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Abstract

In an era where information is quickly shared
across many cultural and language contexts,
the neutrality and integrity of news media are
essential. Ensuring that the content of the me-
dia remains objective and factual is crucial to
maintaining public trust. With this in mind,
we introduce SAFARI(CroSs-lingual BiAs and
Factuality Detection in News MediA and News
ARtIcles), a novel corpus of news media and
articles for predicting political bias and the fac-
tuality of the reporting in a cross-lingual setup.
To our knowledge, this corpus is unprecedented
in its collection and introduces a dataset for po-
litical bias and factuality for three tasks: (i)
media-level, (ii) article-level, and (iii) joint
modeling at the article-level. At the media and
article levels, we evaluate the cross-lingual abil-
ity of the models; however, in joint modeling,
we evaluate on English data. Our frameworks
set a new benchmark in the cross-lingual eval-
uation of political bias and factuality. This is
achieved via the use of various Multilingual
Pre-trained Language Models (MPLMs) and
Large Language Models (LLMs) coupled with
ensemble learning methods.

1 Introduction

The integrity and objectivity of the news media
are crucial in an age where information is rapidly
disseminated across diverse cultural and linguistic
landscapes (Fenton, 2009). As observed Vosoughi
et al. (2018), misleading information or “fake news,”
spreads six times faster than the truth and reaches
a much larger audience. This underscores the need
for comprehensive data to assess political bias and
factuality in news media and articles, particularly
in a cross-lingual context, which remains a signif-
icant challenge (Nakov et al., 2024). Thus, we
introduce a novel corpus SAFARI specifically de-
signed for the cross-lingual analysis of political
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bias and factuality in news media and articles. Our
work in developing this corpus is motivated by the
absence of cross-lingual resources for detecting
political bias and factuality in media and articles
analysis. To address this issue, we offer a dataset
for ten languages: (i) at media-level political bias,
we have slightly less than 2k, and for factuality
marginally over 2.6k media, (ii) at article-level we
collect around 190k for political bias and around
190k of articles for factuality, and (iii) for joint
modeling at article-level we have moderately less
than 100k of English articles.

Furthermore, the methodology behind our study
incorporates the use of MPLMs and LLMs to assess
dataset tasks. Our approach enables MPLMs and
LLMs to provide an evaluation of political bias and
factuality across languages at the source and article
levels and in joint modeling. Moreover, MPLMs
and LLMs (using zero-shot learning) are coupled
with ensemble learning methods for evaluation.

Our contributions are as follows:

• We introduce a data construction pipeline that
delivers a large-scale corpus for cross-lingual
evaluation of political bias and factuality, ad-
dressing both the media and the article levels.
Also, we present an English-only dataset for
the joint modeling assessment at the article-
level.

• We evaluate and compare distant supervision
vs. expert-annotated data at the article-level
only for political bias.

• We employ MPLMs for analysis at the media-
level, article-level, and in joint modeling lever-
aging ensemble learning, using hard and soft
votings.

• We implement LLMs using zero-shot learn-
ing with Mistral7B (Jiang et al., 2023) and
LLaMA27B (Touvron et al., 2023) utilizing
an ensemble approach based on hard voting.
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In Section 2, we provide a review of previous
and recent studies that focus on political bias, factu-
ality, and joint modeling analysis. In Section 3, the
data collection process and the subsequent exam-
ination are elaborated. In Section 4, the research
tasks are defined and the statistics of the dataset
are introduced, together with the frameworks and
techniques. Section 5 delineates our analysis and
the results obtained using multiple MPLMs with
ensemble learning. Section 6 explores our inves-
tigation of zero-shot learning for our tasks using
LLMs and nuances of distant supervision vs. expert
annotated data. Finally, Section 7 summarizes our
findings and suggests potential future directions.

2 Related Work

Datasets Predicting political bias and factuality
in news media requires large-scale databases, with
previous efforts like those of (Färber et al., 2020;
Cremisini et al., 2019; Zubiaga et al., 2016; Ham-
borg et al., 2019; Kiesel et al., 2019a; Lim et al.,
2020, 2018; Vargas et al., 2023) relied on crowd-
sourcing to gather data. However, these databases
are relatively small and focus mainly on English,
with annotations at the level of the media, article,
and sentence (Baly et al., 2020a, 2018; Cremisini
et al., 2019; Hamborg et al., 2019; Kiesel et al.,
2019a). In contrast, our corpus, which emphasizes
diverse languages, offers a larger dataset to predict
political bias and factuality at the media and article
levels. In the following, we explore the methods
and datasets coupled to use political bias and factu-
ality and their joint analysis.

Political Bias Understanding political bias is a
nuanced exploration with varying definitions, in-
cluding uneven coverage or favoritism (Stevenson
et al., 1973) and systematic preferences for candi-
dates or ideas (Waldman and Devitt, 1998). Guo
et al. (2022) employed pre-trained BERT (Devlin
et al., 2019) models to detect linguistic political
bias in news articles. Groeling (2013) expanded
the concept of media bias, considering dimensions
such as selection and presentation of political bias
influenced by the choice of newsmakers (Smith
et al., 2001; Hassell et al., 2020). The study by Fan
et al. (2019) used annotated media from Budak et al.
(2016), analyzing 300 NYT, FOX, and HPO arti-
cles for bias, similar to our distant supervision ap-
proach to capture diverse ideological perspectives.
Research on selection political bias requires huge
databases, with studies using commercial (Soroka,

2012; Padgett et al., 2019; Gilens and Hertzman,
2000; Boykoff and Boykoff, 2004) and public
datasets (Boudemagh and Moise, 2017; Kwak and
An, 2014) using multi-source approaches (Kwak
and An, 2016; Weaver and Bimber, 2008). Var-
ious methods measure the political bias of news
media, including linking news outlets with politi-
cians, analyzing shared audiences (Groseclose and
Milyo, 2005; Gentzkow and Shapiro, 2010), and
identifying the intricate linguistic techniques used
to shape readers’ opinions and emotions (Sajwani
et al., 2024). Alternately, political bias is assessed
through Twitter interactions (An et al., 2011, 2012;
Stefanov et al., 2020). Predictions extend to polit-
ical bias at the media, article and sentence levels,
often using distant supervision with small datasets
only in English (Kulkarni et al., 2018; Potthast
et al., 2018; Kiesel et al., 2019b; Baly et al., 2020a;
Da San Martino et al., 2023; Barrón-Cedeño et al.,
2023a,b; Azizov et al., 2023; Chen et al., 2018; Fan
et al., 2019; Spinde et al., 2022).

Factuality Veracity of information is exam-
ined at various levels: claim-level (e.g., “fact-
checking”), article-level (e.g., “fake news” de-
tection), user-level (e.g., identifying trolls), and
medium-level (e.g., source reliability estimation).
Claim-level efforts focus on fact-checking and
rumor detection using social media interactions
(Castillo et al., 2011; Canini et al., 2011; Ma et al.,
2015; Ma et al., 2016, 2017; Kochkina et al., 2018;
Dungs et al., 2018; Lim et al., 2020; Nguyen et al.,
2020; Hardalov et al., 2022; Nakov et al., 2023),
focusing on the stance and reliability of the source.

Early work estimated source reliability based on
a medium’s stance towards true/false claims using
an English dataset (Mukherjee and Weikum, 2015;
Dong et al., 2015; Popat et al., 2016, 2017; Popat
et al., 2018). Recent approaches, such as Baly
et al. (2020c), used gold labels and various English
information sources, which are relatively small
compared to our work. Mehta et al. (2022) and
Panayotov et al. (2022) used graph-based frame-
works to profile news media outlets, focusing on
relationships and audience overlap. LLMs (e.g.,
ChatGPT) are used for the estimation of source
reliability, as demonstrated by Yang and Menczer
(2023), correlated with human expert ratings, and
Mehta and Goldwasser (2023) introduced a frame-
work that combined graph-based models, LLMs
and human expertise for the profile of news me-
dia, effectively identifying fake news with minimal
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Language Political Bias Factuality
Left Left-Center Least Biased Right-Center Right Total Very High High Mostly factual Mixed Low Very Low Total

English 259 567 637 279 134 1,876 67 1,529 166 425 202 119 2,508
German - 9 5 6 1 21 1 8 8 3 1 2 23
Hindi 3 8 - 4 - 15 - 3 5 6 1 - 15
French 2 4 2 2 - 10 2 5 2 2 1 2 14
Spanish 1 3 2 3 - 9 - 7 2 3 - - 12
Hebrew 1 2 1 2 2 8 - 5 - 6 - - 11
Japanese - 2 3 2 - 7 - 7 - 1 1 - 9
Italian - 2 2 1 1 6 - 5 1 1 2 - 8
Arabic - 3 1 1 1 6 - 3 - 3 1 - 7
Russian - - - 2 - 2 - - - 2 2 2 6

Total 1,960 2,613

Table 1: Media-level dataset statistics.

Political Bias Factuality
Language Left Center Right Total Very High High Mixed Low Very Low Total

English 51,076 52,939 34,801 138,816 8,661 56,656 13,838 12,937 4,095 96,187
Spanish 3,168 4,281 1,720 9,169 - 2,000 6,168 - - 8,168
French 1,680 4,102 2,243 8,025 - 16,191 17,091 2,243 - 35,525
German 1,200 2,840 1,020 5,060 130 8,140 - 100 - 8,370
Italian - - 5,672 5,672 - - 5,672 - - 5,672
Bulgarian - 4,860 - 4,860 - - 4,860 - - 4,860
Hindi 2,890 - - 2,890 2,890 - - - - 2,890
Persian - - 2,833 2,833 - - 2,833 - - 2,833
Polish - - 5,000 5,000 10,000 - 6,168 - - 16,168
Russian - - 3,980 3,980 - - 3,980 - 862 4,842

Total 186,305 189,347

Table 2: Article-level dataset statistics.

human input. Burdisso et al. (2024) employed rein-
forcement learning to estimate the reliability of the
media, correlated with journalist scores to predict
reliability labels.

Joint Modeling Joint modeling of factuality and
political bias remains underexplored, with an at-
tempt by (Baly et al., 2019) using a small English
dataset using multi-task ordinal regression. Under-
standing the relationship between factuality and
political bias in the news media, especially when
outlets exhibit different behaviors on these aspects,
presents a significant challenge.

3 Dataset Construction

Our methodology encompasses two levels of data
collection: media-level and article-level, both us-
ing the distant supervision technique (Mintz et al.,
2009) for article collection. We use a two-step cri-
terion: (i) We exclusively used sources expertly
annotated by Media Bias/Fact Check1. (ii) We se-
lect active media outlets. In media-level, we gather
sources from Media Bias/Fact Check (MBFC) and
collect up to 30 front-page articles from each web-

1www.mediabiasfactcheck.com

site, labeled according to their sources. Similarly,
in article-level, we apply distant supervision by as-
signing labels to articles from media annotated by
MBFC, and collect expert-annotated data for polit-
ical bias from AllSides2 to compare performance
with distant supervision data. In addition, during
the data scraping process, we specifically targeted
sections that focused on political, economic, and
social issues. With this in mind, we used the EBK-
means (Bholowalia and Kumar, 2014) clustering
to analyze our entire dataset and identified 15 clus-
ters. Furthermore, we validate our choice with the
silhouette score, confirming the quality and separa-
tion of the clusters. The percentage distribution of
data points was calculated across the clusters and
visualized in Figure 1.

3.1 Media-level

Media Collection Figure 2 (Appendix A) shows
our pipeline for media-level data collection, and
the following are our steps: (i) At this stage, we
compile a set of media sources from MBFC. After
manually evaluating the availability of each source
through their links, we extracted the details of each

2www.allsides.com
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Very High High Mixed Low Very Low Total

Center 8,661 29,869 - - - 38,530
Left - 26,787 2,587 - - 29,374
Right - - 11,251 12,937 4,095 28,283

Total 96,187

Table 3: Joint modeling dataset statistics.

Figure 1: Topics distribution in our dataset.

source as JSON-formatted lines from the HTML
code. (ii) In the article link parsing stage, front-
page article links from these media sources were
parsed according to specific criteria. Only links
that were internal to the domain and have more than
65 characters in length, excluding links from the
menu button. (iii) In the article text collection stage,
the previously selected article links were used to
retrieve the title and full text of the articles. We use
script code and manually test to ensure effective
text extraction. (iv) Finally, the post-processing
stage involved formatting the collected data in the
required JSON format.

3.2 Article-level

Articles Collection As illustrated in Figure 2
(Appendix A) for the data at the article-level we
obtained the medium with the respective label from
the data at the media-level. Subsequently, the se-
lection of the media for parsing involved manually
selecting the available sources with minimum 100
articles in their archive to have sufficient data to
base our predictions on. Afterthat, it required to
distinct structure of each website and analysis of
their HTML code using a browser code inspector to
identify relevant tags for efficient parsing. The arti-
cles parsing function facilitates this process in four
stages: (i) initially retrieving the complete code
from the archive page of the article, (ii) analyzing
this code to extract a list of articles (including ti-

Set Media-level (A) Media-level (B) Article-level (A) Article-level (B) Joint modeling

Train 1,704 2,354 83,180 57,433 57,433
Development 86 77 10,000 10,000 10,000
Test (Eng) 86 77 28,180 28,754 28,754
Test (Multi) 84 105 47,489 54,527
Test (Eng-EA) 17,456

Table 4: Train/development/test sets distribution over
media-level, article-level and joint modeling datasets.

tles and links), (iii) making a secondary request to
gather the full text of each article, and (iv) finally
compiling these data into a JSON format.

Allsides Data obtained from AllSides were col-
lected from the entire archive using a strategy simi-
lar to that used for the article-level.

3.2.1 Joint Modeling
To gather data on political bias and factuality at
the article-level, for joint modeling, we utilized the
method from the article-level as shown in Figure 2
(Appendix A), however, we combined the labels:
political bias and factuality.

3.3 Data Curation
We applied the same curation method for media-
level, article-level, and joint modeling. As shown
in Figure 2 (Appendix A), the curation process
involved evaluating the dataset according to the
length of the article. Longer articles were typically
found in sources considered more factual, while
no similar trend was observed for political bias.
To reduce the impact of very short or excessively
long texts, which might be less relevant or contain
mixed content (e.g., advertising), we focused on
articles between 500 and 1,500 words. This range
was chosen because the average article length in our
dataset is 1,000 words. Although this approach may
not entirely eliminate bias, it helps to ensure more
informative representation and reduces potential
bias across languages.

When we obtain media articles, we first remove
duplicate content. We also meticulously removed
HTML artifacts, such as tags, scripts, and CSS
elements, to ensure that only actual textual content
was retained. Alongside the advertisements, non-
relevant elements such as navigation menus and
footers were manually filtered out.

4 SAFARI Benchmark

4.1 Poltical Bias and Factuality
4.1.1 Media-level

(A) Given the news article(s) of a news outlet
(e.g., www.bloomberg.com), predict the overall po-
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Hard Voting Soft Voting

Model MAE F1 A P R MAE F1 A P R

English

mBERTBase 0.183 82.43 82.37 83.99 82.37 0.050 80.87 80.77 81.22 80.77
XLM-RBase 0.215 79.80 79.71 80.79 79.71 0.128 81.59 81.46 81.22 81.46
mDeBERTaV3Base 0.149 83.77 83.75 83.95 83.75 0.145 81.98 81.94 80.10 81.94
DistilmBERTBase 0.176 83.64 83.78 87.23 87.78 0.125 84.46 84.37 84.19 84.37
mBARTLarge 0.126 84.83 84.88 84.07 84.88 0.125 84.93 84.89 85.08 84.89
Ensemble 0.125 84.95 84.91 85.02 84.91 0.120 84.96 84.92 84.95 84.92

Multilingual

mBERTBase 1.052 26.64 37.50 25.52 37.50 1.052 25.74 37.50 24.25 37.50
XLM-RBase 1.062 26.54 36.45 25.77 36.45 1.104 23.58 32.29 22.03 32.29
mDeBERTaV3Base 1.052 29.05 36.45 33.44 36.45 1.010 32.12 39.58 40.26 39.58
DistilmBERTBase 1.302 22.98 26.04 21.82 26.04 1.364 20.29 22.91 19.46 22.91
mBARTlarge 1.063 27.45 33.33 37.72 33.33 1.062 27.02 33.32 37.17 33.32
Ensemble 1.117 27.44 37.62 27.14 37.62 1.118 26.88 36.63 25.52 36.63

Table 5: Analysis of political bias using hard and soft
votings for each framework and ensemble at media-
level (A). Bold values indicate the best scores for each
category.

litical bias of that news outlet as: LEFT-, LEFT-
CENTER, CENTER-, RIGHT-CENTER OR RIGHT-
LEANING.

(B) Given the news article(s) of a news outlet
(e.g., www.bloomberg.com), predict the overall fac-
tual reporting of that news outlet as: VERY HIGH,
HIGH, MOSTLY FACTUAL, MIXED, LOW OR VERY

LOW.

4.1.2 Article-level
(A) Given an article, classify its political bias as:

LEFT, CENTER, OR RIGHT.
(B) Given an article, classify its factual reporting

as: VERY HIGH, HIGH, MIXED, LOW, OR VERY

LOW.

4.1.3 Joint Modeling
Given an article, classify its political bias and

factual reporting jointly as: CENTER-VERY HIGH,
CENTER-HIGH, LEFT-HIGH, LEFT-MIXED, RIGHT-
MIXED, RIGHT-LOW AND RIGHT-VERY LOW.

Important In joint modeling of political bias
and factuality, specific bias labels are strongly cor-
related with certain factuality levels (Baly et al.,
2019). For example, a “center” bias typically cor-
responds to “very high” or “high” factuality. The
expert-annotated data we collected from MBFC
reflect this correlation, as it does not include un-
common combinations (e.g., left-low or right-high)
shown in Table 3. This absence aligns with the
source’s correlation and annotation guidelines.

4.2 Dataset Statistics
4.2.1 Media-level
Table 1 presents the total amount of media and
its distribution across languages for each label.
For both sets, we have the same train/val/test sets.
When data were acquired, as shown in Table 4, the

Hard Voting Soft Voting

Model MAE F1 A P R MAE F1 A P R

English

mBERTBase 0.132 83.20 83.19 83.23 83.19 0.090 82.93 82.59 82.50 82.59
XLM-RBase 0.223 80.79 80.94 80.22 80.94 0.532 62.84 70.12 70.75 70.12
mDeBERTaV3Base 0.188 81.82 81.99 81.03 81.82 0.207 81.22 81.01 81.63 81.01
DistilmBERTBase 0.110 81.56 81.60 81.14 81.60 0.519 60.38 67.85 56.15 67.85
mBARTLarge 0.049 82.39 82.38 82.41 82.38 0.415 71.28 64.15 82.15 64.15
Ensemble 0.142 81.49 81.59 81.15 81.59 0.143 81.83 81.36 81.48 86.36

Multilingual

mBERTBase 1.183 29.60 27.50 36.60 27.50 0.980 30.25 35.57 31.01 35.57
XLM-RBase 1.006 29.76 39.71 30.88 39.71 1.490 15.00 25.00 19.24 25.00
mDeBERTaV3Base 1.054 24.78 30.37 38.52 30.37 1.230 21.34 27.88 37.35 27.88
DistilmBERTBase 1.090 28.84 39.85 32.47 39.85 1.394 12.65 23.07 13.24 23.07
mBARTLarge 1.386 25.45 22.73 35.70 22.73 1.240 27.00 29.80 29.91 29.80
Ensemble 0.872 38.44 50.00 44.18 50.00 0.854 40.76 50.01 42.38 50.01

Table 6: Analysis of factuality using hard and soft vot-
ings for each framework and in ensemble at media-level
(B).

dataset was segmented into training, development,
and testing sets. There is a single combined train-
ing and validation set, exclusively in English. For
testing, there are two distinct sets: the first is in
English, while the second is multilingual for both
political bias and factuality.

4.2.2 Article-level
A Table 2 presents the total number of articles
with their political bias and distribution between
languages for each label. Furthermore, Table 4
illustrates that we have a single set of training
and validation articles, both exclusively in English,
compiled using distant supervision. In addition,
there are three testing sets: the first comprises En-
glish articles collected through distant supervision
(DS), the second is an English test set assembled
from AllSides, annotated by experts (EA), and the
third is a multilingual test set of articles.

B As shown in Table 4, for the factuality of re-
porting of news articles, we have only one train and
validation sets of articles in English. Our test sets
comprise two distinct types: English and multilin-
gual.

4.2.3 Joint Modeling
Table 3 presents the total number of articles and
their distribution by label. Furthermore, Table 4
illustrates the distribution of data in train/validation
and test sets, which are only given in English.

Note: We carefully split the dataset into
train/development/test sets to avoid data leakage.
Each split is unique and ensures that no media or
articles previously exposed to the model are in-
cluded in the other sets. The splits were performed
using a stratified sampling approach to maintain
the distribution of classes across all sets. The test
sets are unique and exclude articles from sources
previously exposed to the model. Moreover, the
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Political Bias Factuality

Model MAE F1 A P R MAE F1 A P R

English-DS

mBERTBase 0.168 81.46 81.49 81.46 81.50 0.188 81.18 81.22 81.23 81.22
XLM-RBase 0.130 81.33 81.37 81.35 81.37 0.160 81.54 81.57 81.55 81.57
mDeBERTaV3Base 0.131 81.38 81.41 81.39 81.41 0.163 81.45 81.41 81.63 81.41
DistilmBERTBase 0.162 81.23 81.27 81.25 81.27 0.162 81.49 81.52 81.49 81.52
Hard Voting 0.122 82.06 82.02 82.20 82.02 0.158 81.73 81.70 81.82 81.70
Soft Voting 0.112 82.62 82.59 82.70 82.59 0.157 81.88 81.87 81.91 81.87

Multilingual

mBERTBase 0.630 61.60 61.26 67.41 61.26 0.492 66.54 66.75 68.31 66.75
XLM-RBase 0.601 62.99 62.53 68.17 62.53 0.479 67.22 67.67 70.18 67.67
mDeBERTaV3Base 0.609 62.85 62.42 66.68 62.42 0.480 66.07 67.59 74.08 67.59
DistilmBERTBase 0.627 62.45 61.92 69.32 61.92 0.498 65.73 65.80 65.76 65.80
Hard Voting 0.590 63.09 63.57 66.97 63.57 0.497 65.89 65.81 65.99 65.81
Soft Voting 0.696 63.02 63.46 68.91 63.46 0.494 66.26 66.14 67.06 66.14

English-EA

mBERTBase 0.223 67.33 67.38 68.70 67.38
XLM-RBase 0.228 66.86 66.95 68.36 66.95
mDeBERTaV3Base 0.229 67.52 67.32 68.96 67.32
DistilmBERTBase 0.233 66.47 66.54 67.80 66.54
Hard Voting 0.200 69.44 69.46 69.39 69.46
Soft Voting 0.192 70.01 69.97 71.73 69.97

Table 7: Analysis of political bias and factuality using
frameworks independently and ensembles using hard
voting and soft voting at article-level. DS - distant su-
pervision. EA - Expert annotated data from AllSides.

English and multilingual test samples are unique
and have no connection between them, as they orig-
inate from different news outlets and languages.
This separation ensures an unbiased evaluation of
the model performance across different languages
and contexts.

4.3 Cross-lingual Assessment

The dataset predominantly consists of data in En-
glish with labels for both tasks; however, dataset
lacks labeled articles and media in some other lan-
guages. To address this challenge, we employ the
cross-lingual assessment.

At the media-level, we employ five MPLMs:
mBERTBaseBase (Devlin et al., 2019), XLM-RBase
(Conneau et al., 2019), DistilmBERTBase (Sanh
et al., 2019), mDeBERTaV3Base(He et al., 2021),
and mBARTLarge(Liu et al., 2020). However, at
the article-level and in joint modeling, we used the
same MPLMs with the exception of mBART.

In a previous study Baly et al. (2020a) to detect
political bias at the article level, adversarial media
adaptation and specially adapted triplet loss were
used. Furthermore, to predict political bias and
factuality at media-level Baly et al. (2018) utilized
a comprehensive set of features extracted from var-
ious sources: articles, Wikipedia page, Twitter ac-
count, URL structure and web traffic data from
target media and in joint modeling. Baly et al.
(2019) investigates the detection of trustworthiness
and political ideology in news outlets using a multi-
task ordinal regression framework, establishing a
connection between political bias and low trust-
worthiness. This research shows that joint mod-

Model MAE F1 A P R

mBERTBase 0.146 81.50 81.17 81.39 80.69
XLM-RBase 0.147 81.35 82.82 81.23 80.44
mDeBERTaV3Base 0.145 82.03 81.46 81.46 80.85
DistilmBERTBase 0.149 81.01 82.50 83.15 80.06
Hard Voting 0.146 83.57 83.13 82.07 80.70
Soft Voting 0.145 83.81 83.50 83.29 80.97

Table 8: Analysis of politcal bias and factuality jointly
using each model independently and in ensemble using
hard and soft votings.

eling significantly exceeds isolated methods. In
our study, we use a traditional ensemble learning
method (Freund and Schapire, 1997) in the analysis
at the article and media levels, using hard and soft
votings for performance optimization; the architec-
ture is shown in Figure 3 (Appendix A).

At the media-level, we integrate the predictions
from individual articles into their media sources
using both hard and soft voting methods, along with
combining the models in an ensemble approach.

At the article-level, we collate multiple model
predictions and individual models for classification
of articles.

The elaboration of the hard voting is in Equation
1, and the soft voting is in Equation 2.

Let Pi be the predicted label political bias or fac-
tuality of the i-th article. The aggregated political
bias and factuality Pm can be calculated as follows:

Pm = mode(P1, P2, . . . , Pn). (1)

For soft voting, let Pi,j be the predicted probabil-
ity of the i-th article belonging to the j-th political
bias class or factuality. The aggregated political
bias and factuality Pm can be calculated as follows:

Pm = argmax
j

(
1

n

n∑

i=1

Pi,j

)
. (2)

For joint modeling, our study uses One Hot En-
coding (OHE) (Bishop, 2006) to accommodate
multi-class labels (e.g., left, center, right; very high,
high, mixed, low, very low) within our loss func-
tion. Our dataset comprises various classes repre-
senting different political biases and the factuality
of the reporting. To effectively train our model,
these classes are transformed into binary format,
resulting in a label array such as [0, 1, 0] for po-
litical bias and [0, 0, 1, 0, 0] for factuality. This
representation ensures an optimal interpretation by
the model. Using OHE, we facilitate the model’s
ability to handle and learn from the multi-faceted
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Political Bias Factuality

Model MAE F1 A P R MAE F1 A P R

English

Mistral 1.247 30.21 33.67 37.19 33.67 1.242 11.12 21.07 19.04 21.07
LLaMA2 1.134 22.12 34.70 40.34 34.70 1.601 19.10 26.21 18.75 26.21
Ensemble 1.160 27.97 32.00 27.18 32.00 1.581 15.14 20.93 17.79 20.93

Multilingual

Mistral 1.564 18.72 22.88 17.54 22.88 1.003 7.99 20.03 28.77 20.03
LLaMA2 1.560 4.14 13.68 36.20 13.68 1.676 20.62 26.06 18.97 26.06
Ensemble 1.484 16.71 22.22 22.93 22.22 1.076 25.73 30.81 25.00 25.73

Table 9: Analysis of political bias and factuality of
reporting using hard voting for each framework and
ensemble of models at media-level.

nature of our data. We use the tokenizer’s function
in our pipeline, whose primary function is to con-
vert textual data into embeddings, a critical step
in preparing the data for model training. However,
the tokenizer does not directly participate in the
transformation of the label space. The conversion
of label formats is handled by a separate function
in our data pre-processing pipeline.

This task can be formulated as follows: Given
the one-hot encoded vectors for political bias yP

and factuality yF , and the features x of an article,
the joint prediction can be modeled as shown in
Equation 3:

ŷ = softmax(Wx+ b), (3)

where ŷ is the predicted probability distribution
over the joint classes of political bias and factuality,
W is the weight matrix and b is the vector.

The loss function for training the model is de-
fined as the sum of the cross-entropy losses for
political bias and factuality, as expressed in Equa-
tion 4:

L = −


∑

j

yP,j log ŷP,j +
∑

k

yF,k log ŷF,k


 ,

(4)
where yP,j and yF,k are the true labels of polit-

ical bias and factuality, respectively, and ŷP,j and
ŷF,k are the predicted probabilities.

Evaluation Measures We evaluate our frame-
works using the following measures: Mean Abso-
lute Error (MAE), F1 Score (F1), Accuracy (A),
Precision (P), and Recall (R). We report MAE
given the ordinal nature of both the factual and
political bias classes (Baly et al., 2018, 2020b).
Furthermore, we provide Weighted Average for F1,
Precision and Recall due to class imbalance. Addi-
tionally, we evaluated the stability of our MPLMs
by averaging the results over 3-5 independent runs

Political Bias Factuality

Model MAE F1 A P R MAE F1 A P R

English-DS

Mistral 0.732 45.06 48.70 56.02 48.70 1.637 13.99 21.30 15.15 21.30
LLaMA2 0.748 46.56 48.92 55.50 48.92 1.233 16.85 24.56 15.30 24.56
Ensemble 0.747 46.84 48.33 49.98 48.33 1.287 20.72 27.54 18.24 27.54

Multilingual

Mistral 0.880 40.62 42.26 45.22 42.26 1.744 10.46 19.31 14.87 19.31
LLaMA2 0.835 38.98 42.16 42.66 42.16 1.581 16.19 23.19 14.96 23.19
Ensemble 0.841 43.30 44.41 44.89 44.41 1.630 13.03 20.94 11.54 20.94

English-EA

Mistral 0.838 40.05 41.53 43.50 41.53
LLaMA2 0.809 36.64 41.57 41.31 41.57
Ensemble 0.817 39.67 41.63 42.28 41.63

Table 10: Analysis of political bias and factuality using
frameworks independently and ensembles using hard
voting at article-level.

using various seeds by computing the standard de-
viation.

5 Experimental Setup & Results

5.1 Experimental Setup

The experimental setup for all tasks involved con-
sistent hyper-parameters across various MPLMs,
with minor task-specific adjustments. More details
can be seen in Appendix A.

5.2 Results

Media-level In our analysis that includes the de-
tection of political bias and factuality in various
models, we observe a notable performance in En-
glish and multilingual contexts. For the detection
of political bias, as illustrated in Table 5, the en-
semble of models shines in the English set with
higher scores, while mDeBERTaV3 excels in the
data of multilingual political bias using soft vot-
ing. In contrast, DistilmBERT performs poorly in
multilingual bias detection. When we analyze the
factuality, as shown in Table 6, mBERT emerges as
the best performer in the English dataset using hard
voting, but XLM-R and DistilmBERT lag behind.
In the multilingual context, soft voting outperforms
others.

Article-level Analyzing political bias and factu-
ality in English distant supervision and expert an-
notated sets, and multilingual set, the performance
of various models and ensemble methods employ-
ing hard and soft voting reveals promising results,
as shown in Table 7. In the English-DS context
for both political bias and factuality, soft voting
emerges as the most effective classifier, outperform-
ing all individual models with the highest scores
in all evaluation measures. For the multilingual
test set, hard voting shows a slight advantage over
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Model MAE F1 A P R

Mistral 0.351 29.68 29.68 12.12 29.68
LLaMA2 0.340 31.84 31.84 27.88 31.84
Ensmeble 0.317 23.62 36.48 18.15 36.48

Table 11: Analysis of political bias and factuality jointly
using each model independently and in ensemble using
hard voting.

other methods in detecting political bias. In con-
trast, XLM-R leads in the factuality assessment. In
the English-EA dataset, only political bias is eval-
uated, and soft voting ensemble of models is the
most effective.

Joint Modeling In analyzing the joint perfor-
mance of political bias and factuality in multiple
models and ensemble methods, we observe the dis-
tinction. According to the results in Table 8, the
ensemble of models using soft voting clearly out-
performs all other individual classifiers. However,
a hard voting ensemble of models, slightly behind
soft voting, while still showing good performance,
especially in precision, where it almost matches
soft voting. Among the individual models, mDe-
BERTaV3 is the most efficient in this joint task.

Summary In summary, our study reveals that
employing the soft voting ensemble method is ef-
fective across all tasks, albeit with nuances. This
effectiveness comes in part from soft voting by
averaging scores, leading to performance variabil-
ity depending on the balance of weak and strong
models. This was particularly evident in the multi-
lingual test sets for article-level political bias and
factuality, as well as in the multilingual test set
for media-level bias and the English test set for
media-level factuality. Furthermore, given the time
and cost constraints associated with human annota-
tions, the use of distant supervision data is a help-
ful approach3 (more details can be seen in Sub-
section 6.2). We observed that specific MPLMs,
such as mBERT and XLM-R, excelled in differ-
ent tasks. The media-level dataset includes up to
30 articles per media outlet, ensuring comprehen-

3We conducted a manual analysis of a total of 500 articles
from 124 media outlets and 1000 articles from 219 media
outlets, randomly selected from AllSides. We cross-referenced
these articles with Media Bias/Fact Check labels. Interestingly,
471 (94.2%) and 945 (94.5%) of the articles aligned perfectly
with their respective outlet label, demonstrating the reliability
of the DS data for our tasks and strengthening our assumption.
Furthermore, these articles were chosen to ensure a diverse
representation of the dataset, covering various media sources
and biases.

sive training, although this results in a predomi-
nance of English data (around 95%). This pre-
dominance aids in transferring the model’s predic-
tive capabilities to other languages, but leads to
lower performance compared to the article-level
dataset, which is larger and offers more data for
training. Furthermore, the performance discrep-
ancy between the English and multilingual con-
figurations, as shown in Tables 5 and 6, can be
attributed to several factors. Despite using a multi-
lingual pre-trained model, fine-tuning on English
data does not generalize well to other languages
due to differences in vocabulary, syntax, grammar,
and cultural contexts. Additionally, the model may
overfit to English-specific patterns due to inten-
sive English training and insufficient exposure to
diverse linguistic datasets during fine-tuning.

6 Discussion

In this section, our analysis focuses on the latest
LLMs, specifically Mistral7B and LLaMA27B , ex-
amining their capabilities in zero-shot learning cou-
pled with ensemble using hard voting.

Furthermore, we explore why models tested on
distant supervision data exhibit higher performance
levels compared to those tested on expert-annotated
data, specifically regarding the detection of politi-
cal bias at the article-level in the English language.

6.1 Overall Observation

A notable challenge in our study is managing text
length, which poses complexities for LLMs. To
mitigate this, we use BART (Lewis et al., 2019) for
the summarization of English texts and mT5 (Xue
et al., 2021) for the processing of multilingual con-
tent with a minimum text length of 128 and a max-
imum of 412. Our objective was to eliminate pars-
ing artifacts, reduce the input length required by
LLMs, enhance data quality, and accelerate infer-
ence time. Subsequently, the pre-processed texts
were converted into task-specific prompts as out-
lined in Section 4 and fed into LLMs.

Based on our observation of the results in Ta-
bles 9 and 10, LLMs in zero-shot learning settings
recognize political bias more effectively compared
to factuality. Furthermore, due to the less fine-
grained labels for political bias at article-level com-
pared to factuality, LLMs easier predict political
bias when there are fewer classes. In general, the
performance of Mistral, LLaMA2, and their en-
semble varies based on the tasks. Table 11 focuses
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on joint modeling, where LLaMA2 outperforms
Mistral, and hard voting stands out for its overall
accuracy.

6.2 Distant Supervision vs. Expert Annotation

Two primary factors explain the performance differ-
ence between the models evaluated in EA vs. DS.
First, the models were trained and evolved only on
English data obtained via DS that differ in quality
and detail from EA. Second, expert-annotated data,
which are considered gold labels, are more accurate
and have more detailed annotations. This complex-
ity is a significant barrier for the models because,
in their training and development phases, they have
not been exposed to such data, making it difficult
for them to appropriately identify and adjust to the
nuances present in the expert-annotated test set.

7 Conclusion & Future Work

In this article, we introduce SAFARI, a new large-
scale corpus for cross-lingual evaluation at the me-
dia and article levels, specifically designed for the
detection of political bias and factuality of report-
ing, along with our data construction pipeline. Fur-
thermore, we present an exclusive English dataset
for joint modeling at the article-level. We also
compare the performance of distant supervision
vs. human-annotated data for political bias at the
article-level. Moreover, our corpus is evaluated
using MPLMs, and we implement hard and soft
ensemble learning voting for all tasks. Lastly, we
experimented with LLMs using hard voting.

In future work, our aim is to gather a larger mul-
tilingual corpus and conduct a more fine-grained
analysis of political bias and factuality. Acknowl-
edging that the U.S.-centric left/center/right politi-
cal spectrum is not universally applicable, we plan
to model biases that are more relevant to different
regions and cultures. We also intend to collabo-
rate with experts, seek alternative data sources, and
expand the date ranges of news outlets to reduce
data imbalance and create a larger and more diverse
dataset. Furthermore, we plan to perform a multi-
modal analysis of political bias and factuality in
news media and articles. We will also deepen our
error analysis, breaking it down by language to im-
prove performance. Additionally, we will conduct
experiments to study cross-lingual abilities in de-
tail, focusing on discrepancies in factuality and po-
litical bias for articles on the same topic across dif-
ferent languages, and stratify results based on topic

distribution. Finally, we plan to investigate politi-
cal bias and factuality using fine-tuned LLMs, po-
tentially leveraging techniques such as LoRA (Hu
et al., 2021) and QLoRA (Dettmers et al., 2023).

Limitations

We created a corpus for diverse languages, increas-
ing the accessibility of NLP research in cross-
lingual studies. However, we were only able to
cover ten languages at the article and media lev-
els, each. For some languages, we had only one
or two labels assigned for both tasks due to the
unavailability of annotated sources and articles in
other languages. Additionally, for joint modeling,
we intended to conduct a cross-lingual evaluation;
however, we faced limitations in identifying suffi-
cient media sources in other languages for an effec-
tive evaluation, primarily due to the challenge of
finding comprehensive sources that encompass the
necessary labels. Moreover, we find it problematic
to use these data for news sites in some other coun-
tries. Furthermore, due to limited computational
resources, we were unable to fully fine-tune our
LLMs (e.g., Mistral and LLaMA2).

Ethical Statement & Bias

The dataset was compiled with a firm commitment
to comply with legal and ethical standards. This
involved a careful review of the terms of use of all
websites and ensuring that data collection processes
respect these terms. The compilation focused exclu-
sively on publicly available data, without bypassing
access control measures such as paywalls or sub-
scription models. The data collection methods used
were transparent and deliberately designed to min-
imize any potential adverse impact on the source
websites. Including limiting the frequency of ac-
cess to avoid any strain on their resources. The
news articles are not publicly available; only the
URLs of the media and the recipe scraping with
labels are provided to support research while pre-
serving the confidentiality of the source.

Users should consider inherent biases in the me-
dia sources and annotations when interpreting the
results. We include a diverse range of media outlets
to minimize potential bias. This dataset can exhibit
certain label biases due to restricted domain cov-
erage. However, we diligently worked to mitigate
any detrimental biases by manual data assessment.
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Appendix

A Data Statement for SAFARI

A.1 General Information

Dataset title SAFARI

Dataset version 1.0 (November 2023)

Data statement version 1.0 (October 2023)

Data collection period Media-level data were
collected from July 2023 to September 2023. The
article-level and joint modeling data were collected
from September 2023 to November 2023. Articles
span from September 2012 to November 2023.

A.2 Executive Summary SAFARI is a cross-
lingual corpus focusing on ten languages at the
media-level: English, German, Hindi, French,
Spanish, Hebrew, Japanese, Italian, Arabic, and
Russian. At the article-level, it includes English,
French, Polish, German, Spanish, Italian, Bulgar-
ian, Hindi, Persian, and Russian. Media Bias/Fact
Check provided expert annotations for media-level
data. Article-level data were collected from web
archives of media outlets and supplemented with
expert-annotated data from AllSides. Joint model-
ing used the article-level data collection approach.

Granularity The granularity of the analysis dif-
fers: the article-level uses a 3-point scale for politi-
cal bias, while the media-level uses a 5-point scale.
Media annotated as left-center and right-center
were excluded to maintain distinct categories.

Difference in Media Counts Factuality annota-
tions (2.6k) and political bias annotations (2k) dif-
fer due to the exclusion of sources labeled as “Ques-
tionable Source,” “Conspiracy-Pseudoscience,” or
“Satire” in political bias, resulting in fewer total
annotations.

A.3 Documentation for Source Datasets The
SAFARI corpus was meticulously compiled for an
in-depth analysis of political bias and factuality at
the media and article levels and for joint modeling.
At media-level, data was obtained from MBFC and
annotated by experts. At article-level, data was
collected directly from sources listed in the MBFC,
with expert-annotated bias evaluations from All-
Sides. The joint modeling approach incorporated
bias and factuality labels.

A.4 Language Variety The SAFARI corpus in-
cludes data in ten languages at both the media and
article levels, but joint modeling includes only En-
glish.

Language Differences Data collection began at
the media-level, followed by the article-level. Me-
dia outlets with fewer than 100 articles were ex-
cluded from the article-level dataset but retained in
the media-level dataset, ensuring representation
while maintaining a robust article-level dataset.
Substitutions ensured at least 10 languages per task
for cross-lingual analysis. Furthermore, MBFC an-
notations included the country of origin, which was
manually verified before obtaining articles in the
corresponding languages.

A.5 Experimental Setup

Hyper-parameters The learning rate was stan-
dardized to 2e-5 for all models: mBERT, XLM-R,
DistilmBERT, mDeBERTaV3, and mBART. Batch
size varied: 100 for mBERT and DistilmBERT,
80 for XLM-R, and 90 for mDeBERTaV3 and
mBART. Weight decay and maximum sequence
length were uniformly set at 0.01 and 512, respec-
tively. During training, the model was validated
every 100 steps and saved every 15,000 steps, with
a limit of three checkpoints to manage storage.

Epoch Configuration Models were trained for 5
epochs at the media-level and 3 epochs at the article
level and joint modeling data to prevent overfitting
and enhance performance.

Hardware Our models were executed on
NVIDIA RTX A6000 (48GB) GPU.

A.6 Library Selection We used Requests for
retrieving page code and BeautifulSoup (bs4)
for searching HTML elements. These libraries
were chosen for their functionality and ease of use,
with bs4’s exception handling capabilities proving
useful for parsing large datasets.

A.7 Cross-referencing AllSides with Media
Bias/Fact Check Misaligned articles in cross-
referenced subsets covered diverse topics. In a sub-
set of 1000 articles, 7 out of 55 misaligned articles
focused on “Trump,” 4 on “Finance” and “Econ-
omy,” and the rest on various topics like Elections,
Criminal Justice, Environment, etc. In a subset of
500 articles, only 29 were misaligned, covering
diverse topics.
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Figure 2: Data construction pipeline.

Figure 3: Architectures of hard voting (A) and soft voting (B) ensembles.

12231


