
Findings of the Association for Computational Linguistics: EACL 2024, pages 12387–12402
November 12-16, 2024 ©2024 Association for Computational Linguistics

PPTC-R benchmark: Towards Evaluating the Robustness of Large
Language Models for PowerPoint Task Completion

Zekai Zhang1∗, Yiduo Guo1∗, Yaobo Liang2, Dongyan Zhao1,3,4, Nan Duan2

1Peking University
2Microsoft Research Asia

3State Key Laboratory of Media Convergence Production Technology and Systems
4Artificial Intelligence Institute of Peking University

{justinzzk,yiduo}@stu.pku.edu.cn,{yaobo.liang,nanduan}@microsoft.com
zhaody@pku.edu.cn

Abstract

The growing dependence on Large Language
Models (LLMs) for completing user instruc-
tions necessitates a comprehensive understand-
ing of their robustness in real-world situations.
To address this need, we introduce the Power-
Point Task Completion-Robustness (PPTC-R)
benchmark, designed to evaluate LLMs’ ro-
bustness to user task instructions and differ-
ent software versions (PowerPoint versions).
Specifically, we create adversarial user instruc-
tions by manipulating instructions at the sen-
tence, semantic, and language levels. To as-
sess robustness across software versions, we
vary the number of available APIs to simu-
late both the latest and earlier version environ-
ments. We benchmark 3 closed-source and
4 open-source LLMs against these robustness
settings to evaluate how variations affect their
API calls for task completion. Our findings
reveal that GPT-4 demonstrates the highest per-
formance and strong robustness, especially in
version updates and multilingual settings. How-
ever, all LLMs show a significant decline in
robustness when faced with multiple simulta-
neous challenges (e.g., multi-turn interactions),
resulting in notable performance drops. We
further analyze the robustness behavior and er-
ror patterns of LLMs in our benchmark, pro-
viding valuable insights for researchers to un-
derstand LLM robustness in task completion
and to develop more resilient LLMs and agents.
The code and data are available at https:
//github.com/ZekaiGalaxy/PPTCR.

1 Introduction

Large Language Models (LLMs) like GPT-4 (Ope-
nAI, 2023) exhibit strong performance on a va-
riety of basic natural language tasks and human
examinations (Qin et al., 2023a; Jiao et al., 2023;
Zhong et al., 2023; Wang et al., 2023d; Liang et al.,
2023). This has spurred hope for their potential
to assist humans in completing tasks in complex

*Equal contribution

Figure 1: We illustrate the turn-based multilingual re-
sults of closed-source LLMs.

environments, such as purchasing items in Web-
Shop (Yao et al., 2022), creating and editing Pow-
erPoint slides in PPTC (Guo et al., 2023), and navi-
gating computers in MiniWob++ (Liu et al., 2018).
Recent works(Zhu et al., 2023; Liu et al., 2023d;
Wang et al., 2023c), such as PromptBench (Zhu
et al., 2023), have studied the robustness of LLMs
to task prompts for basic natural language tasks.
However, there remains a lack of benchmarks for
evaluating LLM robustness in complex task com-
pletion, a critical factor for their performance in
real-world scenarios. To address this gap, we in-
troduce PowerPoint Task Completion-Robustness
(PPTC-R), a benchmark designed to measure and
analyze the robustness of LLMs to user instruc-
tions and software versions in the context of Pow-
erPoint task completion. Our benchmark has two
distinct features: (1) Previous robustness evalua-
tions have focused on traditional natural language
tasks, where the model’s output is typically limited
to generating text strings or options. In contrast,
our benchmark evaluates how adversarial perturba-

12387

https://github.com/ZekaiGalaxy/PPTCR
https://github.com/ZekaiGalaxy/PPTCR


Figure 2: We illustrate two examples for constructing our robustness benchmark. The perturbations correctly distract
the LLM from completing the user instruction (Left) and mislead the LLM into generating the wrong API sequence
(Right), which underscores the importance of evaluating and analyzing LLMs’ task completion robustness.

tions affect LLMs’ API calls for complex Power-
Point task completion. (2) While prior studies have
mainly constructed benchmarks by attacking the
task prompt or input text, we consider how shifts
in software versions impact LLM performance, of-
fering a new perspective on robustness evaluation.

To measure the robustness of LLMs to user in-
structions, we construct adversarial user instruc-
tions through various perturbations. These include:
1) (Language Level) translating the original En-
glish instructions into 14 non-English languages
(Figure 1), 2) (Sentence Level) adding GPT-4-
generated chitchat sentences to the original instruc-
tions as noise, and 3) (Semantic Level) prompting
GPT-4 to rephrase the original instructions in four
different ways while preserving the same mean-
ing (Figure 2). These perturbations mimic typical
variations encountered by users and developers in
daily PowerPoint use with an AI agent. Our LLM-
based sentence and semantic perturbation methods
efficiently generate large quantities of high-quality,
novel adversarial data.

Additionally, we assess the impact of software
versions on PPT task completion by varying the
number of available APIs. We simulate version
updates by: (1) introducing many new APIs to
the existing list, which may affect the LLM’s API
selection, and (2) removing several APIs from the
existing list, simulating scenarios where the current
software version lacks capabilities to fully address

user instructions, requiring the LLM to find alterna-
tive solutions. These perturbations (three for user
instructions and two for APIs) form our PPTC-R
benchmarks, encompassing a total of five settings.

We evaluate 3 closed-source LLMs (e.g. GPT-4
and ChatGPT) and 4 representative open-source
LLMs (e.g. Llama-2 and WizardLM) using our
benchmarks. GPT-4 demonstrates the highest per-
formance and robustness across all five settings
(Sec.4.3). For instance, GPT-4 maintains high turn-
based performance even with the introduction of 97
new APIs, whereas other LLMs experience greater
performance drops (e.g. ChatGPT) or sustain low
performance levels (e.g. Llama-2). Notably, we ob-
serve a unique robustness degradation in all LLMs:
their robustness significantly decreases when task
difficulty increases or when transitioning to more
complex environments. We identify three primary
error causes for LLMs: distraction by chitchat (see
the bottom of Figure 2), invoking unavailable APIs,
and misinterpreting instructions with new expres-
sions (Sec.5.1). We also explore LLM behavior
with varying numbers of new APIs (Sec5.3). In
summary, our paper’s contributions are:

(1) We introduce the PowerPoint Task Comple-
tion Robustness (PPTC-R) benchmark, the first to
measure LLM robustness in API-based task com-
pletion for user instructions. Our LLM-based per-
turbation methods can easily generate adversarial
data for future datasets.

12388



(2) We test 7 LLMs with our benchmark, find-
ing that GPT-4 achieves the best performance and
robustness. However, robustness degrades for all
LLMs as task difficulty increases, highlighting the
challenge posed by our benchmark.

(3) We analyze the error reasons and robustness
behaviors of LLMs within our benchmark, provid-
ing valuable insights for researchers to understand
LLM robustness in task completion settings and to
develop more resilient AI agents.

2 Related Works

Large Language Models (LLMs) such as GPT-
4 (Bubeck et al., 2023; OpenAI, 2023), and PaLM-
2 (Anil et al., 2023) exhibit excellent performance
for various traditional natural language tasks (Kim
et al., 2023; Jiao et al., 2023; Zhong et al., 2023;
Wang et al., 2023d) and can do complex logic
reasoning (Feng et al., 2023; Liu et al., 2023a),
pass human-level examination (Zhong et al., 2023;
Gilson et al., 2023; Katz et al., 2023), and write
code (Li et al., 2022; Liu et al., 2023b) after instruc-
tion fine-tuning. Open-source LLMs like LLaMa-
2 (Touvron et al., 2023), Mistral 7b (Jiang et al.,
2023), and Baichuan-2 (Yang et al., 2023) and their
fine-tuned versions also show promising perfor-
mance on public benchmarks. Recent survey (Chen
et al., 2023) finds that they usually still have a
performance gap when compared to their closed-
source counterparts like GPT-4.
Task completion benchmarks for LLM-based
Agents. LLMs and multi-modal models (e.g., GPT-
4Vision) raise the hope of designing LLM-based
agents to help humans finish complex tasks in com-
plex environments. To test agents, Saycan (Brohan
et al., 2023), Behavior (Srivastava et al., 2022; Li
et al., 2023) and VirtualHome (Puig et al., 2018)
benchmarks ask the agent to negative a series of
physical actions to finish the user instruction in sim-
ulated physical environments. WebShop (Yao et al.,
2022), AgentBench (Liu et al., 2023c) and Android
in the wild (Rawles et al., 2023) require the agent
conduct actions (e.g., click and search) in website
environment to meet the user requirement. Tool-
Bench (Xu et al., 2023b; Qin et al., 2023b) needs
the agent to select proper APIs from thousands of
candidate APIs.
Robustness in Natural Language Processing.
Traditional natural language robustness evaluation
focuses on constructing the adversarial dataset of
basic natural language tasks, such as the adversarial

natural inference task (Nie et al., 2019) via human
attacks, adversarial BLUE tasks (Wang et al., 2021)
via word-level, sentence-level, and human attacks,
and adversarial dialogue tasks (Yu and Rieser,
2023) via question and dialogue history Attack.
Then they analyze models’ (e.g., RoBERT (Liu
et al., 2019)) behavior on these datasets. Recent ro-
bustness evaluations for LLMs try to measure their
robustness to LLM’s version (Liu et al., 2023d),
search engine version (Kasai et al., 2024), basic
task’s prompt (Zhu et al., 2023; Sun et al., 2023; Hu
et al., 2024) and specific adversarial samples (Wang
et al., 2023c,a,b).

3 PPTC-R Benchmark

In this section, we introduce our PowerPoint Task
Completion-Robustness (PPTC-R) benchmark, de-
tailing its dataset components, design principles,
and the collection and validation process.

3.1 Introduction to the PowerPoint Task
Completion Benchmark

We developed our robustness benchmark based
on the open-source PowerPoint Task Completion
(PPTC) benchmark, utilizing its dataset, PPT tasks,
and evaluation system. Here is a brief introduction:

Dataset. PPTC simulates a multi-turn dialogue
between the user and LLM, comprising 279 multi-
turn sessions. Each turn within a session includes a
user instruction, a feasible API sequence for the in-
struction, and the labeled PPT file representing the
correct result. To assist the LLM in completing the
PPT task, the benchmark provides an API reference
file containing all feasible APIs and their descrip-
tions. Additionally, there is a PPT reader function
that converts the PPT file into a text-format rep-
resentation and an API executor that executes the
LLM’s generated API sequence to produce the PPT
prediction file.

PPT Task description. PPTC includes tasks for
both creating new slides and editing existing PPT
templates, with each task containing its own set of
sessions. To complete a session’s turn instruction,
we prompt the LLM with the current instruction,
previous instructions (dialogue history), the PPT
file content, and the reference API file to generate
an API sequence as the solution. The executor then
executes the API sequence to produce the predic-
tion file.

Evaluation system. We use PPTX-evaluation
system provided in PPTC to assess the correctness

12389



of the LLM’s prediction file. The system evalu-
ates whether the objects and their positional rela-
tionships in the prediction file match those in the
labeled PPT file.

3.2 Design principles
The construction of adversarial user instructions
aims to simulate possible perturbations that natu-
rally occur in real task-completion situations. We
follow three principles to construct our robustness
benchmark: (1) Realistic: We only consider com-
mon and daily perturbations that occur in the real
world. (2) Preserve Semantic Integrity: We avoid
perturbations that would alter the original seman-
tics of the instruction (e.g., randomly deleting sen-
tences). We also refrain from adding new instruc-
tions to PPTC. (3) Diverse: We aim to create vari-
ous perturbations to prevent the LLM from solving
them by simply identifying patterns.

3.3 Dataset collection and validation
We construct our adversarial instructions for three
levels: sentence, semantic, and language levels. We
do not consider character and word level perturba-
tions as (Zhu et al., 2023) has shown the LLM’s
strong robustness to these simple manipulations.

Sentence-level perturbation: We add irrelevant
chitchat sentences to the original user instruction to
confuse the LLM’s understanding. For each instruc-
tion, we prompt GPT-4 to generate 1-3 chitchat
sentences, such as “Hey there! I hope you’re hav-
ing a great day. It’s pretty amazing how colors
can make a presentation more engaging, right?”
These sentences are then incorporated around the
original user instruction (the left part of Figure 3).
The LLM needs to complete the user instruction
while ignoring the chitchat sentences, ensuring that
the semantics remain unchanged. We compare our
perturbation approach with traditional sentence per-
turbation in Section 5.2.

Semantic-level perturbation: For each origi-
nal instruction, we prompt GPT-4 to paraphrase
it in four different expressions (the right part of
Figure 3). The paraphrased instructions are used to
test the LLM’s performance, and we report the av-
erage performance across the different expressions,
ensuring the semantics remain consistent.

Language-level perturbation: To test the
LLM’s ability to complete instructions written in
non-English languages, we follow the XNLI (Con-
neau et al., 2018) dataset and select 14 target lan-
guages: French, Spanish, German, Greek, Bulgar-

ian, Russian, Turkish, Arabic, Vietnamese, Thai,
Chinese, Hindi, Swahili, and Urdu. We use the
Google Translation API to translate all user instruc-
tions from English into these languages, also trans-
lating the text input content in the feasible API
sequence (e.g., English → German: insert_text
(“Hello!”) → insert_text(“Hallo!”)). The transla-
tion maintains the original semantics while express-
ing them in various languages.

The change in software version often influences
the available functions, which can be simplified
as APIs. We consider two API number perturba-
tions to measure the LLM’s robustness to software
version changes:

API update perturbation: To simulate a ver-
sion update scenario, we introduce 97 new APIs
along with their descriptions into the existing API
file, keeping all previous APIs unchanged*. These
new APIs, selected from PowerPoint keyboard
functions, are unnecessary for completing original
user instructions but may impact the LLM’s API
selection. We set the execution result of these new
APIs in the API executor to a meaningless string,
making calling them lead to incorrect predictions.

API lack perturbation: To simulate an ear-
lier software environment with fewer advanced
functions, we provide only 24 basic PowerPoint
APIs and the “Seek for assistance” API to the
LLM. Some parts of the user instruction may re-
main unfinished with the provided APIs. When the
LLM encounters an unsolvable part, it must call
the “Seek for assistance” API to bypass this part.
When it finds one part of the instruction can be
solved, it needs to call the corresponding correct
APIs. In nature, our objective is to measure LLMs’
ability to identify whether they can complete one
part of the instruction and call the correct APIs for
the given situation, so we set the execution result
of the API “Seek for assistance” in the API execu-
tor as empty. For the label file, we filter out APIs
not in the 24 basic APIs and execute the filtered
sequence to obtain the label file. We list these APIs
in Appendix A.

We conduct these five perturbations separately
on the original PPTC benchmark to construct five
different robustness settings, forming our robust-
ness benchmark.

Validation: To guarantee the quality of our ro-
bustness benchmark, we verify that each adver-
sarial instruction adheres to the design principles.

*We put the new APIs in the supplementary

12390



Sentence-level perturbation Semantic-level perturbation

Prompt for irrelevant chitchat sentences:
Add 1∼3 irrelevant chitchat non-instruction
sentences into the following instruction. Do
not add a new question. Instruction: {inst}.

Prompt for paraphrasing instructions:
Rephrase the following instruction into {num}
different ways: {inst}.

Figure 3: The prompts we used to create the sentence and semantic level perturbations. {inst} refers to the original
instruction. {num} refers to the number of paraphrased instructions.

(1) Realistic Testing LLMs with reversed user in-
structions may be interesting but unrealistic, so
we do not include such an approach. Also, our
sentence and semantic perturbation approach can
online generate rich real and adversarial data for ro-
bustness tests. Then the LLM can not improve the
robustness performance cheatingly by pre-training
on these adversarial data.

(2) Preserve semantic integrity If the para-
phrased instruction or the translated instruction
changes the original meaning and thus violates
the second principle, we discard the instruction
and regenerate or use Bing to translate the original
instruction until the paraphrased/translated instruc-
tion maintains semantic integrity. If the chitchat
sentence contains new PPT task instruction and
thus violates the second principle, we discard it
and re-generate chitchat sentences.

(3) Diverse If the paraphrased instruction is too
similar to other paraphrased instructions, we re-
paraphrase it. To assess the diversity of these per-
turbed instructions, we initially calculate their av-
erage n-gram similarity to the original instruction
(n=2, cosine similarity): I. For each original in-
struction, we compute the average n-gram similar-
ity between it and its four perturbed instructions.
II. We then report the average value of each origi-
nal instruction’s similarity. The obtained result is
0.82, indicating that these perturbed instructions
are clearly distinct from the original instruction.

Subsequently, we calculate the average n-gram
similarity between the perturbed instructions: I.
For the four perturbed instructions belonging to
the same original instruction, we calculate the n-
gram similarity for each pair and record the average
value. II. We report the average value of each origi-
nal instruction’s similarity. The result is 0.76, sig-
nifying that the four perturbed instructions exhibit
significant expression diversity among themselves.

4 Experiments

4.1 Large Language Models Selected for
Evaluation

We follow PPTC (Guo et al., 2023) and select
3 closed-source LLMs: GPT-4 (OpenAI, 2023),
ChatGPT, Text-Davinci-003 and 4 strong open-
source LLMs: LLaMa-2-Chat (Touvron et al.,
2023), Code-LLaMa-instruct (Chiang et al., 2023),
WizardLM v1.2 (Xu et al., 2023a), and Baichuan-2-
Chat (Yang et al., 2023) as our LLMs for evaluation.
We select them as they have shown strong perfor-
mance on the original PPTC benchmark. For Chat-
GPT and GPT-4, we use the 0613 version (azure).
For open-source LLMs, we use their chat/instruct
version with 13 billion parameters.

4.1.1 Evaluation Approaches and Metrics
Following PPTC (Guo et al., 2023), we use two
evaluation approaches: (1) Turn-based evaluation
measures the LLM’s ability to complete a single
turn, assuming that previous turns have been cor-
rectly completed. (2) Session-based evaluation
tests the LLM’s ability to complete an entire ses-
sion containing multiple turns, without assuming
that previous turns were correctly completed. For
turn-based evaluation, we report the turn-based
accuracy, calculated as the ratio of successfully
completed turns to the total number of turns. For
session-based evaluation, we report the session-
based accuracy, calculated as the ratio of success-
fully completed sessions to the total number of
sessions.

4.2 Implementation Details

To ensure fair comparison and reproducibility, we
adhere to PPTC guidelines by using the respective
language models’ APIs provided by Azure OpenAI
Service for closed-source LLMs. For open-source
LLMs, we download them from their official web-
sites. More details are provided in Appendix B.

12391



Creating new slides Editing PPT template
Models Turn-based Session-based Turn-based Session-based

Original Sentence Semantic Original Sentence Semantic Original Sentence Semantic Original Sentence Semantic
Davinci-003 72.6 64.8 (-7.8) 67.4 (-5.2) 12.7 11.7 (-1.0) 9.5 (-3.2) 24.4 26.3 (+1.9) 25.8 (+1.4) 4.0 0.0 (-4.0) 0.5 (-3.5)

ChatGPT 70.6 61.3 (-9.3) 65.0 (-5.6) 12.7 9.7 (-3.0) 8.7 (-4.0) 26.3 28.8 (+2.5) 27.0 (+0.3) 2.0 2.0 (+0.0) 2.0 (+0.0)
GPT-4 75.1 72.3 (-2.8) 72.0 (-3.1) 22.7 12.3 (-10.4) 14.2 (-8.5) 38.1 36.9 (-1.2) 35.8 (-6.3) 6.0 4.0 (-2.0) 4.0 (-2.0)

Llama-2 16.4 16.3 (-0.1) 16.1 (-0.3) 3.4 1.7 (-1.7) 1.0 (-2.4) 8.8 8.8 (+0.0) 7.6 (-1.2) 0.0 2.0 (+2.0) 0.0 (+0.0)
WizardLM 23.9 23.8 (-0.1) 23.8 (-0.1) 4.3 1.0 (-3.3) 0.0 (-4.3) 10.0 10.0 (+0.0) 10.0 (+0.0) 0.0 0.0 (+0.0) 0.0 (+0.0)
Baichuan 15.5 15.5 (+0.0) 15.0 (-0.5) 0.0 1.4 (+1.4) 1.7 (+1.7) 4.3 4.3 (+0.0) 2.5 (-1.8) 0.0 0.0 (+0.0) 0.0 (+0.0)

CodeLlama 36.8 36.2 (-0.6) 36.8 (-0.0) 0.0 0.0 (+0.0) 0.0 (+0.0) 18.7 18.8 (+0.1) 18.7 (+0.0) 2.0 2.0 (+0.0) 0.0 (-2.0)

Table 1: We report the robustness results of LLMs in both sentence-level and semantic-level settings in this table.
“Original” is the original accuracy from the original PPTC benchmark. “Sentence” and “Semantic” are the LLM’s
accuracy in the sentence-level and semantic-level settings, respectively. The value in “()” represents the range of
change from the original performance to the robustness performance.

Arabic Bulgarian Chinese French German Greek Hindi Russian Spanish Swahili Thai Turkish Urdu Vietnamese
Languages

0

10

20

30

40

50

60

70

Ac
cu

ra
cy

 %

Davinci-003
ChatGPT
GPT-4

Figure 4: We present the turn-based results of closed-source LLMs for the task of creating new slides, where the
instructions are translated into 14 non-English languages. Each bar in the graph corresponds to the LLM’s accuracy
in the respective language setting. The dotted line indicates the LLM’s accuracy when tested in the English setting.

4.3 Main Results

In this section, we present the accuracy results of
LLMs on our benchmark, shown in Tables 1 and 2,
and Figures 4, 9 and 10. The cost measurement
results are provided in Appendix C. We then an-
alyze the results from the perspectives of LLM
performance and perturbation types.

Sentence-level and semantic-level robustness:
We present the robustness performance of LLMs
for sentence-level and semantic-level settings in
Table 1. Key findings from the results include:
(1) GPT-4 demonstrates the strongest performance
under both sentence-level and semantic-level per-
turbations, with minimal performance degrada-
tion compared to other closed-source LLMs. (2)
While open-source LLMs show lower overall per-
formance, they exhibit less performance decline
than their closed-source counterparts, with CodeL-
lama leading in robustness and performance among
open-source options. (3) LLMs generally find
sentence-level perturbations more challenging than
semantic-level perturbations, experiencing more
significant performance drops in the former across
both turn-based and session-based evaluations.

Language-level robustness: Turn-based results
of closed-source LLMs† in the language-level ro-

†Current open-source LLMs claim that they are mainly pre-

bustness setting are illustrated in Figure 4. Due to
space constraints, additional multilingual results
are provided in Appendix D. Key observations in-
clude: (1) GPT-4 outperforms other LLMs in turn-
based evaluations (see Figure 4 and 10) and ex-
periences less performance drop, indicating strong
multilingual understanding capabilities. (2) How-
ever, GPT-4, along with other LLMs like ChatGPT
and Davinci, performs poorly in low-resource lan-
guages such as Swahili, Urdu, and Arabic, high-
lighting the ongoing challenge of improving LLM
performance in low-resource language settings.

API lack and API update robustness: We re-
port the results of the API lack and update settings
in Table 2. Key findings include: (1) GPT-4 shows
good robustness to API-update perturbations, with
only a slight performance drop of 2-4%. In con-
trast, other closed-source LLMs experience sig-
nificant performance declines when new APIs are
introduced, underscoring GPT-4’s unique capabil-
ity in handling API calls. (2) In the creating slides
task, LLMs suffer greater performance drops in
the API-lack setting compared to the API-update
setting, indicating difficulty in recognizing unavail-
able APIs. Analysis of errors reveals that LLMs

trained in English corpus (e.g., only 1% non-English corpus
for Llama-2) and do not support multi-lingual settings.

12392



Creating new slides Editing PPT template
Models Turn-based Session-based Turn-based Session-based

Original Lack Update Original Lack Update Original Lack Update Original Lack Update
Davinci-003 72.6 55.1 (-17.5) 44.5 (-28.1) 12.7 5.2 (-7.5) 1.3 (-11.4) 24.4 33.7 (+9.3) 17.5 (-6.9) 4.0 0.0 (-4.0) 0.0 (-4.0)

ChatGPT 70.6 55.4 (-15.2) 55.4 (-15.2) 12.7 3.9 (-8.8) 5.3 (-7.4) 26.3 27.5 (+1.2) 15.0 (-11.3) 2.0 0.0 (-2.0) 0.0 (-2.0)
GPT-4 75.1 62.5 (-12.6) 75.7 (+0.6) 22.7 5.2 (-17.5) 18.8 (-3.9) 38.1 39.4 (+1.3) 35.6 (-2.5) 6.0 0.0 (-6.0) 2.0 (-4.0)

Llama-2 16.4 16.5 (+0.1) 7.8 (-8.6) 3.4 0.0 (-3.4) 3.4 (-0.0) 8.8 12.0 (+4.0) 7.5 (-1.3) 0.0 0.0 (+0.0) 2.0 (+2.0)
WizardLM 23.9 18.9 (-5.0) 11.3 (-12.6) 4.3 0.0 (-4.3) 0.0 (-4.3) 10.0 14.4 (+4.4) 6.9 (-3.1) 0.0 0.0 (+0.0) 0.0 (+0.0)
Baichuan 15.5 18.7 (+3.2) 13.2 (-2.3) 0.0 0.0 (+0.0) 1.0 (+1.0) 4.3 10.6 (+6.3) 2.5 (+1.8) 0.0 6.0 (+6.0) 0.0 (+0.0)

CodeLlama 36.8 26.3 (-10.5) 22.4 (-14.4) 0.0 0.0 (+0.0) 1.0 (+2.0) 18.7 13.6 (-5.1) 12.6 (-6.1) 2.0 2.0 (+0.0) 2.0 (+0.0)

Table 2: We report the robustness results of LLMs in the API-lack and API-update settings. “Original” is the
original accuracy from the PPTC benchmark. “Lack” and “Update” are the LLM’s accuracy in the API-lack and
API-update settings, respectively.

Models Creating new slides Editing PPT template
Turn-based Session-based Turn-based

ChatGPT 16.3 54.7 19.7
GPT-4 9.4 54.1 17.7

Llama-2 13.6 55.2 9.4
WizardLM 18.5 94.2 10.3

Table 3: This table presents Average Performance Drop
Rate (APDR) results for LLMs. For the “creating new
slides” task’s turn-based column, we compute LLMs’
PDR rates using their turn-based accuracy of the cre-
ating new slides task in each robustness setting. The
average is reported as APDR. The same calculation is
applied to the other columns. Note that we exclude the
multilingual setting for open-source LLMs.

often call unavailable APIs instead of seeking assis-
tance. (3) Interestingly, in the editing task, the turn-
based performance of nearly all LLMs improves
under the API-lack perturbation. This improve-
ment is attributed to the design of the editing task
in PPTC, which emphasizes using high-frequency
basic APIs, making the task easier by removing
low-frequency APIs in the API-lack setting.

LLMs’ robustness varies with the difficulty of
the task and the complexity of the environment:
To measure the variation in LLMs’ robustness, we
use the Average Performance Drop Rate (APDR)
metric proposed in (Zhu et al., 2023)‡, which quan-
tifies the average relative performance decline of
LLMs under perturbation attacks§. The APDR rate
of LLMs is reported in Table 3. We observe a de-
crease in LLM robustness with increasing task dif-
ficulty (e.g. turn-based to session-based evaluation)
or when moving to more complex environments
(e.g. creating 1-2 slides to editing a long template
with many slides), even for GPT-4. For example, in
the task of creating new slides, GPT-4’s APDR rate

‡We don’t use this rate to compare different LLMs as open-
source LLMs can achieve low APDR rates with a pretty low
performance. Then the comparison is useless.

§It is calculated by dividing the range of performance
variation by the original performance.

increases from 9.4 to 54.1 (where a higher value in-
dicates poorer robustness) when transitioning from
turn-based to session-based evaluation. The table
also indicates that completing multi-turn (session-
based) evaluations is more challenging than editing
templates, as evidenced by higher APDR rates in
the former, although open-source LLMs occasion-
ally show a slight drop in APDR rates in the latter.

5 Analysis

5.1 Error analysis for LLMs
To conduct error analysis in PPTC-R, we randomly
collected 25 examples for each robustness setting
where PPTC-R failed but the original PPTC suc-
ceeded. This process was done separately for Chat-
GPT and GPT-4. Based on these examples, we
identified the following error types: (1) Being Dis-
tracted by Chitchat Sentences: In the sentence-
level robustness setting, LLMs sometimes engage
in chitchat with the user and neglect to generate
API sequences, accounting for 61% of all errors.
(2) Calling Unavailable or New APIs: In the API
lack and multilingual settings, GPT-4 and ChatGPT
often generate new APIs like ‘select_column’ that
seem plausible but are non-executable. In the API
update setting, ChatGPT uses new, executable APIs
provided by our setting, but these APIs are unnec-
essary. (3) Misunderstanding Instructions: In
the sentence and semantic-level robustness settings,
GPT-4 and ChatGPT occasionally misinterpret in-
structions, resulting in incorrect API calls. Detailed
examples are provided in Appendix E.

5.2 Chitchat vs Traditional perturbations
Traditional sentence-level perturbations typically

involve inserting “True or False” (StressTest (Naik
et al., 2018)) or a randomly generated string like
“KjPJJ2a7RB” (Checklist (Ribeiro et al., 2020))
into the original input. Our sentence-level perturba-

12393



Creating new slides Editing PPT template
Models Turn-based Session-based Turn-based Session-based

Original ChitChat Checklist Original ChitChat Checklist Original ChitChat Checklist Original ChitChat Checklist
GPT-4 75.1 72.3 (-2.8) 73.2 (-1.9) 22.7 12.3 (-10.4) 14.8 (-7.9) 38.1 36.9 (-1.2) 37.5 (-0.6) 6.0 4.0 (-2.0) 6.0 (+0.0)

Table 4: We report the robustness results of GPT-4 in the sentence-level setting by adding chitchat sentences
(“Chitchat”) and randomly generated strings as checklist (“Checklist”), respectively.

Figure 5: We report the results of three LLMs with different numbers of new APIs in sub-figures. The dotted line
represents the performance trend.

tion introduces various chitchat sentences, making
it more challenging for LLMs nowadays. Empir-
ically, we tested GPT-4 in a robustness setting by
following (Ribeiro et al., 2020) to prepend random
generated checklist to each instruction. As shown
in Table 4, our perturbation causes a greater perfor-
mance drop in GPT-4, indicating its deviation due
to chitchat.

5.3 How does the number of new APIs
influence LLM’s performance?

We examined the influence of varying numbers of
new APIs on LLMs’ performance, as illustrated
inFigure 5. ChatGPT’s performance gradually de-
creases with an increasing number of APIs. For the
open-source WizardLM, performance drops signif-
icantly when 25 new APIs are added to its refer-
ence list, then stabilizes at a low level, suggesting
a lack of robustness in selecting the correct APIs
from a larger pool. Conversely, GPT-4 maintains
high turn-based performance, demonstrating strong
robustness in the API update setting. However,
its session-based performance drops notably when
faced with both an increasing number of new APIs
and the need to complete a multi-turn session.

6 Conclusion

Deploying LLMs and LLM-based agents to com-
plete users’ task instructions is becoming increas-
ingly important. However, there is still a lack of
evaluation and analysis of LLMs’ robustness in
complex task completions. We introduce the Pow-
erPoint Task Completion-Robustness benchmark

to assess LLM robustness in handling adversar-
ial instructions and adapting to different software
versions in complex PPT task completion. Our
benchmark results for seven LLMs show that GPT-
4 is the strongest, though all LLMs’ robustness
degrades as task difficulty increases. We further
conduct a detailed analysis of error reasons and ro-
bustness behaviors to gain a deeper understanding.

7 Limitations and potential risks

Investigating the LLM’s robustness to the PPT file
(environment) may be interesting. A simple way
is to vary the number of shapes in the PPT file.
For example, slides containing more figures may
pose a greater challenge for LLMs when complet-
ing figure-related instructions. However, we do not
consider this perturbation as it is hard to control in
specific slides. For example, some slides may allow
the addition of more figures, while others can not
as they are completely fulfilled. On the other hand,
our benchmark does not consider creating harder
instructions by further asking experts to write and
edit the instructions. But current LLMs have al-
ready dropped their performance obviously in our
setting. So we leave the further creation work in
the future.

We do not see any potential physical risk in our
benchmark as we just test the LLM’s robustness to
do virtual PPT tasks under perturbations. We also
do not see any societal risk.

12394



References
Rohan Anil, Andrew M Dai, Orhan Firat, Melvin John-

son, Dmitry Lepikhin, Alexandre Passos, Siamak
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng
Chen, et al. 2023. Palm 2 technical report. arXiv
preprint arXiv:2305.10403.

Anthony Brohan, Yevgen Chebotar, Chelsea Finn, Karol
Hausman, Alexander Herzog, Daniel Ho, Julian
Ibarz, Alex Irpan, Eric Jang, Ryan Julian, et al. 2023.
Do as i can, not as i say: Grounding language in
robotic affordances. In Conference on Robot Learn-
ing, pages 287–318. PMLR.

Sébastien Bubeck, Varun Chandrasekaran, Ronen El-
dan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lund-
berg, et al. 2023. Sparks of artificial general intelli-
gence: Early experiments with gpt-4. arXiv preprint
arXiv:2303.12712.

Hailin Chen, Fangkai Jiao, Xingxuan Li, Chengwei Qin,
Mathieu Ravaut, Ruochen Zhao, Caiming Xiong, and
Shafiq Joty. 2023. Chatgpt’s one-year anniversary:
Are open-source large language models catching up?
arXiv preprint arXiv:2311.16989.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al.
2023. Vicuna: An open-source chatbot impressing
gpt-4 with 90%* chatgpt quality. See https://vicuna.
lmsys. org (accessed 14 April 2023).

Alexis Conneau, Ruty Rinott, Guillaume Lample, Ad-
ina Williams, Samuel R. Bowman, Holger Schwenk,
and Veselin Stoyanov. 2018. Xnli: Evaluating cross-
lingual sentence representations. In Proceedings of
the 2018 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Computa-
tional Linguistics.

Jiazhan Feng, Ruochen Xu, Junheng Hao, Hiteshi
Sharma, Yelong Shen, Dongyan Zhao, and Weizhu
Chen. 2023. Language models can be logical solvers.
arXiv preprint arXiv:2311.06158.

Aidan Gilson, Conrad W Safranek, Thomas Huang,
Vimig Socrates, Ling Chi, Richard Andrew Taylor,
David Chartash, et al. 2023. How does chatgpt per-
form on the united states medical licensing examina-
tion? the implications of large language models for
medical education and knowledge assessment. JMIR
Medical Education, 9(1):e45312.

Yiduo Guo, Zekai Zhang, Yaobo Liang, Dongyan Zhao,
and Duan Nan. 2023. Pptc benchmark: Evaluating
large language models for powerpoint task comple-
tion.

Zhibo Hu, Chen Wang, Yanfeng Shu, Liming Zhu, et al.
2024. Prompt perturbation in retrieval-augmented
generation based large language models. arXiv
preprint arXiv:2402.07179.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Wenxiang Jiao, Wenxuan Wang, Jen-tse Huang, Xing
Wang, and Zhaopeng Tu. 2023. Is chatgpt a good
translator? a preliminary study. arXiv preprint
arXiv:2301.08745.

Jungo Kasai, Keisuke Sakaguchi, Ronan Le Bras, Akari
Asai, Xinyan Yu, Dragomir Radev, Noah A Smith,
Yejin Choi, Kentaro Inui, et al. 2024. Realtime qa:
What’s the answer right now? Advances in Neural
Information Processing Systems, 36.

Daniel Martin Katz, Michael James Bommarito, Shang
Gao, and Pablo Arredondo. 2023. Gpt-4 passes the
bar exam. Available at SSRN 4389233.

Geunwoo Kim, Pierre Baldi, and Stephen McAleer.
2023. Language models can solve computer tasks.
arXiv preprint arXiv:2303.17491.

Chengshu Li, Ruohan Zhang, Josiah Wong, Cem Gok-
men, Sanjana Srivastava, Roberto Martín-Martín,
Chen Wang, Gabrael Levine, Michael Lingelbach,
Jiankai Sun, et al. 2023. Behavior-1k: A benchmark
for embodied ai with 1,000 everyday activities and re-
alistic simulation. In Conference on Robot Learning,
pages 80–93. PMLR.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman,
Julian Schrittwieser, Rémi Leblond, Tom Eccles,
James Keeling, Felix Gimeno, Agustin Dal Lago,
et al. 2022. Competition-level code generation with
alphacode. Science, 378(6624):1092–1097.

Yaobo Liang, Chenfei Wu, Ting Song, Wenshan Wu,
Yan Xia, Yu Liu, Yang Ou, Shuai Lu, Lei Ji,
Shaoguang Mao, et al. 2023. Taskmatrix. ai: Com-
pleting tasks by connecting foundation models with
millions of apis. arXiv preprint arXiv:2303.16434.

Evan Zheran Liu, Kelvin Guu, Panupong Pasupat, Tian-
lin Shi, and Percy Liang. 2018. Reinforcement learn-
ing on web interfaces using workflow-guided explo-
ration. In International Conference on Learning Rep-
resentations (ICLR).

Hanmeng Liu, Ruoxi Ning, Zhiyang Teng, Jian Liu, Qiji
Zhou, and Yue Zhang. 2023a. Evaluating the logical
reasoning ability of chatgpt and gpt-4. arXiv preprint
arXiv:2304.03439.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Ling-
ming Zhang. 2023b. Is your code generated by chat-
gpt really correct? rigorous evaluation of large lan-
guage models for code generation. arXiv preprint
arXiv:2305.01210.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xu-
anyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, et al. 2023c. Agent-
bench: Evaluating llms as agents. arXiv preprint
arXiv:2308.03688.

12395

https://api.semanticscholar.org/CorpusID:265019477
https://api.semanticscholar.org/CorpusID:265019477
https://api.semanticscholar.org/CorpusID:265019477
https://arxiv.org/abs/1802.08802
https://arxiv.org/abs/1802.08802
https://arxiv.org/abs/1802.08802


Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Yugeng Liu, Tianshuo Cong, Zhengyu Zhao, Michael
Backes, Yun Shen, and Yang Zhang. 2023d. Robust-
ness over time: Understanding adversarial examples’
effectiveness on longitudinal versions of large lan-
guage models. arXiv preprint arXiv:2308.07847.

Aakanksha Naik, Abhilasha Ravichander, Norman
Sadeh, Carolyn Rose, and Graham Neubig. 2018.
Stress test evaluation for natural language inference.
arXiv preprint arXiv:1806.00692.

Yixin Nie, Adina Williams, Emily Dinan, Mohit Bansal,
Jason Weston, and Douwe Kiela. 2019. Adversarial
nli: A new benchmark for natural language under-
standing. arXiv preprint arXiv:1910.14599.

OpenAI. 2023. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774.

Xavier Puig, Kevin Ra, Marko Boben, Jiaman Li,
Tingwu Wang, Sanja Fidler, and Antonio Torralba.
2018. Virtualhome: Simulating household activities
via programs. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition,
pages 8494–8502.

Chengwei Qin, Aston Zhang, Zhuosheng Zhang, Jiaao
Chen, Michihiro Yasunaga, and Diyi Yang. 2023a. Is
chatgpt a general-purpose natural language process-
ing task solver? arXiv preprint arXiv:2302.06476.

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen,
Ning Ding, Ganqu Cui, Zheni Zeng, Yufei Huang,
Chaojun Xiao, Chi Han, Yi Ren Fung, Yusheng Su,
Huadong Wang, Cheng Qian, Runchu Tian, Kunlun
Zhu, Shihao Liang, Xingyu Shen, Bokai Xu, Zhen
Zhang, Yining Ye, Bowen Li, Ziwei Tang, Jing Yi,
Yuzhang Zhu, Zhenning Dai, Lan Yan, Xin Cong,
Yaxi Lu, Weilin Zhao, Yuxiang Huang, Junxi Yan,
Xu Han, Xian Sun, Dahai Li, Jason Phang, Cheng
Yang, Tongshuang Wu, Heng Ji, Zhiyuan Liu, and
Maosong Sun. 2023b. Tool learning with foundation
models.

Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana
Riva, and Timothy Lillicrap. 2023. Android in the
wild: A large-scale dataset for android device control.
arXiv preprint arXiv:2307.10088.

Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin,
and Sameer Singh. 2020. Beyond accuracy: Behav-
ioral testing of nlp models with checklist. arXiv
preprint arXiv:2005.04118.

Sanjana Srivastava, Chengshu Li, Michael Lingelbach,
Roberto Martín-Martín, Fei Xia, Kent Elliott Vainio,
Zheng Lian, Cem Gokmen, Shyamal Buch, Karen
Liu, et al. 2022. Behavior: Benchmark for every-
day household activities in virtual, interactive, and
ecological environments. In Conference on Robot
Learning, pages 477–490. PMLR.

Hao Sun, Zhexin Zhang, Jiawen Deng, Jiale Cheng,
and Minlie Huang. 2023. Safety assessment of
chinese large language models. arXiv preprint
arXiv:2304.10436.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Boxin Wang, Weixin Chen, Hengzhi Pei, Chulin
Xie, Mintong Kang, Chenhui Zhang, Chejian Xu,
Zidi Xiong, Ritik Dutta, Rylan Schaeffer, et al.
2023a. Decodingtrust: A comprehensive assessment
of trustworthiness in gpt models. arXiv preprint
arXiv:2306.11698.

Boxin Wang, Chejian Xu, Shuohang Wang, Zhe Gan,
Yu Cheng, Jianfeng Gao, Ahmed Hassan Awadal-
lah, and Bo Li. 2021. Adversarial glue: A multi-
task benchmark for robustness evaluation of language
models. arXiv preprint arXiv:2111.02840.

Haoyu Wang, Guozheng Ma, Cong Yu, Ning Gui, Lin-
rui Zhang, Zhiqi Huang, Suwei Ma, Yongzhe Chang,
Sen Zhang, Li Shen, et al. 2023b. Are large lan-
guage models really robust to word-level perturba-
tions? arXiv preprint arXiv:2309.11166.

Jindong Wang, Xixu Hu, Wenxin Hou, Hao Chen,
Runkai Zheng, Yidong Wang, Linyi Yang, Hao-
jun Huang, Wei Ye, Xiubo Geng, et al. 2023c.
On the robustness of chatgpt: An adversarial
and out-of-distribution perspective. arXiv preprint
arXiv:2302.12095.

Zengzhi Wang, Qiming Xie, Zixiang Ding, Yi Feng,
and Rui Xia. 2023d. Is chatgpt a good sentiment
analyzer? a preliminary study. arXiv preprint
arXiv:2304.04339.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. 2023a. Wizardlm: Empowering large lan-
guage models to follow complex instructions. arXiv
preprint arXiv:2304.12244.

Qiantong Xu, Fenglu Hong, Bo Li, Changran Hu,
Zhengyu Chen, and Jian Zhang. 2023b. On the
tool manipulation capability of open-source large
language models. arXiv preprint arXiv:2305.16504.

Aiyuan Yang, Bin Xiao, Bingning Wang, Borong
Zhang, Chao Yin, Chenxu Lv, Da Pan, Dian Wang,
Dong Yan, Fan Yang, et al. 2023. Baichuan 2:
Open large-scale language models. arXiv preprint
arXiv:2309.10305.

Shunyu Yao, Howard Chen, John Yang, and Karthik
Narasimhan. 2022. Webshop: Towards scalable real-
world web interaction with grounded language agents.
Advances in Neural Information Processing Systems,
35:20744–20757.

12396

http://arxiv.org/abs/2304.08354
http://arxiv.org/abs/2304.08354


Lu Yu and Verena Rieser. 2023. Adversarial textual
robustness on visual dialog. In Findings of the As-
sociation for Computational Linguistics: ACL 2023,
pages 3422–3438.

Wanjun Zhong, Ruixiang Cui, Yiduo Guo, Yaobo Liang,
Shuai Lu, Yanlin Wang, Amin Saied, Weizhu Chen,
and Nan Duan. 2023. Agieval: A human-centric
benchmark for evaluating foundation models. arXiv
preprint arXiv:2304.06364.

Kaijie Zhu, Jindong Wang, Jiaheng Zhou, Zichen
Wang, Hao Chen, Yidong Wang, Linyi Yang, Wei
Ye, Neil Zhenqiang Gong, Yue Zhang, et al. 2023.
Promptbench: Towards evaluating the robustness of
large language models on adversarial prompts. arXiv
preprint arXiv:2306.04528.

A Basic APIs in the API lack setting

We list the APIs used in the API lack setting in
Figure 6 & 7. We select them as they provide basic
functions in PowerPoint software with high usage
frequency in the benchmark.

B Experimental details

For closed-source LLMs, Azure OpenAI services¶

offer two API types: completion and chat comple-
tion. Completion API generates text from prompts,
while chat completion API responds based on con-
versation history and new input. We use the com-
pletion API for Text-Davinci-003 and the chat com-
pletion API for ChatGPT and GPT-4. We set a
temperature of zero for deterministic output and a
max token limit of 2048. Frequency penalty and
top p are kept at their default values of zero and 1,
respectively. For open-source LLMs, we choose
the chat version of Llama-2, the v1.2 version of
WizardLM, and the chat version of Baichuan as
our open-source LLMs. We choose the 13 billion
parameters model of the three LLMs. If the token
number of the input prompt is beyond the token
limit, we cut the PPT content to reduce the token
number of the prompt.

We authors volunteered to perform validation
checks on our dataset. This included assessing the
quality of each perturbation, with a particular focus
on the performance of the Google Translation API
in language-level perturbations. Additionally, we
ensured that the dataset did not contain any harmful
content and that our use of it was consistent with
the intended purposes of the PPTC dataset.

¶https://azure.microsoft.com/
en-us/products/cognitive-services/
openai-service

The inference prompts in the turn-based evalu-
ation and session-based evaluation have two dif-
ferences: the API solutions for previous turns in
dialogue history are the correct API sequences in
the turn-based evaluation and the outputs of the
LLM in the session-based evaluation. (2) The PPT
content is parsed from the PPT file. The PPT file is
obtained by executing the label API sequences in
the turn-based evaluation and the previous outputs
of the LLM in the session-based evaluation. That
means the error made by LLMs in previous turns
would influence subsequent turns in the session-
based evaluation. We copy the inference prompt
we used from PPTC and illustrate it in Figure 8.

C Detailed Results of LLMs on PPTC-R
benchmark

In turn-based evaluation, we report the average to-
ken number of the input of one turn and the average
API number for finishing one turn as the cost mea-
surement. In session-based evaluation, we report
the average value of the token number of all inputs
in one session and the average API number required
to complete one session as the cost measurement.
We return the accuracy and the cost measurement
in both two evaluations in Table 5, 6, 7, and 8.

D Closed-source LLM’s Multilingual
Results in the Editing Template Task

We report the session-based performance of the
creating new slides task in Figure 9. For the editing
template task, we report the turn-based accuracy of
3 LLMs for it in Figure 10. We find that all LLM’s
session-based accuracy in this task is smaller than
4 percent. So we do not further report and analyze
the session-based result.

E Detailed Wrong Examples Made by
LLMs

We provide 4 typical wrong examples with their
explanations in Figure 11.

F Data Statistics

We developed our robustness benchmark using the
PPTC dataset (Guo et al., 2023). For each in-
stance in the PPTC benchmark, we created one
sentence-level perturbation, four semantic-level
perturbations, one API lack perturbation, one API
update perturbation, and fourteen language-level
variations. Consequently, our testing benchmark is

12397

https://azure.microsoft.com/en-us/products/cognitive-services/openai-service
https://azure.microsoft.com/en-us/products/cognitive-services/openai-service
https://azure.microsoft.com/en-us/products/cognitive-services/openai-service


API reference file

create_slide(): This API creates a new slide.
set_background_color(color): This API sets the background color of the slide. It takes one
parameter ‘color’, the color name to set as a string, such as ‘red’, ‘purple’.
choose_title(): This API selects the title on the slide. You should first call choose_title() before
inserting text to or changing font attributes of the title.
choose_content(): This API select the content on the slide. You should first call choose_content()
before inserting text to or changing font attributes of the content.
choose_textbox(idx): This API selects the textbox element on the slide. It takes one parameter,
the index of textbox as integer. idx is set to 0 by default, meaning the first textbox. You should first
call choose_textbox() before inserting text to or changing font attributes of the textbox element.
choose_picture(idx): This API selects the picture element on the slide. It takes one parameter, the
index of textbox as integer. idx is set to 0 by default, meaning the first textbox. You should first
call choose_picture() before changing height, width, rotation of the picture element. You should
not call choose_picture() before inserting picture element.
choose_shape(shape_name): This API selects a specific shape by shape name on the slide. It takes
one parameter ‘shape_name’, the name of the shape to select as a string. shape_name can be chosen
from [‘rectangle’,‘right_arrow’,‘rounded_rectangle’,‘triangle’,‘callout’,‘cloud’,‘star’,‘circle’] You
should first call choose_shape(shape_name) before you can do operations on the shape. You should
not call choose_shape(shape_name) before inserting shape element.
choose_table(): This API selects the table element on the slide. You should first call choose_table()
before changing the table. You should not call choose_table() before inserting table element.
choose_table_cell(row_id, column_id): This API selects a specific cell in the table by giving
row_id and column_id. It takes two parameters, the row id and column id of the cell to select as
integers (id starts from 0). Remember the first parameter is row id, the second parameter is column
id. You should first call choose_table_cell(row_id, column_id) before inserting text into a specific
cell of the table.
set_width(width): This API sets the width of the selected object. It takes one parameter ‘width’,
the width of an object in centimeters as float. You should first choose an object before you can
change the width of it.
set_height(height): This API sets the height of the selected object. It takes one parameter ‘height’,
the height of an object in centimeters as float. You should first choose an object before you can
change the height of it
set_left(left): This API moves and changes the object’s position. It sets the x position of the
selected object’s leftmost point. It takes one parameter, the x position to set. You should first
choose an object before you can change the left of it
set_top(top): This API moves and changes the object’s position. It sets the y position of the
selected object’s upmost point. It takes one parameter, the y position to set. You should first choose
an object before you can change the top of it
insert_text(text): This API inserts text into a text frame (textbox, title, content, table).
set_font_size(font_size): This API sets the size of the font It can take one argument ‘font_size’,
the font size to set as an integer.
set_font_color(color): This API sets the color of the font. It takes one parameter ‘color’, the color
name to set as a string, such as ‘red’, ‘purple’.
set_font_bold(): This API sets the font to be bold.

Figure 6: The reference API file in the API-lack setting.

12398



API reference file

insert_picture(picture_name): This API inserts a picture onto the slide. It takes one parameter
‘picture_name’, the name or description of picture as a string
insert_rectangle(): This API inserts a rectangle or square shape onto the slide.
insert_right_arrow(): This API inserts an arrow shape onto the slide.
insert_table(row_num, col_num): This API inserts a table of row_num rows and col_num
columns onto the current slide. It takes two argument, the row number and the column number of
the inserted table as integer. Remember the first parameter is row number and the second parameter
is column number.
insert_line_chart(data, series): This API inserts a line chart onto the slide. It takes two argument,
‘data’ is a list of numbers and ‘series’ is a list of strings.
insert_bar_chart(data, series): This API inserts a bar chart onto the slide. It takes two argument,
‘data’ is a list of numbers and ‘series’ is a list of strings.
insert_pie_chart(data, series): This API inserts a pie chart onto the slide. It takes two argument,
‘data’ is a list of numbers and ‘series’ is a list of strings.
seek_assistance(): This API requests human help when the computer is unsure about the result or
lacks the necessary API to fulfill the user’s instruction.

Figure 7: The reference API file in the API-lack setting.

Inference prompt in PPTC

(Task instruction) You are an AI assistant to help the user to operate PowerPoint and edit the contents.
Give you the user instruction:<Current user instruction>, you can complete it based on the following APIs and PPT
file content. Current you are at page <Page id>. Please finish the user instruction with the functions you have. Don’t
generate instructions beyond what the user has instructed. Don’t guess what the user may instruct in the next step and
generete API for them. Don’t use python loop to call API. You can only call API once in one line. If the user does not
specify the page to be modified, you can directly start using the APIs without having to navigate to other pages.
You need to generate code which can finish the user instruction. The multiple lines of code should be surrounded by
<code> and </code> such as: <code> API(); API(); </code>
For example, if the user instruction is "create a slide", then the answer should be:
<code> create_slide(); </code>

(API file) Now, you have access to a list of PowerPoint APIs with the following functions: <APIs and their
descriptions>
(e.g.,API(name="set_width", parameters="(width)",
description="This API sets the width of the selected object.",
parameter_description="It takes one parameter ’width’, the width of an object in centimeters as float.",
composition_instruction="You should first choose an object before you can change the width of it.",
api_desc="width of picture and shapes") )

(PPT file content) All the PPT contents are:
<Begin of PPT>
Turn-based: <Parsed PPT file content of the label PPT file of the previous turns>
Session-based: <Parsed PPT file content of the LLM prediction file of the previous turns>
<End of PPT>

(Dialogue history)
¬User¬: Hello!
¬AI¬: Hi there! How can I help you?
¬User¬: <the first instruction>
¬AI¬:
Turn-based: <the correct feasible API sequence>,
Session-based: <the LLM-generated API sequence>
...
¬User¬: <Current user instruction>. Surrounding your answer with <code> and </code>.
¬AI¬:

Figure 8: The inference prompt we used in both turn-based and session-based evaluation settings.

12399



Models and Methods
Creating new slides Editing PPT template

Turn-based Session-based Turn-based Session-based
Accuracy Avg token Avg API Accuracy Avg token Avg API Accuracy Avg token Avg API Accuracy Avg token Avg API

Davinci-003 64.8 2872.2 3.1 11.7 20716.8 24.2 26.3 2915.8 8.3 0.0 9321.1 23.6
ChatGPT 61.3 3106.6 3.4 9.7 22611.1 26.0 28.8 4140.9 8.1 2.0 13240.0 26.8

GPT-4 72.3 3111.2 3.0 12.3 22438.0 21.6 36.9 7565.9 7.7 4.0 24185.0 24.0
Llama-2 16.3 2822.6 4.3 1.7 11018.5 60.3 8.8 4124.5 7.6 2.0 4173.0 15.4

WizardLM 23.8 1327.1 3.3 1.0 11494.4 22.8 10.0 1328.4 5.7 0.0 4303.7 9.5
Baichuan 15.5 1327.1 9.8 1.4 10548.9 56.1 4.3 1328.0 9.6 0.0 4256.4 25.0

CodeLlama 36.2 2814.3 3.5 0.0 20720.9 32.1 18.8 2061.7 7.5 2.0 9566.9 22.58

Table 5: We report the results of LLMs in the sentence-level robustness setting in this table. ‘Davinci-003’ is the
Text-Davinci-003 model.

Models and Methods
Creating new slides Editing PPT template

Turn-based Session-based Turn-based Session-based
Accuracy Avg token Avg API Accuracy Avg token Avg API Accuracy Avg token Avg API Accuracy Avg token Avg API

Davinci-003 67.4 2781.3 2.4 9.5 20065.9 25.0 25.8 2892.9 7.8 0.5 9247.9 23.3
ChatGPT 65.0 2887.1 3.3 8.7 20865.0 25.3 27.0 4127.8 8.1 2.0 13207.0 26.3

GPT-4 72.0 2887.7 3.0 14.2 20817.7 22.2 35.8 7538.3 7.8 4.0 24103.1 24.4
Llama-2 16.1 2822.6 4.3 1.0 9777.9 16.6 7.6 2983.8 6.4 0.0 9550.7 22.8

WizardLM 23.8 1327.1 3.4 0.0 11494.4 22.8 10.0 1328.5 5.8 0.0 4303.7 9.5
Baichuan 15.0 1327.1 10.0 0.0 10112.3 24.1 2.5 1328.5 12.2 0.0 4256.4 17.0

CodeLlama 36.8 2819.7 3.4 0.0 20720.9 32.1 18.8 2983.1 7.3 0.0 10351.1 25.0

Table 6: We report the results of LLMs in the semantic-level robustness setting in this table. Each result is the
average performance in finishing four different paraphrased instructions.

Models and Methods
Creating new slides Editing PPT template

Turn-based Session-based Turn-based Session-based
Accuracy Avg token Avg API Accuracy Avg token Avg API Accuracy Avg token Avg API Accuracy Avg token Avg API

Davinci-003 55.1 2125.0 3.4 5.2 15527.1 25.2 33.75 2720.7 8.0 0.0 8720.3 25.0
ChatGPT 55.4 2138.9 3.6 3.9 15631.6 26.3 27.5 3925.5 8.8 0.0 12567.9 26.9

GPT-4 62.5 2138.9 3.0 5.2 15572.4 22.2 39.4 7265.1 7.6 0.0 23251.6 24.9
Llama-2 16.5 2070.4 5.7 0.0 17322.6 49.5 12.0 2787.8 7.8 0.0 8993.0 20.8

WizardLM 18.9 1308.8 3.2 0.0 15885.4 121.5 14.4 1306.7 5.6 0.0 13508.7 29.5
Baichuan 18.7 1310.0 10.1 0.0 11335.2 66.4 10.6 1308 8.5 6.0 4209.6 22.5

CodeLlama 26.3 2061.7 4.4 0.0 14448.1 34.7 13.6 2791.8 7.6 2.0 10001.8 13.3

Table 7: We report the results of LLMs in the API lack setting in this table. In this setting, we only maintain the 24
basic APIs. LLMs only need to finish the content that can be finished by the 24 APIs.

Models and Methods
Creating new slides Editing PPT template

Turn-based Session-based Turn-based Session-based
Accuracy Avg token Avg API Accuracy Avg token Avg API Accuracy Avg token Avg API Accuracy Avg token Avg API

Davinci-003 44.5 2938.8 2.8 1.3 21178.7 21.1 17.5 2942.6 6.6 0.0 9419.1 18.9
ChatGPT 55.4 4603.6 2.9 5.2 33166.4 23.2 15.0 4605.9 7.1 0.0 14724.6 20.3

GPT-4 75.7 6495.9 2.8 18.8 46747.9 20.7 35.6 8511.7 7.5 2.0 27211.5 23.4
Llama-2 7.8 2318.8 10.0 3.4 10073.8 17.2 7.5 2137.8 8.7 2.0 9910 13.7

WizardLM 11.3 1317.3 2.5 0.0 10285.4 11.8 6.9 1321.0 5.4 0.0 10406.5 33.3
Baichuan 13.2 1325.7 5.8 1.0 12018.5 60.3 2.5 1320.7 10.2 0.0 9818.0 22.8

CodeLlamA 22.4 3134.6 2.3 1.0 22536.2 17.2 12.6 3137.1 5.4 2.0 10001.1 13.3

Table 8: We report the results of LLMs in the API update setting in this table. In this setting, we add 97 new APIs
into the prompt to simulate the version update.

20 times larger than the original PPTC benchmark.
This comprehensive approach is designed to thor-
oughly evaluate the robustness of large language
models (LLMs) in task completion.

12400



Arabic Bulgarian Chinese French German Greek Hindi Russian Spanish Swahili Thai Turkish Urdu Vietnamese
Languages

0

5

10

15

20

Ac
cu

ra
cy

 %

Davinci-003
ChatGPT
GPT-4

Figure 9: We illustrate the session-based results of closed-source LLMs in the creating new slides task, where the
instructions are translated into 14 non-English languages. The bar for each language represents the LLM’s accuracy
in the corresponding language setting. The dotted line is the LLM’s accuracy when tested in the English setting.

Arabic Bulgarian Chinese French German Greek Hindi Russian Spanish Swahili Thai Turkish Urdu Vietnamese
Languages

0

10

20

30

40

Ac
cu

ra
cy

 %

Davinci-003
ChatGPT
GPT-4

Figure 10: We illustrate the turn-based results of closed-source LLMs in the editing template task, where the
instructions are translated into 14 non-English languages. The bar for each language represents the LLM’s accuracy
in the corresponding language setting. The dotted line is the LLM’s accuracy when tested in the English setting.

12401



Calling unavailable APIs or new APIs Misunderstanding the instruction

Example 1 (GPT-4 in API update setting):
Instruction: Fill the star with blue color.

Generated API sequence:
choose_shape(“star”)
set_shape_gradient(“star”, “radial”, [“blue”,
“light blue”])

Explanation: We don’t provide the
set_shape_gradient API in API reference file.

Example 2 (ChatGPT in API update
setting):
Instruction: Insert one clock. Make it on the
right side.

Generated API sequence:
insert_date_time(“h:mm AM/PM”, “right”)

Label API sequence:
insert_picture(“clock”)
align_slide_right()

Explanation: The new API insert_date_time
provided in the reference file is related to the
clock (time). But it’s not the right API.

Example 1 (ChatGPT in sentence-level
robustness setting):
Instruction: You know, I’ve always admired
the creativity and innovation behind success-
ful business plans. Anyway, go ahead and
create a slide and insert the title “Business
Plan”. By the way, have you ever noticed how
soothing the color blue can be? It’s one of my
favorites.

Generated API sequence:
create_slide()
choose_title()
insert_text(“Business Plan”)
set_background_color(“blue”)

Explanation: The LLM misunder-
stands the instruction and generates extra
‘set_background_color(“blue”)’ API action,
which leads to the wrong prediction.

Example 2 (GPT-4 in sentence-level
robustness setting):
Instruction: I hope you’re having a great
day! By the way, the height of the picture
should be 2 on slide 6, and it’s incredible
how technology can help us with these
tasks. While you’re at it, the font size of all
textboxes should be 10 on slide 11. Time
flies when you’re working on presentations,
doesn’t it?

Generated API sequence:
move_to_slide(6)
choose_picture(0)
set_height(2)

Explanation: The LLM misunderstands the
instruction and forgets to set the font size of
all textboxes to be 10 on slide 11.

Figure 11: The detailed wrong examples with their explanations.

12402


