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Abstract

Large Language Models (LLMs) have shown
great potential in the biomedical domain with
the advancement of retrieval-augmented gen-
eration (RAG). However, existing retrieval-
augmented approaches face challenges in ad-
dressing diverse queries and documents, partic-
ularly for medical knowledge queries, result-
ing in sub-optimal performance. To address
these limitations, we propose a novel plug-
and-play LLM-based retrieval method called
Self-Rewarding Tree Search (SeRTS) based on
Monte Carlo Tree Search (MCTS) and a self-
rewarding paradigm. By combining the reason-
ing capabilities of LLMs with the effectiveness
of tree search, SeRTS boosts the zero-shot per-
formance of retrieving high-quality and infor-
mative results for RAG. We further enhance re-
trieval performance by fine-tuning LLMs with
Proximal Policy Optimization (PPO) objectives
using the trajectories collected by SeRTS as
feedback. Controlled experiments using the
BioASQ-QA dataset with GPT-3.5-Turbo and
LLama2-7b demonstrate that our method signif-
icantly improves the performance of the BM25
retriever and surpasses the strong baseline of
self-reflection in both efficiency and scalabil-
ity. Moreover, SeRTS generates higher-quality
feedback for PPO training than self-reflection.
Our proposed method effectively adapts LLMs
to document retrieval tasks, enhancing their
ability to retrieve highly relevant documents
for RAG in the context of medical knowledge
queries. This work presents a significant step
forward in leveraging LLMs for accurate and
comprehensive biomedical question answering.

1 Introduction

Large Language Models (LLMs) have made signif-
icant advancements and gained widespread adop-
tion in various natural language tasks, such as di-
alogue systems (Bang et al., 2023; Wang et al.,
2023) and question-answering (Kamalloo et al.,

∗The first two authors have equal contributions.

2023; Li et al., 2023; Wang et al., 2024b). How-
ever, their performance in specialized domains like
medicine remains unsatisfactory due to the lack of
publicly available training data, which limits the
amount of domain-specific knowledge these LLMs
can encode in their parameters (Xia et al., 2022;
Shi et al., 2024). To address this limitation, recent
studies have turned to retrieval-augmented genera-
tion (RAG) frameworks (Xiong et al., 2024; Wang
et al., 2024a; Gao et al., 2024a). These frameworks
can enhance LLMs’ capabilities by retrieving rele-
vant documents from large and private databases,
thereby enabling the models to provide more accu-
rate and informative answers.

Existing RAG framework mainly consists of two
modules: an external retriever to retrieve docu-
ments according to semantic similarity between
documents and queries, and the reader to gener-
ate the final answer given retrieved documents and
query (Gao et al., 2024b). However, this kind of
setting overlook the two significant challenges in
medical domain: the complexity of the queries and
the varying importance of different documents. For
example, patients may describe the same disease
in diverse ways, leading to variations in query for-
mulation. Additionally, documents from different
medical disciplines should be weighted differently
based on both of their relevance and importance.
Thus, effectively identifying the most pertinent and
useful documents from a vast corpus of medical
literature is crucial. This not only enhances per-
formance but also improves the explainability and
credibility of the system.

To address these issues, we propose a plug-
and-play LLM-based retrieval method, SELF-
REWARDING TREE SEARCH (SERTS), combines
the exceptional reasoning capabilities of LLMs
with the effective searching capabilities of Monte
Carlo Tree Search (MCTS). Specifically, we first
formulate the task of document retrieval as a tree
search problem, considering both the diversity of
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queries and different relationship between multiple
documents. Inspired by recent studies using MCTS
to search the optimal reasoning paths of LLMs, we
alternativelly employ it to find the best query and
most related documents from vast candidate spaces.
To ensure the success of MCTS, we carefully de-
sign each operations in MCTS and provide detailed
feedback from different levels of documents. Fur-
thermore, to validate the effectivenss and quality
of our tree search retriever, we then collect these
feedbacks with all intermediate reasoning results
to finetune LLMs using PPO method. To sum up,
our contributions can be summarized as follows:

• We present a novel perspective on automating
query optimization by combining LLM and
MCTS for improved document retrieval in the
medical domain.

• We propose a Self-Rewarding Tree Search
framework, consisting of a tree search re-
triever and a PPO self-training process.

• Experimental results on two LLMs, GPT-3.5-
TURBO and LLAMA2-7B-CHAT, demonstrate
that our SeRTS method significantly improves
the performance of BM25 retrievers and sur-
passes the strong baseline of self-reflection in
both efficiency and scalability.

2 Related Works

Medical RAG. Retrieval-Augmented Generation
represents a significant advancement to provide
up-to-date and trustworthy collections and im-
proves the transparency of LLMs by grounding
their reasoning on the retrieved documents (Xiong
et al., 2024), particularly in the medical question-
answering (Tian et al., 2019; Xia et al., 2022) and
dialogue tasks (Shi et al., 2024). Most of previ-
ous works focus on query rewriting (Zhang et al.,
2022) and multi-step retrieval (Mrini et al., 2022).
More recent studies explore how LLMs can im-
prove literature information-seeking and clinical
decision-making RAG (Zakka et al., 2023; Wang
et al., 2024c; Jeong et al., 2024). In detail, Wang
et al. (2024c) design a hybrid retriever and con-
duct complex filter operations to get high-quality
documents while Jeong et al. (2024) propose Self-
BioRAG to utilize retrieval and self-reflection to-
gether, resulting in better medical reasoning.

Applications of MCTS. Monte Carlo Tree
Search (MCTS) has been validated as an effective

method for finding better solution paths among a
wide range of potentially feasible options, enabling
proficient exploration and enhancing decision-
making(Silver et al., 2017). It has proven to be
highly successful in various domains, including
game-playing (Sironi et al., 2018; Ontanón, 2016),
and planning (Zhou et al., 2023; Yu et al., 2023).
By combining MCTS with reinforcement learn-
ing, models can learn from self-play and achieve
human-level performance or even surpass it in com-
plex tasks, such as the game of Go (Silver et al.,
2016). Recent works mainly utilize MCTS to deter-
mine the most promising reasoning path of LLMs,
leading to better performance without additional an-
notations (Feng et al., 2024; Zhou et al., 2024; Tian
et al., 2024). Specifically, Feng et al. (2024) fix a
search step to be either a token or a sentence while
Tian et al. (2024) employ ηMCTS to search across
multiple levels of planning with carefully defined
reward signals. Additionally, other studies use
MCTS to collect high-quality reasoning traces to
train the reward model, aiming to continuously en-
hance LLMs over multiple iterations (Zhang et al.,
2024). Furthermore, Zhou et al. (2024) expands
the search space to encompass all possible reason-
ing and acting steps, thereby unifying reasoning,
acting, and planning in language models.

Learning from Feedback. LLMs can evolve
and then refine its outputs by learning from self-
assessed rewards or environmental signals, such as
self-learning or reinforcement learning from human
feedback (RLHF). On the one hand, self-learning
methods leverage the LM’s ability to critique its
outputs, collecting natural language feedback as
signals, such as Reflection (Shinn et al., 2024),
Self-Rewarding LMs (Yuan et al., 2024a). On the
other hand, lots of works apply reinforcement learn-
ing to train the external reward model from human
preferences (Ouyang et al., 2022). The reward
model is then frozen and used to train the LLM us-
ing RL, e.g., Proximal Policy Optimization (PPO)
(Schulman et al., 2017; Wang et al., 2022), which
is a popular reinforcement learning algorithm that
has been successfully applied to various domains,
including natural language processing tasks (Han
et al., 2023; Akyurek et al., 2023). However, most
existing reinforced self-improvement approaches,
e.g., STaR (Zelikman et al., 2022) and RFT (Yuan
et al., 2023), overlooking the possibility that in-
correct or low-quality reasoning traces may still
lead to the correct solution due to hallucinations or
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randomness, leading to an unreliable reward model
(Lanham et al., 2023).

3 Method

Retriever 𝓡LLM Reader 𝓟

Document Sets 
𝓓 = 𝒅𝒊 𝒊"𝟏𝑴

Doc 𝒅𝟏
Doc 𝒅𝟐
…

Doc 𝒅𝒋

Answers Question 𝑸

Figure 1: A straightforward Retrieval-Augmented Gen-
eration (RAG) pipeline

Figure 1 illustrates a straightforward Retrieval-
Augmented Generation (RAG) pipeline we em-
ployed as the basis of our experiments. This pro-
cess can be defined as follows: Give a literature
document set D = {di}Mi=1, a Language Model
based reader P , an external retrieverR, and a ques-
tion Q, useR to retrieve several documents {d1..j}
related to Q, so that the reader P can generate ap-
propriate answers using them. When P is fixed, the
quality of the generated answers mainly depends
on the retrieved {d1..j}.

To improve the relevance of {d1..j} to Q for
higher quality of the answers, we propose a novel
method for retrieval, called Self-Rewarding Tree
Search (SeRTS) as shown in Figure 2 illustrating
the Expansion & Evaluation process in the MCTS
and its interaction with two LLM agents. The core
of SeRTS is a search algorithm based on Monte
Carlo Tree Search (MCTS) that learns from trial-
and-error experiences based on Self-Rewarding
Paradigms and explores better trajectories of self-
reflection reasoning to retrieve more relevant docu-
ments for Retrieval Augmented Generation (RAG).

It is worth noting that our method is decoupled
from the RAG pipeline. All components in the
pipeline, including the document set D = {di}Mi=1,
the LM reader P and the retriever R could be re-
placed by other types. Our method acts as a plugger
that can be integrated into any RAG pipelines.

3.1 Self-Rewarding Tree Search
As a decision policy, MCTS effectively balances
exploration and exploitation when searching for
optimal trajectories, so it’s employed to find the
best retrieval results in our proposed method.

We formulate the document retrieval process as
a tree search problem. In the tree shown in Fig-
ure 2, each node si = [Q,Ai, Di, Ri, Fi, Oi] rep-
resents a state with the original question Q, query
proposal Ai, retrieved documents F , result score
R and feedback F , and previous process obser-
vation Oi (query proposals from all si’s ancestor
nodes Oanc

q =
⋃

k∈anc(si)Ak, retrieved documents
from all si’s ancestor nodes Oanc

d =
⋃

k∈anc(si)Dk,
query proposals from all si’s sibling nodes Osib

q =⋃
k∈sib(si)Ak, feedback from all si’s sibling nodes

Osib
f =

⋃
k∈sib(si) Fk).

Starting from the root node (initial state s0),
SeRTS uses the MCTS algorithm that iteratively
searches through the Query Space A1..i and uses
A1..i to retrieve documents. The retriever employed
here is the BM25, a strong retriever in the biomedi-
cal retrieval domain, supported by multiple evalua-
tions (Xiong et al., 2024). The final target is to find
node so that has retrieved documents from itself
and its ancestors are evaluated to have the highest
scores in helping generate answers for question Q.

3.1.1 Result Evaluator for Quantitatively
Measuring

Quantitatively measuring the quality of retrieved
documents by providing high-quality feedback
with a specific score is essential for the MCTS.
Here, we propose to utilize LMs to automatically
do the evaluation and provide feedback, inspired by
the Self-Rewarding paradigm (Yuan et al., 2024a).
The quality of feedback plays a crucial role in pro-
ducing accurate reasoning, and low-quality feed-
back can hinder the self-improving ability of LLMs
during self-reflection.

We design a Result Evaluator P eval
θ using

the system prompt in Table 1 to provide descrip-
tional feedback and quantitative measurement for
retrieved documents.

It utilizes the 5-point rubrics to assess the rel-
evance of retrieved documents to the query and
their potential contribution to the reasoning pro-
cess, as well as providing descriptional feedback
to the search algorithm. This scoring mechanism
enables MCTS to make informed decisions during
the search process, guiding it toward retrieving the
most informative and relevant documents for RAG.

3.1.2 Query Proposer for Efficiently
Searching

The vast number of potential token combinations in
natural language tasks results in an exponentially
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Figure 2: SeRTS method overview: Query Proposer P query
θ generates query Ai. Rbm25 retrieves relevant

documents Di. Result Evaluator P eval
θ assesses Di, provides Reward Ri and Feedback Fi. Observations Oi

(previous queries, retrieved documents, feedback) serve as input to P query
θ for subsequent query proposals. The

entire trajectory TSeRTS (initial question Q, A1..i, O1..i, R1..i) is used to fine-tune the two language model agents
via PPO, to improve their performance in query proposal and evaluation.

You are a medical expert. Review the user’s question
and rate the corresponding retrieved knowledge using the
additive 5-point scoring system described below. Points
are accumulated based on the satisfaction of each criterion:
{Five-point Rubrics}

<question> {Q} </question>
<retrieved_knowledge>
{D ∪Oanc

d }
</retrieved_knowledge>

After examining the user’s instruction and the response:
-Briefly justify your total score, up to 100 words. Remem-
ber to assess from the AI Assistant perspective, utilizing
web search knowledge as necessary. To evaluate the re-
sponse in alignment with this additive scoring model, we’ll
systematically attribute points based on the outlined crite-
ria.
-Give suggestions for constructing better queries up to 100
words.

Conclude with a score between 0 and 5, strictly using the
aforementioned additive 5-point scoring system and the
format: “<score> Integer Score </score>”. For example,
<score>3</score>.

Table 1: Prompt for Evaluator P eval
θ . Details of {Five-

point Rubrics} is shown in Appendix A.

large search space, posing a significant challenge
to the efficiency of MCTS. Our approach tackles
the search space issue by employing strategic ex-
panding techniques and heuristics to navigate the

vast query space A1..i efficiently.
We design a Query Proposer P query

θ using the
system prompt in Table 2. Query Proposer effi-
ciently explores new queries in a heuristic man-
ner using previous results and feedback. At every
node, P query

θ is given the query proposals from
its sibling nodes and the corresponding feedback
produced by the Result Evaluator P eval

θ , as well
as previously retrieved documents from all its an-
cestor nodes. Considering the known information,
P query
θ is prompted to generate new query propos-

als efficiently for the next step.

3.1.3 Monte Carlo Tree Search Process

As shown in Figure 3, using the Query Proposer
P query
θ and the Result Evaluator P eval

θ , SeRTS
iteratively performs Selection, Expansion, Evalu-
ation, and Backpropagation until it finds a good
enough query result or a computational limit is
reached. The full pseudocode is provided in Ap-
pendix D.2.

Selection. In the first operation, the algorithm
selects the most promising leaf node for expan-
sion, starting from the root node (initial state s0).
The Upper Confidence Bounds (UCB) is used to
balance exploration and exploitation during node
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Figure 3: Overview of the four operations in MCTS

You are a medical expert, and you are tasked with search-
ing for as much useful knowledge from a database of
medical paper abstracts as possible to address the user’s
question. The question is stated as follows: {Q}

You are given the BM25 retriever as the search tool. Ac-
cording to previous query proposals and proposals’ corre-
sponding feedback and suggestions, give one single better
query for the retriever to further search for extra informa-
tion needed for answering the given question.

<query_proposal>
1. {Osib

q,1} Corresponding Feedback: {Osib
f,1}

......
i. {Osib

q,i } Corresponding Feedback: {Osib
f,i }

</query_proposal>

Information already known is as follows:<retrieved_info>
Query and its reasoning for Abstracts: {Oanc

q }
Retrieved Abstracts: {Oanc

d }
</retrieved_info>

After examining the information above, justify your deci-
sion, in up to 100 words.

Hints:
1. Use simple keywords as queries if no information is
retrieved.
2. You can take one step at a time, subdivide the original
question, and search for information on the sub-questions.

Conclude with the query for the paper abstracts using the
format: "<query> Query Here </query>".

Table 2: Prompt for Query Proposer P query
θ .

selection:

UCB(s) =
R(s)

N(s)
+ C ∗

√
2 ∗ ln N(p)

N(s)
(1)

, where N(s) is the number of visits to a node s,
R(s) is the reward assigned to s, and p is the parent

node of s. At each level, the child node with the
highest UCB value is selected. The C parameter
balances exploration and exploitation.

Expansion. The selected node is expanded by
sampling n query proposals from P query

θ . The ex-
pansion is performed in a self-reflection manner
to deal with the vast search space. All feedback
Osib

f from P eval
θ , along with all the history of query

proposals Osib
q from sibling nodes, as well as re-

trieved documents Oanc
d and query proposals Oanc

q

from all the ancestor nodes, are fed into P query
θ

as reflection material as shown in Table 2. This
practice ensures diverse reasoning by expanding
different and potentially better branches after each
sampling.

Evaluation. A scalar value is assigned to each
new child node using feedback give by P eval

θ , quan-
tifying the agent’s progress in task completion and
steering the search algorithm towards promising
regions. Following previous work Self-rewarding
Language Models (Yuan et al., 2024b), we assess
the currently retrieved document set D∪Oanc

d with
LLM-as-a-Judge prompting with a 5-point rubric
as shown in Table 1.

Backpropagation. The average value and visit
counts of the newly generated node s′ and its an-
cestors are updated using the scaled reward R(s′)
from the Evaluation step.

By incorporating a self-rewarding paradigm and
expanding strategy, SeRTS improves search effi-
ciency and enhances the quality of retrieved doc-
uments. Details and pseudo-codes for SeRTS are
illustrated in Appendix D.2.

1325



3.2 Proximal Policy Optimization of LLMs
with Feedback

To further improve the reasoning abilities of the
Query Proposer and the Result Evaluator, we uti-
lize Proximal Policy Optimization (PPO) to fine-
tune the two LLMs using the trajectories collected
by SeRTS as feedback (Schulman et al., 2017). Ad-
ditionally, through this process, we could validate
the effectiveness of the SeRTS reasoning process
by examining the trajectories it produces.

PPO aims to optimize the policy of an LLM
agent by maximizing the expected cumulative re-
ward while ensuring that the LLMs are updated
conservatively in case of performance degradation.
The objective function of PPO can be formulated
as follows:

Lppo(θ) = Ê
[
min

(
r(θ)Ât, clip(r(θ), 1− ϵ, 1 + ϵ)Ât

)]
,

where rθ =
πθ (A1..i | O1..i)

πθold (A1..i | O1..i)
(2)

Here θ represents the parameters of the policy net-
work, rθ indicates the ratio of the probability of
selecting an action under the new policy to that
under the old one, and A1..i and O1..i denotes sam-
pled query proposals and previous observations.
Ât is the advantage function estimating the relative
reward of taking action A1..i in the state of O1..i

compared to the average value of the state, and ϵ is
the clipping range hyperparameter.

During training, we sample trajectories
TSeRTS = (A1..i, O1..i, R1..i) from the SeRTS
retrieval process and the generated answers to
estimate the advantage function and update the
policy network θ. The clipping function clip
in Lppo(θ) ensures that the policy update is
conservative, preventing drastic changes that could
lead to instability or performance degradation.

By updating the language model using PPO with
the feedback TSeRTS , we aim to let LMs know how
to make good query proposals given current obser-
vations. This training process allows the LLMs
to adapt to the specific requirements of medical
knowledge retrieval, self-improving their ability of
RAG in the bio-medical domain. The finetuning
details are listed in Appendix D.4.

4 Experiments

4.1 Datasets

The BioASQ-QA (Krithara et al., 2023) dataset
is a comprehensive resource designed to meet the

authentic information needs of biomedical profes-
sionals. It comprises questions in English, accom-
panied by gold-enriched answers by biomedical
experts and relevant supporting material. This
dataset stands out from most existing biomedi-
cal QA datasets due to its realistic and challeng-
ing nature, reflecting the complexity of real-world
biomedical inquiries. Most importantly, BioASQ
provides ideal answers in the form of summaries
rather than only exact answers. This unique fea-
ture makes the dataset particularly valuable for re-
searchers working on multi-document summariza-
tion techniques in the biomedical domain. Further-
more, the BioASQ-QA dataset is updated annu-
ally through an open-challenge format, making it
highly unlikely for LLMs to have accessed the data
during training. To evaluate our approach, we uti-
lize the BioASQ 2023 Task 11b test set (Nentidis
et al., 2023), which consists of question-answer
pairs along with their corresponding retrieved doc-
uments.

4.2 Baselines

We compare our proposed SeRTS method with Self-
Reflection baselines. For a fair comparison, we
implement Self-Reflection by making minor modi-
fications to the SeRTS prompt. Specifically, we re-
move the sibling node information (Osib

f and Osib
d )

from the query proposer agent P query
θ prompt, as

self-reflection does not involve sibling nodes dur-
ing expansion. The evaluator agent P eval

θ prompt
remains unchanged. We measure the retrieval capa-
bility of all methods by indexing the ground truth
documents. Appendix D.3 provides details and
pseudo-code for the self-reflection process.

4.3 Metrics

We evaluate retriever performance using standard
metrics: Precision, Recall, and F1 score, com-
paring retrieved document IDs with the ground
truth. Hit Rate assesses robustness by measuring
the ratio of questions with at least one ground-truth
document retrieved.

To measure RAG quality, we use ROUGE-
2 (R-2) and ROUGE-SU4 (R-SU4). R-2 com-
putes shared bigrams between predicted answers
and ground truth, while R-SU4 calculates skip-
bigram overlap with a skip distance of four. Higher
ROUGE scores indicate greater content overlap
and more informative answers, suggesting better
retrieval methods.
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Retrieval Method Precision Recall F1 score Hit Rate

BM25 72.48 47.16 45.87 83.00

GPT-3.5-TURBO + REFLECTION (SIM 6) 66.26 58.96 51.18 88.89
GPT-3.5-TURBO + SERTS (SIM 6, MAX UCB) 74.31 59.09 55.06 92.22

LLAMA2-7B + REFLECTION (SIM 6) 72.48 48.66 47.12 84.44
LLAMA2-7B + SERTS (SIM 6, MAX UCB) 67.85 50.95 47.58 83.33

GPT-3.5-TURBO + REFLECTION (SIM 12) 71.36 58.84 52.72 91.11
GPT-3.5-TURBO + SERTS (SIM 12, MAX UCB) 74.65 58.96 54.70 94.44

LLAMA2-7B + REFLECTION (SIM 12) 68.04 51.82 48.79 83.33
LLAMA2-7B + SERTS (SIM 12, MAX UCB) 70.62 52.51 49.39 85.55

Table 3: Retrieval Results on BioASQ Task 11b batch 1 Test Set. The highest values are bolded. All metrics are
averaged across three runs with three random seeds {42, 43, 44}.

4.4 Main Results

4.4.1 Comparison of the Retrieval Capability
Table 3 shows that SERTS (MAX UCB) consis-
tently improves Recall and Hit Rate compared
to REFLECTION for both GPT-3.5-TURBO and
LLAMA2-7B-CHAT models. This performance
gap supports our DoT assumption that higher-
quality feedback induces more accurate reasoning.
The performance gap between GPT-3.5-TURBO

and LLAMA2-7B-CHAT is attributed to GPT-3.5’s
larger parameter count (175B) and stronger reason-
ing capacity compared to LLAMA2 (7B). In ad-
dition, increasing the maximal simulation number
further boosts the performance of both SERTS and
REFLECTION. SERTS (SIM 12, MAX UCB) im-
proves Recall and Hit Rate by 5.5 and 2.5 percent-
age points compared to the vanilla BM25 retriever.

4.4.2 Effect on RAG
Table 4 presents the RAG performance of
LLAMA2-7B-CHAT and GPT-3.5-TURBO using
different retrieval methods on the bio-medical
QA task. The large gap between BM25 and
GROUND TRUTH highlights the importance of
document retrieval quality in generating final an-
swers for the difficult medical QA task. Variants
of SeRTS perform best among all methods on all
metrics, with SERTS (MAX UCB) achieving 0.5 R-
2 F1 and 0.5 R-SU4 F1 score improvements over
BM25 on BioASQ dataset. The improvement of
SERTS (MAX UCB) over REFLECTION demon-
strates the effectiveness of our proposed method.

Fine-tuning with the PPO objective further
improves the performance of REFLECTION and
SERTS, with SERTS (PPO) acquiring 0.4 R-2
F1 and 0.6 R-SU4 F1 uplift over SERTS (MAX
UCB) on LLAMA2-7B-CHAT. This suggests that

PPO fine-tuning enables self-improvement and do-
main knowledge acquisition for bio-medical RAG.
SERTS (MAX UCB) achieves 1.5 points R-SU4
F1 increase over BM25 using GPT-3.5-TURBO

model, while LLAMA2-7B-CHAT + SERTS (PPO)
brings a total of 1.1 point improvement, narrowing
the retrieval performance gap between the small
and large language models.

The superiority of SERTS method over REFLEC-
TION is evident in both PPO and zero-shot variants
when computation amounts are controlled to be
similar (SIM 6 & SIM 12), showing the high scala-
bility of SERTS compared to REFLECTION. The
detailed statistics of SeRTS’s computational over-
head can be found in Appendix B.

4.5 Ablation Study

4.5.1 Enhancement of PPO on SeRTS

We examine the effect of PPO fine-tuning on RAG
performance by gradually switching the original
weight θ of the proposer P query

θ and evaluator
P eval
θ to θp fine-tuned by PPO. Table 5 shows that

switching from P query
θ to P query

θp
increases R-SU4

F1 from 26.41 to 26.91 in REFLECTION and from
26.79 to 26.89 in SERTS. Further switching from
P eval
θ to P eval

θp
with P query

θp
as the query proposer

continues to improve performance on all metrics.
This suggests that P eval

θp
has learned to better eval-

uate retrieved documents and provide suggestions
for improved queries, possibly due to the fact that
the LM learns from feedback observations F and
rewards R in trajectories TSeRTS about what feed-
back and suggestions can lead to better queries
from the proposer P query

θ .
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Retrieval Method R-2 Recall R-2 F1 R-SU4 Recall R-SU4 F1

GROUND TRUTH 57.02 56.64 58.26 57.42
BM25 25.58 22.74 29.63 26.22

GPT-3.5-TURBO + REFLECTION 26.92 24.08 30.86 27.41
GPT-3.5-TURBO + SERTS (MAX UCB) 27.25 24.35 31.25 27.77

LLAMA2-7B + REFLECTION 25.73 22.86 29.70 26.41
LLAMA2-7B + SERTS (MAX UCB) 26.18 23.20 30.30 26.79

LLAMA2-7B + REFLECTION (PPO) 26.20 23.41 30.24 26.93
LLAMA2-7B + SERTS (PPO) 26.51 23.63 30.73 27.34

Table 4: Answer Generation Results on BioASQ Task 11b batch 1 Test Set. The highest values are bolded. All
metrics are averaged across three runs with three random seeds {42, 43, 44}.

Evaluating Agent R-2 Recall R-2 F1 R-SU4 Recall R-SU4 F1

+ REFLECTION 25.73 22.86 29.70 26.41

+ REFLECTION (PPO) 26.15 23.36 30.11 26.83
W. ORIGINAL EVALUATOR
+ REFLECTION (PPO) 26.20 23.41 30.24 26.93
W. PPO EVALUATOR

+ SERTS 26.18 23.20 30.30 26.79

+ SERTS (PPO) 25.90 23.42 30.34 26.89
W. ORIGINAL EVALUATOR
+ SERTS (PPO) 26.51 23.63 30.73 27.34
W. PPO EVALUATOR

Table 5: Effect on Answer Generation Performance of PPO Finetuning on LLAMA2-7B-CHAT. The highest values
are bolded. All metrics are averaged across three runs with three random seeds {42, 43, 44}.

Retrieval Method R-2 Recall R-2 F1 R-SU4 Recall R-SU4 F1

BM25 25.58 22.74 29.63 26.22
REFELCTION 26.92 24.08 30.86 27.41

SERTS (RANDOM) 25.74 22.87 29.73 26.29
SERTS (MAX UCB, C = 0.0) 25.73 22.87 29.70 26.27
SERTS (MAX UCB, C = 0.1) 27.25 24.35 31.25 27.77

Table 6: Effect on Answer Generation Performance of Selection Policy in SERTS. The highest values are bolded.
All metrics are averaged across three runs with three random seeds {42, 43, 44}.

4.5.2 Difference on Selection Policy

Table 6 examines how different selection policies
in SERTS affect retrieval performance. Here we
evaluate three policies: 1) RANDOM, which ran-
domly explores nodes without exploiting assigned
scores R; 2) MAX UCB (C = 0.0), which only
selects nodes with the highest R without explor-
ing other options; and 3) MAX UCB (C = 0.1),
which balances exploitation and exploration. The
results empirically prove that striking a balance be-
tween exploitation and exploration is necessary for
SeRTS to achieve ideal performance, while pure ex-
ploitation or exploration causes performance degra-
dation.

5 Conclusion

We propose Self-Rewarding Tree Search (SeRTS),
a plug-and-play retrieval method that combines
LLM reasoning with conventional retrievers to ad-
dress limitations in biomedical retrieval-augmented
approaches. SeRTS introduces a reasoning process
based on Monte Carlo Tree Search (MCTS) and a
self-rewarding paradigm, boosting zero-shot per-
formance in retrieving high-quality, informative re-
sults for Retrieval Augmented Generation (RAG).
We further enhance retrieval by fine-tuning LLMs
with PPO objectives using SeRTS retrieval trajec-
tories as feedback.

Experiments using the BioASQ-QA dataset
with GPT-3.5-Turbo and LLama2-7b show that
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SeRTS significantly improves BM25 retriever per-
formance, surpassing the self-reflection baseline in
efficiency and scalability. SeRTS (PPO) effectively
adapts LLMs to document retrieval, enhancing
their ability to find highly relevant documents for
RAG when answering medical queries. Our work
presents an effective method for accurate, compre-
hensive medical knowledge retrieval using LLMs.
While SeRTS outperforms Self-Reflection, both re-
quire numerous simulations, limiting widespread
application. Future research should focus on devel-
oping more efficient reasoning strategies and lever-
aging the self-improvement capabilities of LLMs
to further enhance retrieval efficiency and usability.

Limitations

PPO fine-tuning effectively improves SeRTS’s per-
formance but is prone to Catastrophic Forgetting,
degrading LLMs’ instruction-following capability.
Table 7 shows error cases where P query

ϕ fails to
follow the designed instruction. Although manual
templates can temporarily address these issues in
our current experiments, the noisy trajectories im-
pede further iteration and self-improvement using
SeRTS sampling and PPO fine-tuning when fed
back into the loop. As a result, we restrict our
experiments to a single iteration of sampling and
PPO fine-tuning. Future research should prioritize
mitigating Catastrophic Forgetting and investigate
the potential of multiple PPO fine-tuning iterations
for further LLM self-improvement.
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Based on the retrieved information, I would suggest the
following query to search for more information:
<query> Does losartan slow down brain atrophy in
Alzheimer’s disease? A systematic review and meta-
analysis. </query>

Based on the information retrieved, I would suggest the
following query to further search for relevant information:
"Does losartan slow down brain atrophy in Alzheimer’s
disease?"

Based on the retrieved information, I would suggest the
following query to retrieve more abstracts:
<query> Does losartan slow down brain atrophy in
Alzheimer’s disease? A systematic review and meta-
analysis. Corresponding Feedback: Total Score: 40/50

Based on the retrieved information, I would suggest the
following query to further search for relevant information:
"Losartan and brain atrophy in Alzheimer’s disease"
Query Here

Based on the retrieved information, I would suggest the
following query to further search for additional informa-
tion on dermatillomania:
"<query> Causes of dermatillomania Query Here >"

Table 7: Examples of P query
ϕ generating query pro-

posals. Cases where P query
ϕ successfully follows the

instruction are marked in red, while cases where P query
ϕ

fails to follow the instruction are marked in green.
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- Add 1 point if the knowledge is relevant and provides
some information related to the user’s inquiry, even if it is
incomplete or contains some irrelevant content.
- Add another point if the knowledge addresses a substan-
tial portion of the user’s question, but does not completely
resolve the query or provide a direct answer.
- Award a third point if the response answers the basic
elements of the user’s question in a useful way, regardless
of whether it seems to have been written by an AI Assistant
or if it has elements typically found in blogs or search
results.
- Grant a fourth point if the knowledge addresses the user’s
question directly and comprehensively, even if there is
slight room for improvement in clarity, conciseness, or
focus.
- Bestow a fifth point for knowledge that is impeccably
tailored to the user’s question, without extraneous infor-
mation, reflecting expert knowledge, and can be used to
produce a high-quality, engaging, and insightful answer.

Table 8: Details of {Five-point Rubrics}

B Statistics of Computational Overhead

To show how much overhead is introduced, we
measured the mean number of tokens per question
generated by the LLAMA2-7B-CHAT model for
both our method (SeRTS) and the Self-Reflection
baseline during the retrieval and reasoning process.
The results are Table 9.

Retrieval Method Avg. #Token

SELF-REFLECTION (SIM 6) 4691.0
SERTS (SIM 6) 4758.3

SELF-REFLECTION (SIM 12) 13,330.3
SERTS (SIM 12) 9,309.4
SERTS (SIM 12, PPO) 5,175.9

Table 9: Average number of tokens per question gener-
ated by LLAMA2-7B-CHAT during the experiment in
Table 4.

SERTS significantly reduces the number of gen-
erated tokens compared to SELF-REFLECTION.
With a simulation round of 12, SERTS gener-
ates 30.16% fewer tokens than SELF-REFLECTION.
When incorporating PPO into SERTS, the token
reduction achieves 57.12%.

C Experiments on MedMCQA dataset

We conducted experiments on the MedMCQA (Pal
et al., 2022) dataset to demonstrate the robust-
ness of SERTS. Using GPT-3.5-TURBO as the
answer generator, we sample 100 questions from
the development set and compare four configura-
tions: GPT-3.5 without retrieval, GPT-3.5 with

BM25 retriever, SELF-REFLECTION (SIM 12), and
SERTS (SIM 12).SERTS achieves an accuracy of
0.57, outperforming the no-retrieval baseline by
7.55% and SELF-REFLECTION by 3.64%, demon-
strating its effective generalization to other biomed-
ical QA datasets.

Method Accuracy

GPT-3.5 WO. RETRIEVAL 0.53
GPT-3.5 W. RETRIEVAL 0.55
GPT-3.5 W. REFLECTION 0.55
GPT-3.5 W. SERTS 0.57

Table 10: Performance of multi-choice QA on MedM-
CQA dataset.

D Implementation Details

D.1 RAG Pipeline
It searches for relevant text from the document
test set using the questions as queries and supplies
these texts as references to the language model.
The language model we used is the LLAMA2-7B-
CHAT (Touvron et al., 2023), which has been fine-
tuned on the BioASQ corpus using LoRA (Hu
et al., 2022). This corpus comprises 4,719 question-
answer pairs from the BioASQ task 11b training set.
Importantly, the documents in the training set are
distinct from those in the test set, ensuring no over-
lap. The BM25 retrieval function can be expressed
as follows:

score(q, d) =
n∑

i=1

IDF (qi)

· f(qi, d) · (k1 + 1)

f(qi, d) + k1 ·
(
1− b+ b · |d|

avgdl

)
(3)

, where q is the query, and d is the document. qi
is the i-th term in the query. f(qi, d) is the term
frequency of qi in the document d. |d| is the length
of the document d in terms of the number of words.
avgdl is the average document length in the collec-
tion. k1 and b are free parameters, usually chosen,
for example, k1 = 1.2 and b = 0.75. IDF (qi) is
the inverse document frequency weight of the term
qi, calculated as:

IDF (qi) = log

(
N − n(qi) + 0.5

n(qi) + 0.5
+ 1

)
(4)

, where N is the total number of documents in
the collection. n(qi) is the number of documents
containing the term qi.
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To minimize the influence of the prompt, we
employed a very simple prompt to instruct the lan-
guage model to generate appropriate answers based
on the provided text. The structure of this prompt
is illustrated as follows.

You are an expert in the field of biomedical science.

Below is an instruction that describes a task, paired with
an input that provides further context. Write a response
that appropriately completes the request.

### Instruction: {question}

### Input: {context}

### Response:

Table 11: Prompt for Question Answering.

D.2 Self-Rewarding Tree Search (SeRTS)
We use the Llama2-7b-chat model published in the
Huggingface 1 for experiments in this work. The
Llama2-7b-chat model is loaded in 4 bits, and it
uses flash attention 2 as attention implementation
for efficiency. For sequence generation, we keep
the same configuration of setting the temperature
to 0.7 and maximal length to 4096 tokens. For all
experiments, we report the averaged metrics from
three runs with the random seed fixed to {42,43,44}.
For the SeRTS process illustrated in Algorithm 1,
we set the maximal simulation number Sim to 12,
maximal branch number b to 3, and maximal depth
D to 3.

D.3 Self-Reflection
Compared with prompt for P query

θ in Table 2,
prompt for P reflect

θ in Table 12 removes all feed-
back from sibling nodes. Algorithm 2 shows a
detailed implementation of the self-reflection pro-
cess, node selection, and backpropagation oper-
ation is removed compared to SeRTS. All other
configurations of the self-reflection process remain
unchanged.

D.4 LoRA PPO Finetuning
For PPO fine-tuning, we utilize the LoRA and
PPO implementations from the peft and trl
Python packages, following the official training
script2. The fine-tuning process is completed

1https://huggingface.co/meta-llama/
Llama-2-7b-chat-hf

2https://github.com/huggingface/trl/blob/main/
examples/research_projects/stack_llama/scripts/
rl_training.py

You are a medical expert, and you are tasked with search-
ing for as much useful knowledge from a database of
medical paper abstracts as possible to address the user’s
question. The question is stated as follows: {Q}

You are given the BM25 retriever as the search tool. Ac-
cording to previous query proposals and proposals’ corre-
sponding feedback and suggestions, give one single better
query for the retriever to further search for extra informa-
tion needed for answering the given question.

Information already known is as follows:<retrieved_info>
Query and its reasoning for Abstracts: {Oanc

q }
Retrieved Abstracts: {Oanc

d }
</retrieved_info>

After examining the information above, justify your deci-
sion, in up to 100 words.

Hints:
1. Use simple keywords as queries if no information is
retrieved.
2. You can take one step at a time, subdivide the original
question, and search for information on the sub-questions.

Conclude with the query for the paper abstracts using the
format: "<query> Query Here </query>".

Table 12: Prompt for Self-Reflect Query Proposer
P reflect
θ .

on a single Nvidia A6000 GPU within 2 hours.
The lora_target_modules is set to "["q_proj",
"v_proj"]", with lora_r as 16, lora_alpha as 32,
and lora_dropout as 0.05. The micro_batch_size
is 1, batch_size is 8, and num_epochs is 1. For
optimization, we set the learning_rate to 1.41e-5,
the reward baseline to 3.75, and the random seed
to 0.
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Algorithm 1 The Self-Rewarding Tree Search (SeRTS) Algorithm.

1: Input: question Q, query proposer P query
θ , evaluator P eval

θ , max_simulation_number Sim,
max_branch_number b, max_depth Depth, BM25_retrieverRbm25.

2: TQ ← Initialize_tree(Q)
3: for i in range(Sim) do
4: C ← root(Tq)
5: ———————Selection———————
6: while C is not leaf node do do
7: C ← argmaxs UCB(s) = R(s)

N(s) + C ∗
√
2 ∗ ln N(p)

N(s) ▷ Select child node based on UCB
8: if C’s depth >= Depth then ▷ Break if C reaches maximal depth
9: break

10: end if
11:

12: if C has less than b children nodes then ▷ Select C if it is not fully expanded
13: break
14: end if
15: end while
16: if C’s depth >= Depth then ▷ Continue to select other nodes if C reaches maximal depth
17: continue
18: end if
19:

20: ————Expansion & Evaluation————
21: Oanc

q ← ⋃
k∈ancestors(C)Ak : query proposals from all C’s ancestor nodes

22: Oanc
d ← ⋃

k∈ancestors(C)Dk : retrieved documents from all C’s ancestor nodes
23: Osib

q ← ⋃
k∈siblings(C)Ak : query proposals from all C’s sibling nodes

24: Osib
f ← ⋃

k∈siblings(C) Fk : feedback from all C’s sibling nodes
25: O ← (Oanc

q , Oanc
d , Osib

q , Osib
f )

26: A← P query
θ (O,Q) ▷ Make new query proposal A based on O and Q

27: D ← Rbm25(A) ▷ InvokeRbm25 to retrieve documents according to A
28: R,F ← P eval

θ (D ∪Oanc
d , Q) ▷ Get reward score R and descriptional feedback Of for currently

retrieved documents D ∪Oanc
d and Q

29: if R == 5 then ▷ Stop early if D ∪Oanc
d receive highest score in 5-point rubrics

30: break
31: end if
32:

33: C ′ = create_new_child(Q,A,R,O) ▷ create a new child node for C
34: Add C ′ to children nodes of C
35: ——————Backpropagation——————
36: back_propagate(C) ▷ Update value of parent nodes using new score from C ′

37: end for
38: C = get_best_node(TQ) ▷ Fetch the node with the highest R in TQ

39: return D ∪Oanc
d from C ▷ Return all retrieved documents in C
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Algorithm 2 The Self-Reflection Algorithm.

1: Input: question Q, self-reflect query proposer P reflect
θ , evaluator P eval

θ , max_simluation number
Sim, max_branch_number b, max_depth Depth, BM25_retrieverRbm25.

2: TQ ← Initialize_tree(Q)
3: for i in range(Sim) do
4: C ← root(Tq)
5: ————Expansion & Evaluation————
6: Oanc

q ← ⋃
k∈ancestors(C)Ak : query proposals from all C’s ancestor nodes

7: Oanc
d ← ⋃

k∈ancestors(C)Dk : retrieved documents from all C’s ancestor nodes
8: O ← (Oanc

q , Oanc
d )

9: A← P reflect
θ (O,Q) ▷ Make new query proposal A based on O and Q

10: D ← Rbm25(A) ▷ Invoke Rbm25 to retrieve documents according to A
11: R,F ← P eval

θ (D ∪Oanc
d , Q) ▷ Get reward score R and descriptional feedback F for currently

retrieved documents D ∪Oanc
d and Q

12: if R == 5 then ▷ Stop early if D ∪Oanc
d receive highest score in 5-point rubrics

13: break
14: end if
15:

16: C ′ = create_new_child(Q,A,R,O) ▷ create a new child node for C
17: Add C ′ to children nodes of C
18: end for
19: C = get_best_node(TQ) ▷ Fetch the node with the highest R in TQ

20: return D ∪Oanc
d from C ▷ Return all retrieved documents in C
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