “10,000,000”.
Numerical Condition: This is a phrase in natu-
ral language indicating a bound on a quantity, e.g.,
“above” for a greater than condition. To this end,
a surface-form dictionary is created, and the re-
spective placeholder is filled with values randomly
chosen from the dictionary (see App. B.4).

Concept: CQE identifies multi-word spans in a
sentence as concepts. Utilizing them directly for
query generation overlooks the nuances of seman-
tic queries. For example, in the sentence “Disney+
charges $6.99 a month.”, “Disney+” is the extracted
concept. “Disney+” is a streaming platform, in-
cluding other media services. Such a sentence is
relevant for a lexical query with exact matches,
e.g., “Disney+ price under $7.99 a month”, or for
a semantic query, e.g., “streaming platform price
over 5 dollar/month”. Relying exclusively on key-
words in sentences poses the risk of biasing the
neural models toward lexical search and away from
semantic search. To avoid such a case, we add
concept expansion, where a large language model,
such as GPT-3 (Chen et al., 2023), is used to gen-
erate synonyms or synsets for a given concept (see
App. B.5). These expansions are used to gener-
ate semantic queries. E.g., “Disney+” becomes
“Streaming platform”. For each expanded concept,
new values and unit surface forms are sampled to
generate semantic queries.

3.3.3 Sample Generation
The input of this stage are the generated queries and
the concept/unit index. The sample generation step
creates positive and negative training samples for
each quantity-centric query. This includes positive
and negative samples obtained directly from the
dataset as well as additional augmented samples.
The sample generation pipeline is shown in Fig. 2.
See App. B.7 for algorithmic overview of the steps.
Here, we describe each step in detail.
Look-up: Given a query containing a (concept,
unit, condition, value), a lookup in the concept/unit
index is performed to retrieve the sentences and the
distribution of values.
Positive and negative sentences: The obtained

12125

sentences from concept/unit index are divided into
positive s+ and negative s− lists, based on the
numerical condition. s+ contains sentences where
the values in them satisfy the query condition, and
s− contains sentences violating the condition.
Original sampling: With sample size n, sentences
are randomly selected from s+ as positive samples
(so+) and from s− as negative samples (so−). Refer
to App. B.9 for more information on sampling.
Unit permutation sampling: This method gener-
ates positive and negative samples to cover diverse
unit surface forms using CQE’s unit dictionary.
Positive samples contain various surface forms of
the unit in the query (correct unit), while negative
samples include surface forms of units in the same
family as the query unit (incorrect unit in similar
context), creating negatives.

• A positive sample, su+, is created by substi-
tuting the unit in a positive sentence, s+, with
other surface forms of the unit in query ux.

• A negative sample, su−, is created by replac-
ing the unit in a positive sentence, s+, with
a surface form of a unit different from the
query unit,ux, but belonging to the same fam-
ily. The unit families are grouped based on the
property they measure. For example, “pace”,
“meter”, and “foot” all belong to the family of
“length”. Sampling the surface form from the
same family ensures a fine distinction between
unit types, even in similar contexts.

Value permutation sampling: This permutation
emphasizes the importance of the value compar-
ison and numerical conditions, highlighting that
sentence relevance depends on whether the sen-
tence value satisfies the query condition or not.

• A positive sample, sv+, is created by permut-
ing the values in a negative sentence s−, main-
taining the correct concept and unit but adjust-
ing the value to satisfy the quantity condition.

• A negative sample, sv−, is generated by per-
muting the values in a positive sentence s+,
where concept, unit, and value are all correct,
to invalidate the quantity condition.

The replacement values are sampled from the val-
ues in the concept/unit index, mirroring the under-
lying distribution of the relevant quantity, for to the
reason for this choice, refer to App. B.8.

Table 1: Query types in FinQuant and MedQuant.

FinQuant MedQuant

Total queries 420 210
Sentences 306,291 153,252
Sentence > one quantity 42,633 53,668
Per condition 140 70
Keyword-based queries 300 120
Semantic queries 120 90

Aggregate: The final set of positive and negative
samples for each query is the union of all samples
generated from the original sampling, value and
unit permutation, sf+ = so+ ∪ su+ ∪ sv+ and
sf− = so− ∪ su− ∪ sv−.

4 Evaluation

Given the absence of task-specific models, we as-
sess our quantity-aware models against general do-
main lexical and neural models.
Lexical models include a BM25 and a BM25filter
variant. BM25filter has a separate numerical in-
dex to eliminate the results of BM25 where the
query condition is not met. This method resembles
numerical indices from databases as it works by
filtering rather than by ranking.
Neural models include the trained checkpoints
of SPLADE and ColBERT as well as Coherev3 2.
Coherev3 shows that even industry-level models
trained on extensive data lack quantity awareness.

4.1 Datasets
We introduce two English resources called Fin-
Quant and MedQuant. To the best of our knowl-
edge, these are the first quantity-centric bench-
marks for retrieval. Test queries were manually
formulated using the concept/unit index, covering
both lexical and semantic queries. Statistics for
various query types are presented in Table 1. There
is an equal number of queries for each condition,
and semantic queries constitute a smaller portion
due to annotation challenges. For details on the
dataset creation, see App. C.1. The data is anno-
tated by the first two authors of the paper, with
inter-annotator agreement computed on a subset of
20 samples per dataset. The Cohen’s Kappa coeffi-
cient (Cohen, 1960) is 0.83 and 0.88 for FinQuant
and MedQuant, respectively. The FinQuant corpus
contains over 300k sentences from 473,375 news ar-
ticles. MedQuant is smaller, containing over 150k
sentences from 375,580 medical documents of the

2https://cohere.com/embeddings DLA: 27.05.24

12126

https://cohere.com/embeddings

Table 2: P@10, MRR@10, NDCG@10 and R@100 on FinQuant and MedQuant. The top-2 values in each column
(for each metric) are highlighted in bold.

Model latency FinQuant MedQuant

(ms) P@10 MRR@10 NDCG@10 R@100 P@10 MRR@10 NDCG@10 R@100

baselines

BM25 9 0.06 0.14 0.09 0.47 0.04 0.11 0.07 0.37
BM25filter 9 0.14 0.32 0.25 0.60 0.08 0.19 0.15 0.48
Coherev3 - 0.14 0.22 0.19 0.27 0.10 0.17 0.15 0.25
SPLADE 26 0.10 0.24 0.19 0.53 0.11 0.25 0.20 0.58
ColBERT 36 0.15 0.35 0.27 0.70 0.12 0.31 0.24 0.63

disjoint
QBM25 311 0.21 0.53 0.41 0.55 0.18 0.47 0.37 0.51
QSPLADE 319 0.29† 0.67† 0.53† 0.83† 0.19† 0.52† 0.38† 0.70†

QColBERT 42 0.30† 0.69† 0.56† 0.87† 0.18† 0.51† 0.37† 0.73†

joint SPLADEft 26 0.21† 0.51† 0.41† 0.74† 0.14† 0.37† 0.29† 0.63†

ColBERTft 36† 0.23† 0.55† 0.44† 0.77† 0.18† 0.44† 0.36† 0.72†

cross-dataset SPLADEout 26 -0.03 -0.06 -0.07 -0.04 -0.02 -0.01 -0.04 -0.05
ColBERTout 36 -0.03 -0.07 -0.06 -0.03 -0.02 -0.01 -0.03 -0.02

TREC Medical Records (Voorhees, 2013). Since
the concept/unit index is used for dataset creation,
CQE’s performance directly affects the data quality.
While CQE is adept at handling financial data, ex-
tractions on clinical data were noisy. However, we
find it important to report results on both datasets,
making the reader aware of the lower quality of
MedQuant.

4.2 Ranking Performance
Table 2 shows the ranking performance of quantity-
aware models, in terms of P@10, MRR@10,
NDCG@10, R@100, and latency in milliseconds.
The three models with a “Q” prefix indicate the
disjoint and unsupervised rankers. Neural models
with a ft postfix are joint models fine-tuned on syn-
thetic data. Permutation re-sampling is used to test
for significant improvements (Riezler and Maxwell,
2005). Results denoted with † mark highly signifi-
cant improvements over the baseline models, with-
out quantity awareness with a p-value < 0.01. All
results are from single runs. For implementation
details refer to App. C.3.
Contrary to our initial hypothesis, disjoint rankers
consistently outperform joint models across all met-
rics, with improvements exceeding 10 points in
P@10 and over 30 points in MRR and NDCG over
the base models (without the “Q” prefix), without
requiring additional fine-tuning. The only draw-
back of the disjoint models is a minimal increase
in latency, especially for QBM25 and QSPLADE,
where the quantity score is added to the entire
ranking. This overhead diminishes for the top-
performing model, QColBERT, where the quantity
score serves as a re-ranker on the top-k candidates.
ColBERT shows high recall on both datasets, sug-
gesting that relevant results are within the top-k but

not necessarily at the very top. Hence, re-ranking
with a quantity score proves beneficial.
The joint models show a comparable performance
boost, with metrics falling below those of the dis-
joint ranker but still improving from the base mod-
els. This validates our hypothesis that the absence
of task-specific data has amplified the challenge of
quantity understanding for retrieval systems. Here,
once again the ColBERTft variant shows superior
performance. We attribute the better performance
of the ColBERT-based model to the fine-grained
token-level interactions that allow the model to
learn better associations between tokens. In quan-
tity ranking, token interactions play a more sig-
nificant role compared to the query and document
expansions conducted by SPLADE. This also show-
cases that the architecture and how the inter-token
interactions are modeled matter for quantity un-
derstanding. Nonetheless, even after fine-tuning,
understanding numerical conditions remains a chal-
lenge. We investigate how much the fine-tuned
models rely on quantities for ranking in App. C.4.

4.3 Cross-dataset Generalization

The two lower bottom rows of Table 2 list the per-
formance drop of joint rankers on out-of-domain
data, compared to models fine-tuned on generated
data from the same domain. Each model is fine-
tuned on data from the other dataset and shows
a minimal performance drop, suggesting that the
models learn patterns for quantity-centric queries
without memorizing common queries.

4.4 Lexical vs Semantic Queries

Fig. 3a shows NDCG@10 of all models on lexical
and semantic subsets of the FinQuant. The seen
and unseen are lexical queries and expansion and

12127

(a) Lexical vs semantic subsets

(b) Subset with different numerical conditions

Figure 3: Performance on different subsets of FinQuant.

(a) ColBERTft

(b) SPLADEft

Figure 4: Ablation study of different augmentation
methods, where value and unit, refer to value and unit
permutation and concept refers to concept expansion.

w/o surface form represent semantic queries. For
the details of their differences, see App. C.2. Inter-
estingly, the disjoint ranking using dense models
captures both semantic similarity and quantity un-
derstanding. QBM25 performs equally well for
lexical queries but significantly worse on seman-
tic ones. Joint rankers outperform base models,
without quantity-awareness, in both lexical and se-
mantic queries but lag behind disjoint models.
Fig. 3b depicts NDCG@10 of all models on dif-
ferent numerical conditions. Equal queries are in
general easier for the models as the notion of rele-
vance in this case aligns with textual ranking. The
performance drops almost 20 points for the bound-
based conditions. This drop is consistent across all
models, implying that the bound-based conditions
are harder for models to rank.

4.5 Ablation Study on Augmentation Methods

We conduct an ablation study to evaluate the im-
pact of various augmentation strategies. The results
for ColBERTft and SPLADEft on the FinQuant
dataset are shown in Figures 4a and 4b, respec-
tively. No perturbation refers to training with only
the original positive and negative samples. Sur-
prisingly, value permutation has a negative impact
when combined with other augmentation methods.
Therefore, the best results for both SPLADE and
ColBERT models come from unit permutation and
concept expansion. This behaviour can be related
to the internal representation of the neural models,
hindering their ability to correctly learn magnitude
comparisons.

5 Conclusion and Ongoing Work

In this work, we (1) examined the shortcomings of
prominent IR models concerning quantity-centric
queries, (2) proposed two methods, joint and dis-
joint quantity-aware models, to integrate quantity
understanding into both classical IR models as
well recent neural architectures, (3) introduced
two novel benchmark datasets containing quantity-
centric queries, which to our knowledge are the
first of their kind, and (4) demonstrated significant
improvements in quantity understanding over the
baselines for both proposed techniques.
Our joint and disjoint approaches enable the inte-
gration of quantity understanding without altering
existing architectures and with minimal overhead
in query latency. We further highlight the strengths
and weaknesses of both approaches, arguing that
the choice of method should depend on the specific
use case scenario. The disjoint approach, which
relies on a quantity index for ranking, consistently
outperforms joint models across various domains.
Its unsupervised and heuristic nature also makes
it more flexible than the joint rankers. However,
despite the lower performance, the joint approach
eliminates the need for an external index and the
associated latency increase. Due to the lack of
existing quantity-aware IR models, most of our
baselines are general-purpose, but we hope that our
systems can serve as baseline for future work in this
direction and that our benchmarks encourage the
researchers to work on this task. In the future, we
plan to explore the impact of dedicated numerical
embeddings and LMs in information retrieval.

12128

6 Limitations

In this section, we highlight the limitations of the
proposed evaluation resources and the models
introduced in this paper.

Evaluation resources: One immediate considera-
tion regarding the datasets is the relatively limited
number of test queries compared to larger-scale
datasets such as MSMARCO (Nguyen et al., 2016).
This is mainly due to limited human resources and
budget in an academic setting. Nonetheless, we
argue that this number of queries is already enough
to showcase certain quantity-centric capabilities.
Another shortcoming of the data is the absence
of queries for ranges, e.g., “iPhone with price
between 500 and 800 dollars”, and negations,
“iPhones not equal to 500 dollars”. In our future
work, we will to introduce benchmarks that cover
these cases as well.

Quantity-aware models: When considering neu-
ral models, one limitation is their reliance on hard-
ware capabilities, particularly the need for GPUs
to ensure efficient training, indexing, and inference.
The query latency values reported in this paper
would suffer greatly if the computations were done
only on a CPU.
Both the synthetic data generation paradigm and
the disjoint model rely on a quantity extractor. In
the case of the disjoint model, the quality of the
quantity index directly relies on the quality of value
and unit extraction. If a value and unit are not
detected by the extractor they will not be consid-
ered by the scoring function. In the joint model,
for data generation, the quantity extractor should
also possess the ability to detect concepts in text,
introducing the potential for additional error prop-
agation through the system. The performance of
the quantity extractor used in this study (CQE) is
not discussed here, as it is covered in detail in its
respective paper (Almasian et al., 2023). As for the
impact of false extractions, this cannot be directly
quantified because it would require a dataset with
a gold standard not only for relevant passages but
also for quantity extractions, which is not available.
Furthermore, in the case of neural models, the tex-
tual and quantity ranking are intertwined, making
it difficult to identify the source of the error. Nev-
ertheless, the improvements over baseline models
demonstrate that even with an imperfect quantity
extractor, enhancements can still be made to exist-

ing systems.
In this work, we do not discuss models for ranges
and negations. Such variations to the disjoint mod-
els requires only a change in the numerical scoring
function but it is more difficult for the joint setting,
where proper training data is required.
For the bound-based conditions of less than and
greater than, we considered open bounds. Depend-
ing on the user intent, closed bounds might be more
appropriate, however, similar to the optimal sorting
of results, this issue does not have a single solution.

References
Rakesh Agrawal and Ramakrishnan Srikant. 2003.

Searching with Numbers. IEEE Trans. Knowl. Data
Eng., 15(4):855–870.

Satya Almasian, Milena Bruseva, and Michael Gertz.
2022. QFinder: A Framework for Quantity-centric
Ranking. In SIGIR ’22: The 45th International ACM
SIGIR Conference on Research and Development in
Information Retrieval, pages 3272–3277. ACM.

Satya Almasian, Vivian Kazakova, Philip Göldner, and
Michael Gertz. 2023. CQE: A Comprehensive Quan-
tity Extractor. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Process-
ing, EMNLP, pages 12845–12859. ACL.

Zekai Chen, Mariann Micsinai Balan, and Kevin Brown.
2023. Language Models are Few-shot Learners for
Prognostic Prediction. CoRR, abs/2302.12692.

Jacob Cohen. 1960. A Coefficient of Agreement for
Nominal Scales. Educational and Psychological
Measurement, 20(1):37–46.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, NAACL-HLT, pages 4171–4186. ACL.

Marcus Fontoura, Ronny Lempel, Runping Qi, and Ja-
son Y. Zien. 2007. Inverted Index Support for Nu-
meric Search. Internet Math., 3(2):153–185.

Thibault Formal, Benjamin Piwowarski, and Stéphane
Clinchant. 2021. SPLADE: Sparse Lexical and Ex-
pansion Model for First Stage Ranking. In The 44th
International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages
2288–2292. ACM.

Mor Geva, Ankit Gupta, and Jonathan Berant. 2020.
Injecting Numerical Reasoning Skills into Language
Models. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
ACL, pages 946–958. ACL.

12129

https://doi.org/10.1109/TKDE.2003.1209004
https://aclanthology.org/2023.emnlp-main.793
https://aclanthology.org/2023.emnlp-main.793
https://doi.org/10.48550/ARXIV.2302.12692
https://doi.org/10.48550/ARXIV.2302.12692
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.1080/15427951.2006.10129119
https://doi.org/10.1080/15427951.2006.10129119
https://doi.org/10.1145/3404835.3463098
https://doi.org/10.1145/3404835.3463098
https://doi.org/10.18653/v1/2020.acl-main.89
https://doi.org/10.18653/v1/2020.acl-main.89

Vinh Thinh Ho, Yusra Ibrahim, Koninika Pal, Klaus
Berberich, and Gerhard Weikum. 2019. Qsearch: An-
swering Quantity Queries from Text. In The Seman-
tic Web - ISWC - 18th International Semantic Web
Conference, Proceedings, volume 11778 of Lecture
Notes in Computer Science, pages 237–257. Springer.

Vinh Thinh Ho, Koninika Pal, Niko Kleer, Klaus
Berberich, and Gerhard Weikum. 2020. Entities
with Quantities: Extraction, Search, and Ranking.
In WSDM ’20: The Thirteenth ACM International
Conference on Web Search and Data Mining, pages
833–836. ACM.

Yusra Ibrahim, Mirek Riedewald, Gerhard Weikum, and
Demetrios Zeinalipour-Yazti. 2019. Bridging Quan-
tities in Tables and Text. In 35th IEEE International
Conference on Data Engineering, ICDE, pages 1010–
1021. IEEE.

Chengyue Jiang, Zhonglin Nian, Kaihao Guo, Shanbo
Chu, Yinggong Zhao, Libin Shen, and Kewei Tu.
2020. Learning Numeral Embedding. In Findings
of the Association for Computational Linguistics:
EMNLP 2020, Online Event, 16-20 November 2020,
volume EMNLP 2020 of Findings of ACL, pages
2586–2599. ACL.

Zhihua Jin, Xin Jiang, Xingbo Wang, Qun Liu,
Yong Wang, Xiaozhe Ren, and Huamin Qu. 2021.
NumGPT: Improving Numeracy Ability of Genera-
tive Pre-trained Models. CoRR, abs/2109.03137.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019.
Billion-scale similarity search with GPUs. IEEE
Transactions on Big Data, 7(3):535–547.

Omar Khattab and Matei Zaharia. 2020. ColBERT:
Efficient and Effective Passage Search via Contextu-
alized Late Interaction over BERT. In Proceedings
of the 43rd International ACM SIGIR conference on
research and development in Information Retrieval,
pages 39–48. ACM.

Tongliang Li, Lei Fang, Jian-Guang Lou, Zhoujun Li,
and Dongmei Zhang. 2021. AnaSearch: Extract,
Retrieve and Visualize Structured Results from Un-
structured Text for Analytical Queries. In WSDM

’21, The Fourteenth ACM International Conference
on Web Search and Data Mining, pages 906–909.
ACM.

Arun S. Maiya, Dale Visser, and Andrew Wan. 2015.
Mining Measured Information from Text. In Proceed-
ings of the 38th International SIGIR Conference on
Research and Development in Information Retrieval,
pages 899–902. ACM.

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao,
Saurabh Tiwary, Rangan Majumder, and Li Deng.
2016. MS MARCO: A Human Generated MAchine
Reading COmprehension Dataset. In Proceedings of
the Workshop on Cognitive Computation: Integrat-
ing neural and symbolic approaches 2016 co-located
with the 30th Annual Conference on Neural Infor-
mation Processing Systems (NIPS), volume 1773 of
CEUR Workshop Proceedings. CEUR-WS.org.

Rodrigo Frassetto Nogueira, Zhiying Jiang, and Jimmy
Lin. 2021. Investigating the Limitations of the
Transformers with Simple Arithmetic Tasks. CoRR,
abs/2102.13019.

Qiu Ran, Yankai Lin, Peng Li, Jie Zhou, and Zhiyuan
Liu. 2019. NumNet: Machine Reading Comprehen-
sion with Numerical Reasoning. In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing EMNLP-IJCNLP, pages
2474–2484. ACL.

Stefan Riezler and John T. Maxwell. 2005. On some
pitfalls in automatic evaluation and significance test-
ing for MT. In Proceedings of the ACL Workshop
on Intrinsic and Extrinsic Evaluation Measures for
Machine Translation and/or Summarization, pages
57–64, Ann Arbor, Michigan. ACL.

Stephen Robertson and Hugo Zaragoza. 2009. The
Probabilistic Relevance Framework: BM25 and Be-
yond. Now Publishers Inc.

Maciej Rybinski, Stephen Wan, Sarvnaz Karimi, Cé-
cile Paris, Brian Jin, Neil I. Huth, Peter J. Thorburn,
and Dean P. Holzworth. 2023. SciHarvester: Search-
ing Scientific Documents for Numerical Values. In
Proceedings of the 46th International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, SIGIR, pages 3135–3139. ACM.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Improving Neural Machine Translation Mod-
els with Monolingual Data. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics, ACL. ACL.

Georgios P. Spithourakis and Sebastian Riedel. 2018.
Numeracy for Language Models: Evaluating and Im-
proving their Ability to Predict Numbers. In Proceed-
ings of the 56th Annual Meeting of the Association for
Computational Linguistics, ACL 2018, Melbourne,
Australia, July 15-20, 2018, Volume 1: Long Papers,
pages 2104–2115. ACL.

Daniel Spokoyny, Ivan Lee, Zhao Jin, and Taylor Berg-
Kirkpatrick. 2022. Masked Measurement Prediction:
Learning to Jointly Predict Quantities and Units from
Textual Context. In Findings of the Association for
Computational Linguistics: NAACL 2022, pages 17–
29. ACL.

Dhanasekar Sundararaman, Shijing Si, Vivek Subra-
manian, Guoyin Wang, Devamanyu Hazarika, and
Lawrence Carin. 2020. Methods for Numeracy-
Preserving Word Embeddings. In Proceedings of
the 2020 Conference on Empirical Methods in Natu-
ral Language Processing, EMNLP, pages 4742–4753.
ACL.

Avijit Thawani, Jay Pujara, Filip Ilievski, and Pedro A.
Szekely. 2021. Representing Numbers in NLP: a
Survey and a Vision. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, NAACL-HLT, pages 644–
656. ACL.

12130

https://doi.org/10.1007/978-3-030-30793-6_14
https://doi.org/10.1007/978-3-030-30793-6_14
https://doi.org/10.1145/3336191.3371860
https://doi.org/10.1145/3336191.3371860
https://doi.org/10.1109/ICDE.2019.00094
https://doi.org/10.1109/ICDE.2019.00094
https://doi.org/10.18653/v1/2020.findings-emnlp.235
http://arxiv.org/abs/2109.03137
http://arxiv.org/abs/2109.03137
https://doi.org/10.1145/3397271.3401075
https://doi.org/10.1145/3397271.3401075
https://doi.org/10.1145/3397271.3401075
https://doi.org/10.1145/3437963.3441694
https://doi.org/10.1145/3437963.3441694
https://doi.org/10.1145/3437963.3441694
https://doi.org/10.1145/2766462.2767789
https://ceur-ws.org/Vol-1773/CoCoNIPS_2016_paper9.pdf
https://ceur-ws.org/Vol-1773/CoCoNIPS_2016_paper9.pdf
http://arxiv.org/abs/2102.13019
http://arxiv.org/abs/2102.13019
https://doi.org/10.18653/v1/D19-1251
https://doi.org/10.18653/v1/D19-1251
https://aclanthology.org/W05-0908
https://aclanthology.org/W05-0908
https://aclanthology.org/W05-0908
https://doi.org/10.1145/3539618.3591808
https://doi.org/10.1145/3539618.3591808
https://doi.org/10.18653/v1/p16-1009
https://doi.org/10.18653/v1/p16-1009
https://doi.org/10.18653/v1/P18-1196
https://doi.org/10.18653/v1/P18-1196
https://doi.org/10.18653/v1/2022.findings-naacl.2
https://doi.org/10.18653/v1/2022.findings-naacl.2
https://doi.org/10.18653/v1/2022.findings-naacl.2
https://doi.org/10.18653/v1/2020.emnlp-main.384
https://doi.org/10.18653/v1/2020.emnlp-main.384
https://doi.org/10.18653/v1/2021.naacl-main.53
https://doi.org/10.18653/v1/2021.naacl-main.53

Christophe Van Gysel and Maarten de Rijke. 2018.
Pytrec_eval: An Extremely Fast Python Interface
to trec_eval. In SIGIR. ACM.

Ellen M. Voorhees. 2013. The TREC Medical Records
Track. In ACM Conference on Bioinformatics,
Computational Biology and Biomedical Informatics.
ACM-BCB 2013, page 239. ACM.

Eric Wallace, Yizhong Wang, Sujian Li, Sameer Singh,
and Matt Gardner. 2019. Do NLP Models Know
Numbers? Probing Numeracy in Embeddings. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing, EMNLP-IJCNLP, pages 5306–
5314. ACL.

Gerhard Weikum. 2020. Entities with Quantities. IEEE
Data Eng. Bull., 43(1):4–8.

A Disjoint Quantity Ranking

In this section, we provide additional material re-
lated to the disjoint quantity ranking model.

A.1 Optimal Sorting
Although all the sentences that satisfy a query con-
dition and have the correct concept and unit are
potentially relevant to a given query, the order in
which the result items are presented to the user can
either aid or hinder the user in finding the desired
result. In term-based ranking, the optimal order
of results is evident. However, when it comes to
quantities, relevance is more subjective and the op-
timal sorting is dependent on the user’s information
needs. For example, a user searching for “iPhone
camera that has more than 8 inches” might look for
a maximum value larger than 8 inches or a display
only marginally larger, both of which are valid an-
swers. Presenting results in ascending or descend-
ing order based on numerical distances allows the
user to identify the desired result more efficiently.
(Almasian et al., 2022) briefly addresses this issue
and explores potential alternatives for scoring func-
tions to enable various sorting options.
Our disjoint approach is flexible concerning differ-
ent sorting orders. By switching a scoring function,
the results can be rearranged. The joint models
proposed here are not as adaptive, and rearranging
the results requires additional fine-tuning based on
a new preferred sorting.

B Joint Quantity Ranking

In this section, we provide additional information
related to the joint quantity ranking model.

B.1 Concept-unit Index
An example entry in the concept/unit index from
the FinQuant dataset is shown below.

{("cannabis company", "cent per share"):
{"values":[0.9, 1.4, 17.0, 17.0, 22.0,
26.0, 35.0, 84.0],
"sentences":['The cannabis company says
the loss amounted to 0.9 of a cent per
share for the quarter ended May 31
compared with a loss of $4 million or
1.4 cents per share a year earlier .',
'The cannabis company says its loss
amounted to 17 cents per diluted share
for the quarter ended Jan. 31 .',...]}}

Note that the repetition of values for the same con-
cept/unit pair is stored as duplicates, such that the
frequency of values is kept for the distribution, e.g.,
the value “17.0” is repeated twice as it occurs in
two sentences.
The index creation steps are depicted in Fig. 5.
The corpus is processed with CQE to extract val-
ues, units, and concepts from each sentence. The
sentences sharing the same unit and concept are
grouped into a list, along with values in each sen-
tence. The list of values represents a frequency
distribution of concept for a certain unit.

B.2 Query Generation
The complete query generation pipeline is depicted
in Fig. 6. The concept/unit index is used to select
values and units for numerical conditions. Addi-
tionally, a large LM (in our case GPT-3) is used
to expand concepts for semantic queries. The tem-
plate generation block combines all the outputs of
other blocks to formulate three queries for each
concept/unit pair. To generate queries for expanded
concepts, a new query value is chosen from the as-
sociated value distribution, and a new set of queries
is formulated.
We offer the query generation pseudocode in Algo-
rithm 1 to make the input and output of each step
clear. In the algorithm, v refers to a value, u to a
unit, c to a condition, and cn to a concept.
It is worth noting that although we used GPT-3 for
concept expansion, the method is independent of
the LM used and this part of the pipline can be
replaced with the LM of choice.

B.3 Choosing the Right Query Value
Each entry in the concept/unit index points to the
list of sentences conatining the concept and unit
pair and list of values in those sentences. For the

12131

https://doi.org/10.1145/2506583.2506624
https://doi.org/10.1145/2506583.2506624
https://doi.org/10.18653/v1/D19-1534
https://doi.org/10.18653/v1/D19-1534
http://sites.computer.org/debull/A20mar/p4.pdf

Figure 5: Overview of the quantity tagging step and creation of concept/unit index structure. The index contains
distinct unit and value pairs, which point to sentences they occur in and a distribution of values.

Figure 6: Overview of the query generation pipeline, using concept/unit index and a large LM for concept expansion.
The expanded concept are saved in a dictionary and used alongside the concept/unit index in template generation.
For each concept and unit, three queries are generated, one for each numerical condition.

Figure 7: An example of choosing query values from
a value distribution for equal condition (marked with
red arrows) and bound-based conditions (marked with a
yellow box).

Algorithm 1 Query Generation
function GENERATE_QUERY(cn, u, c)

v ← get_query_values(cn_unit_dict, c)
u_b, u_a← get_unit_surfaceform(u)
c← get_condition_surfaceforms(c)
query ← conc+ c+ u_b+ v + u_a
return query

end function

cn_unit_dict← concept/unit index
cn_expand_dict← concept expansions
for (cn, u) in cn_unit_dict do:

for cn in [cn, cn_expand_dict[cn]] do:
for c in (equal, greater, less) do:

GENEARATE_QUERY(cn, u, c)
end for

end for
end for

data augmentation, we require a number of positive
and negative samples per query and therefore, it
is important to choose the value of the query such
that supporting sentences in the corpus are present.
A hypothetical example of value distribution is
shown in Fig. 7. For the equal query, the challenge
is to find enough positive samples, since there is an
abundance of values not equal to the query value
in each distribution. In Fig. 7, values with the high-
est frequency, denoted by red arrows pointing to
peaks in the distribution, serve as optimal candi-
dates for the equal condition. In this manner, we
make sure that there are enough positive samples
for the data augmentation. Values close to the av-
erage (highlighted in a yellow box) are chosen for
the less than and greater than queries. For such
queries, we avoid infrequent values towards the tail
of the distribution, to circumvent too few positive
or negative samples.

B.4 Dictionary of Numerical Conditions

A non-comprehensive dictionary of surface forms
for numerical conditions is shown in Table 3, con-
taining multiple surface forms for each condition.

Table 3: Numerical conditions used for query generation
and their surface forms.

Condition Surface forms

Equal exactly, exact, equals, equals to, for, with, of, at
greater than greater than, more than, above, larger than, over, higher than, exceed, exceeding
Less than smaller than, below, less than, fewer than, no more than, beneath

12132

B.5 Concept Expansion
For concept expansion, we use the OpenAI API 3

and employ the text-davinci-003 model with
few-shot learning. We set the temperature to
1 to encourage creative responses. Since the
concepts come from two distinct domains of
finance and medicine, the few-shot examples
vary accordingly. Below we specify the two
prompts used for concept expansion, the result
is stored in a concept expansion dictionary and
utilized during query generation. The place-
holder {concept} is replaced with a concept from
the concept/unit index that is meant to be expanded.

For the financial domain:

Complete with the words super set or
synonym, but do not reuse the exact
same words, the word "Super Set"
should not be in the response and
response should have at least two words:

S&P 500 = stock market index
Audi = car
Oil prices = petroleum prices
unemployment rate = unemployment
percentage
iPhone sales = phone sales
Netflix shares = stock shares
President Trump = President
iPhone 11= iphone
Hong Kong = city
stake PEXA = Property Exchange Australia
shares

{concept} =

For the medical domain:

Complete with the words super set or
synonym, but do not reuse the exact
same words, the word "Super Set"
should not be in the response and
response should have at least two words:

ophthalmic solution = eye medication
Control group = treatment group
irinotecan hydrochloride = chemotherapy
drug
monoclonal antibody = substitute
antibodies
MRI scans = Magnetic resonance imaging
influenza H1N1 vaccine = flu vaccine
HAI antibody response = Influenza-specific
antibody response

{concept} =
3https://openai.com/ DLA:27.05.2024

B.6 When Semantic Search Backfires

Semantic retrieval systems consider an entire con-
text to determine relevance to a query at hand. Of-
ten, this aligns well with the user’s expectations.
For instance, when searching for a “dark color
evening dress”, any dress that can be worn as an
evening gown and has a dark color would be suit-
able. But as soon as the user becomes more specific
like “blue evening dress”, the embedding space
could also bring a similar color like “teal” into
the search result. Depending on the user’s flexibil-
ity regarding the dress color, this behavior may or
may not be desirable. Such hard constraints are
challenging for neural models. Quantity-centric
queries impose hard constraints on values and units
where the fuzzy matching of context might do more
harm than good. For instance, when searching for
a “car with more than 320 hp”, if the results con-
tain a car with “360 brake horsepower” instead of
horsepower, the result is irrelevant. Both horse-
power and brake horsepower are used in similar
contexts but refer to different attributes. Horse-
power measures the power generated by the engine,
while brake horsepower measures how much of the
power produced by the engine is sent to the wheels
that make the car accelerate. Another common
problem is with currencies. Given that monetary
values often appear in similar contexts, it becomes
challenging for neural models to differentiate be-
tween various currency units. The same applies to
hard constraints on values, where based on a given
numerical condition, values outside of that bound
are considered irrelevant.

B.7 Sample Generation with Permutations

The input of this stage are the generated queries and
the concept/unit index. For each quantity-centric
query, a list of positive and negative samples is cre-
ated by applying the numerical condition on the list
of sentences from the index. The original positive
and negative samples are then chosen at random
from such a list. The same list is utilized as seed
samples for data augmentation. Unit and value
permutation are employed to generate augmented
positive and hard negative samples. Hard negatives
are created from positive samples, by permuating
the unit or value to violet the query condition.
The steps are presented in Algorithm 2. Each sam-
pling mechanism is encapsulated within a distinct
function, and the final training samples are the
union of all generation mechanisms. In the algo-

12133

https://openai.com/

rithm, v refers to a value, vals to the list of the
values of a given concept and unit, u to a unit, c to
a condition, cn to a concept, and n to the sample
size.

Algorithm 2 Sample Generation
function ORIGINAL_SAMPLING(s+, s−, n)

return sample(s+,n), sample(s−,n)
end function

function UNIT_PERMUTATION(s+, n, u)
su+ ← replace_same_unit_surface(s+, u)
su− ← replace_other_unit_surface(s+, u)
return sample(su+,n), sample(su−,n)

end function

function V_PERMUTATION(s+, s−, n, vals, c)
su+ ← replace_with_positive_value(s−, v)
su− ← replace_with_negative_value(s+, v, c)
return sample(sv+,n), sample(sv−,n)

end function

conc_unit_dict← concept/unit index
queries← list of queries
n← number of samples
for (cn, u, c, v) in queries do:

s, vals← conc_unit_dict[(cn, u)]
s+, s− ← filter_based_on_condition(s, c, v)
so+, so− ← ORIGINAL_SAMPLING(s+, s−, n)
su+, su− ← UNIT_PERMUTATION(s+, n, u)
sv+, sv− ← V_PERMUTATION(s+, s−, n, vals, v, c)
sf+ = so+ ∪ su+ ∪ sv+
sf− = so− ∪ su− ∪ sv−

end for

B.8 Sampling within Distribution

It is crucial that the permutation values obey the
original value distribution of the corpus. The prop-
erties of concepts are often limited to a specific
range, e.g., the value “10000” is an unreasonable
unemployment rate. Moreover, certain values are
on a discrete scale with limited options, e.g., “RAM
of a laptop” is limited to distinct values such as 4,8,
and 16. Assigning a random number outside this
range, like 10, would be unrealistic. Therefore,
for the synthetic data to obey the rules of the real-
world datasets and reflect the distribution of dif-
ferent properties, the permuted values are chosen
from the values observed in the corpus.

B.9 Down-sampling

If the number of available sentences in the positive
and negative lists is smaller than the sample size,
a downsampling procedure is implemented. When
|s+| < n or |s−| < n, we reduce the sample size
to the smallest number of available samples.

C Evaluation

In this section, we present additional evaluations
and implementation details. To reproduce the re-
sults or to access the trained model checkpoints and
datasets, we encourage the reader to refer to our
repository under https://github.com/satya77/
QuantityAwareRankers.

C.1 FinQuant and MedQuant Datasets

In this section, we give an overview of the creation
of the FinQuant and MedQuant evaluation bench-
marks. FinQuant is created from a set of news
articles in the categories of economics, science,
sports, and technology, collected between 2018
and 2022. MedQuant contains TREC Medical
Records (Voorhees, 2013) on clinical trials. Both
datasets were split into sentences and processed
to eliminate boilerplate HTML and headers. All
sentences containing quantities were incorporated
into the collection. The entire test data is man-
ually created and tagged. In the following, we
describe the query formulation and annotation task.

Query formulation: Given access to the
compelete concept/unit index and the value
distributions, annotators were tasked to formulate
quantity-centric queries. During formulation, they
were instructed to scan the entire index for possible
synonyms for a given concept and keep track of
the synonyms in a list. For example, if one chooses
“Microsoft Surface Earbuds” with the unit “pound
sterling”, the annotator scans the other concepts
inside the concept/unit index that co-occur with
“pound sterling” to detect synonyms or synsets,
e.g., “Earbuds” and “Microsoft headphones” are
related to the concept “Microsoft Surface Earbuds”.
In the subsequent stage, the value distributions
of all selected concepts are consolidated into one
and presented to the annotator. The annotator is
then instructed to choose three values for equal,
less than, and greater than queries, in such a way
that supporting sentences for the query are present
within the value distribution. In the final stage,
the annotator will formulate the query in natural
text, e.g., “Microsoft Surface Earbuds lower than
179 pound sterling”. The annotators have access
to the dictionary of surface forms for units and
conditions to help with the query formulation.

Candidate list generation: For each query, a list
of relevant sentences as candidates was generated

12134

https://github.com/satya77/QuantityAwareRankers
https://github.com/satya77/QuantityAwareRankers

using the concept/unit index. All sentences related
to the concept and its synonyms were filtered based
on the query value and condition. The filtering
is done automatically based on the query value
and numerical condition to lower the effort of
annotation. We recognize that the quality of the
candidate set relies directly on how effectively the
quantity extractor captures associations between
quantity and concepts. We observed that although
the extractions in financial domain are of high
quality, in the medical domain, several quantities
were overlooked. In both datasets, there is no
guarantee that the candidate list is comprehensive
and covers all relevant instances.

Annotation: An annotation guideline was devised
for consistent annotation of ambiguous cases and
is published with the dataset. Annotators were pre-
sented with a list of candidate sentences for each
query and were tasked to mark the relevant sen-
tences. The marked sentences are used as ground
truth for subsequent evaluation.

C.2 Semantic and Lexical Queries
The queries from the test set are categorized into
four types: seen, unseen, expansion, and w/o sur-
face form. The lexical queries fall under the cate-
gories of seen and unseen. For such cases, during
query formulation, the annotators picked concepts
from the concept/unit index without any change in
their surface form. The concepts from the unseen
category were removed from the index for data
generation and training of the joint neural mod-
els. Therefore, this subset contains lexical queries
that were not seen during training. For example,
“YouTube channel” is a concept in the unseen sub-
set, which means all instances of “YouTube chan-
nel” were removed from the concept/unit index
before data generation.
Semantic queries contain the two subsets of expan-
sion and w/o surface form and were slightly harder
to formulate, thereby, fewer instances of them are
present in the data. For expansion queries, a con-
cept from the lexical set was chosen to expand to
one of its supersets or synonyms. For example,
“social media channel” is a semantic concept from
“YouTube channel”. These expansions were used to
formulate queries that did not have a lexical match
in the database and often included a superset of
many concepts. In the case of “social media chan-
nels”, the model should be able to retrieve other
social media channels like “Facebook” as well as

“YouTube”. In the case of lexical models based on
BM25, the difference is evident in Fig. 3a, where
the models show great performance on the seen
and unseen subset but if the same queries are con-
verted to their semantic counterpart, as in expan-
sion, the models fail to retrieve the correct result.
W/o surface form are other semantic queries that
were formulated independent of the lexical queries.

C.3 Implementation
The code is implemented in Python 3.10.9 and
PyTorch 1.13.1. Sentence splitting and text
cleaning were performed with SpaCy 3.6 4. As
mentioned before we use the CQE library 5

for quantity extraction. Evaluation and metrics
were computed with the help of pytrec_eval
library (Van Gysel and de Rijke, 2018). In the
following, we discuss the implementation details
for each model separately.

BM25 models: We use the Okapi BM25 pack-
age 6 for all BM25 variants. The QBM25 and
BM25filter are variations of Okapi BM25 designed
to include a numerical index for ranking and filter-
ing. The parameters of BM25 were tuned to each
of our datasets separately, as presented in Table 4.
The latency values are computed with plug-ins for
an Opensearch 7 instance on a desktop computer
with 16GB of RAM. In comparison to the dense
models, the lexical models do not require specific
hardware architectures.

Table 4: Hyper parameters of BM25-based models on
the benchmark datasets.

FinQuant MedQuant

BM25 b = 0.5, k1 = 0.5, b = 0.5, k1 = 0.5
BM25filter b = 0.75, k1 = 1.5 b = 0.75, k1 = 1.5
QBM25 b = 0.5, k1 = 0.5 b = 0.5, k1 = 0.75

Cohere baseline: We used the Cohere API 8

for Coherev3 embeddings. Query embeddings
were used to encode the queries and document
embeddings to encode the collection.

ColBERT models: (Khattab and Zaharia, 2020)
supplied the trained checkpoint for the base

4https://spacy.io/ DLA: 27.05.2024
5https://github.com/vivkaz/CQE DLA: 27.05.2024
6https://pypi.org/project/rank-bm25/ DLA:

27.05.2024
7https://opensearch.org/ DLA: 27.05.2024
8https://cohere.com/ DLA: 27.05.2024

12135

https://spacy.io/
https://github.com/vivkaz/CQE
https://pypi.org/project/rank-bm25/
https://opensearch.org/
https://cohere.com/

ColBERT model. For fine-tuning augmented data,
the model was initialized with this base checkpoint.
The checkpoint was employed for the evaluation
of both ColBERT and QColBERT. ColBERTft

was fine-tunned using the training script from the
official repository 9. The code in the repository was
modified to establish an endpoint for QColBERT,
incorporating a quantity index. We did not perform
extensive hyperparameter tuning except for the
learning rate and used the parameters advised
by the authors for both FinQuant and MedQuant
datasets. We fine-tuned the joint ColBERTft

for 2 epochs, with a batch size of 256 and a
learning rate of 1e-05 on a server with four A-100
GPUs and 40GB of memory. The evaluation and
benchmarking for latency were performed on the
same server, utilizing all four GPUs.

SPLADE models: SPLADEft was also fine-tuned
using the training script by the authors 10. The
pre-trained checkpoint was acquired from Hug-
gingFace 11 and utilized for both the SPLADE
model and QSPLADE. Scripts from the official
repository were adjusted to add a quantity index
for QSPLADE. Similar to ColBERT, we conducted
limited hyperparameter tuning, mainly focusing
on the learning rate. We fine-tuned SPLADEft

for 2 epochs using a batch size of 240, a learning
rate of 2e-5, and a weight decay of 0.01. The
fine-tuning was conducted on a server with four
A-100 GPUs and 40GB of memory. The evaluation
and benchmarking for latency were performed on
the same server, utilizing all four GPUs.

For all disjoint rankers, QBM25, QColBERT, and
QSPLADE, the quantity impact parameter of α is
set to 1, such that the impact of term and quantity
ranking are equal.

Generated data: Based on the combination of aug-
mentation methods the size of training data would
vary. In all cases, we saved a small sample of
1,000 queries for validation. There were 40,732
and 20,376 concept and unit pairs considered for
query generation in FinQuant and MedQuant, re-
spectively. If concept expansion is applied these
numbers would double to account for queries on

9https://github.com/stanford-futuredata/
ColBERT DLA:27.05.2024

10https://github.com/naver/splade DLA:27.05.2024
11https://huggingface.co/naver/

splade-cocondenser-ensembledistil DLA:27.05.2024

(a) ColBERT based models

(b) SPLADE based models

Figure 8: The effect of task-specific fine-tuning on mod-
els attention to quantity tokens. In the masked variants
either the unit or the value of the sentences in the col-
lection is masked.

expanded concepts. We set the sample size n to 2,
meaning that for each query two positive and the
negative samples were chosen from the data with-
out augmentation. As a result, based on augmenta-
tion methods, additional n = 2 samples would be
added for unit and value permutation, a total of 3n
per query.

C.4 Effect of Fine-tuning
To assess the impact of task-specific fine tuning on
the internal ranking strategy of the dense models,
we evaluate two masked versions of the data.
Mask value: In this scenario, we mask all values
in the collection with the [MASK] token before run-
ning the evaluation. This task aims to determine
the extent to which the model depends on the value
token for retrieving the correct sentence.
Mask unit: Here, we mask unit tokens in the col-
lection before running the evaluation with [MASK]
token. This task is intended to observe the impact
of unit comparison on the final ranking.
We compare the base version of the dense mod-
els with their fine-tuned version on the different
masking of the FinQuant dataset. The results for
the ColBERT models are shown in Fig. 8a and for
SPLADE models in Fig. 8b. In both cases, the
fine-tuned version exhibits a more significant drop
in performance compared to the base models when
quantity tokens are masked. This indicates that af-
ter fine-tuning, the model becomes more dependent
on the quantity tokens, namely, values and units, in
the text to identify the relevant sentence.

12136

https://github.com/stanford-futuredata/ColBERT
https://github.com/stanford-futuredata/ColBERT
https://github.com/naver/splade
https://huggingface.co/naver/splade-cocondenser-ensembledistil
https://huggingface.co/naver/splade-cocondenser-ensembledistil

