
Findings of the Association for Computational Linguistics: EACL 2024, pages 12419–12433
November 12-16, 2024 ©2024 Association for Computational Linguistics

Fast Matrix Multiplications for Lookup Table-Quantized LLMs

Han Guo⋆ William Brandon⋆ Radostin Cholakov†

Jonathan Ragan-Kelley⋆ Eric P. Xing⋄ Yoon Kim⋆

⋆Massachusetts Institute of Technology, †High School of Mathematics Plovdiv
⋄Carnegie Mellon University, MBZUAI, Petuum Inc.

{hanguo,wbrandon,radi_cho,jrk,yoonkim}@mit.edu, epxing@cs.cmu.edu

� https://github.com/HanGuo97/flute

Abstract
The deployment of large language models
(LLMs) is often constrained by memory band-
width, where the primary bottleneck is the
cost of transferring model parameters from the
GPU’s global memory to its registers. When
coupled with custom kernels that fuse the de-
quantization and matmul operations, weight-
only quantization can thus enable faster infer-
ence by reducing the amount of memory move-
ment. However, developing high-performance
kernels for weight-quantized LLMs presents
substantial challenges, especially when the
weights are compressed to non-evenly-divisible
bit widths (e.g., 3 bits) with non-uniform,
lookup table (LUT) quantization. This paper
describes FLUTE, a flexible lookup table engine
for LUT-quantized LLMs, which uses offline
restructuring of the quantized weight matrix
to minimize bit manipulations associated with
unpacking, and vectorization and duplication
of the lookup table to mitigate shared memory
bandwidth constraints. At batch sizes < 32 and
quantization group size of 128 (typical in LLM
inference), the FLUTE kernel can be 2-4× faster
than existing GEMM kernels. As an applica-
tion of FLUTE, we explore a simple extension to
lookup table-based NormalFloat quantization
and apply it to quantize LLaMA3 to various
configurations, obtaining competitive quantiza-
tion performance against strong baselines while
obtaining an end-to-end throughput increase of
1.5 to 2 times.

1 Introduction
Large language model (LLM) deployment faces
significant latency challenges due to the memory
bandwidth constraints inherent in generative (token-
by-token) inference. The primary bottleneck is
the cost of transferring model parameters from the
GPU’s global memory to the registers, i.e., LLM
inference is memory-bound. To overcome this
“memory wall” (Gholami et al., 2024), practitioners
have increasingly adopted weight-only quantiza-
tion methods, wherein the parameters of an LLM

are compressed to lower precision (e.g., 4 or 8
bits) than the precision in which they were trained
(typically 16 bits). In addition to latency improve-
ments, weight quantization can also drastically re-
duce GPU memory required for deployment.

Realizing practical speed-ups with weight-only
quantization requires custom mixed-type matrix-
matrix multiply (matmul) kernels which must (1)
move a layer’s quantized weights from GPU off-
chip DRAM to on-chip SRAM, (2) dequantize the
weights to floating-point (FP) format (on chip),
(3) perform the FP matmul, and (4) write the re-
sults back to DRAM. Existing kernels such as
bitsandbytes (Dettmers et al., 2023), Marlin
(Frantar et al., 2024), and BitBLAS (Wang et al.,
2024) demonstrate that this strategy can result in
significant matmul speed-ups, e.g. up to four times
faster when going from W16A16 to W4A16. How-
ever, these kernels are typically specialized to 4-bit
quantization, and while some kernels support non-
uniform, lookup table (LUT) quantization, they
are generally slower than the uniform counterparts.
Given the recent promising results with odd-bit
(Shao et al., 2023; Ma et al., 2024b,a) and non-
uniform (Guo et al., 2024; Kim et al., 2023) quan-
tization methods, there is thus a need to develop
flexible kernels that can support mixed-type mat-
muls with a wider range of settings.

This paper describes FLUTE, a flexible lookup-
table engine for deploying weight-quantized LLMs,
with a focus on the low-bit and non-uniform quan-
tization setting. This setting raises several chal-
lenges. First, going beyond 8-bit quantization in-
volves packing sub-8-bit matrices into supported
data types, followed by unpacking during dequan-
tization. Structuring the unpacked data to match
GPU-native matmul formats is especially challeng-
ing when the weights are quantized to non-standard
bit-widths. Second, while uniformly-quantized
models can rely on assembly-level optimizations to
convert from INT to FP through bit-level manipula-

12419

https://github.com/HanGuo97/flute

tions, lookup table-based dequantization involves
dynamic indexing, and a naïve implementation can
lead to substantial overhead. Finally, typical mat-
mul implementations which distribute the work-
load across a grid of parallel thread blocks become
inefficient with small batches and low bit-width
weights; this necessitates more sophisticated par-
titioning strategies to optimize hardware resource
utilization.
FLUTE addresses these challenges through a com-

bination of (1) offline weight restructuring, (2) a
shared-memory lookup table for efficient dequanti-
zation, and (3) Stream-K partitioning for optimized
workload distribution. We compare FLUTE against
existing kernels on standard LLM mixed-precision
matmul settings where weights are quantized to
4 bits in groups of 128, and find that it outper-
forms existing non-uniform quantization kernels,
and even matches the simpler uniform-quantization
kernels in some cases. As an application of FLUTE,
we experiment with quantizing LLaMA3—which
has been found to be difficult to quantize (Huang
et al., 2024)—using a variant of normal float (NF)
quantization (Dettmers et al., 2023) which learns
the quantization parameters based on calibration
data. We find that we can achieve a 1.5 to 2 times
increase in end-to-end throughput when integrated
with frameworks such as vLLM (Kwon et al., 2023).

2 Background and Related Work
2.1 GPU Architecture and Memory

Bandwidth Bottlenecks
GPUs are massively-parallel processors designed
for throughput-oriented workloads containing large
amounts of independent work. The hardware of a
current-generation NVIDIA GPU consists of an ar-
ray of many individual streaming multiprocessors
(“SMs”), each consisting of 4 separate warp sched-
ulers together with a single shared memory scratch-
pad accessible to all 4 warp schedulers. Each warp
scheduler executes instructions on its own func-
tional units, and is able to issue at most one instruc-
tion per cycle, which may then take multiple subse-
quent cycles to complete while the warp scheduler
moves on to concurrently issue other instructions.
At the hardware level, the instructions executed by
a warp scheduler typically operate in a SIMD fash-
ion over vectors of 32 data elements at a time. At
the software level, CUDA asks the programmer to
program at the level of individual logical threads
executing scalar operations; threads are assigned
sequential integer IDs, and every group of 32 con-

secutive threads are implicitly organized together
into a single warp, corresponding to the GPU hard-
ware’s actual native unit of instruction execution.

Although GPUs are able to execute large num-
bers of instructions in parallel across the warp
schedulers of their many SMs, the rate at which
instructions can be executed is not always the bot-
tleneck in realistic GPU workloads. Instead, the
maximum achievable throughput of a GPU work-
load is often constrained by the speed of data move-
ment between levels of the GPU’s memory hierar-
chy. The memory resources of modern NVIDIA
server-class GPUs consist of (roughly): (1) Tens of
gigabytes of off-chip DRAM, referred to here as
global memory; (2) Tens of megabytes of on-chip
SRAM acting as a shared L2 cache accessible to all
SMs; (3) Hundreds of kilobytes of local SRAM per
SM, split into two configurably-sized portions, one
acting as an L1 cache and the other an explicitly-
addressed local scratchpad; and (4) Hundreds of
kilobytes of local SRAM per SM, acting as regis-
ters for the threads running on that SM.

The read/write bandwidth of resources in this
memory hierarchy can easily become the limit-
ing factor for realistic GPU workloads. For ex-
ample, an A100-80GB GPU supports a nominal
peak throughput for 16-bit matrix-multiply instruc-
tions of ≈ 3 × 1014 FLOP/s (aggregated across
all SMs), but its main memory supports a nominal
peak bandwidth of only ≈ 1.5× 1012 byte/s. This
means that the speed of any kernel which performs
fewer than roughly (3×1014)/(1.5×1012) = 200
matrix-multiply FLOPs per byte of data accessed
will necessarily be limited by the GPU’s memory
bandwidth, not by its compute throughput. Maxi-
mizing the ratio of FLOPs to bytes transferred, a
quantity known as arithmetic intensity, is often the
single most important consideration when design-
ing high-performance kernels.

2.2 LLM Deployment Characteristics
Depending on the context, inference can be bottle-
necked by compute throughput or memory band-
width. For LLMs, training, large-prefill, and large-
batch inference enjoy high arithmetic intensity as
the sizes of matrices involved in the matmuls are
large enough to saturate compute. Small-batch,
token-by-token inference on the other hand in-
volves narrower matmuls due to the smaller batch
dimension, resulting in low arithmetic intensity.
Reducing the amount of memory operations in
this case can thus enable practical speed-ups, even

12420

if the number of FLOPs remains the same (or is
even slightly increased). This has led to much
recent work on customized kernels which move
the weights from main memory to on-chip SRAM
while keeping them quantized/sparse (Dettmers
et al., 2023; Kim et al., 2023; Frantar et al., 2024;
Wang et al., 2024; Xia et al., 2024a), and then per-
forming the actual matmuls in higher precision af-
ter dequantizing to FP on chip. Marlin implements
this strategy for 4-bit uniform quantization and re-
ports significant (up to 4×) matmul speed-ups even
in moderate batch (16-32) settings. bitsandbytes
(Dettmers et al., 2023) and BitBLAS (Wang et al.,
2024) extend this to LUT-quantized LLMs, but do
not allow for 3 bit-quantized weights. Moreover,
existing LUT-quantization kernels generally under-
perform uniform-quantization kernels.

2.3 Weight-only Quantization in LLMs
Uniform quantization converts a group of full
precision weights to lower-precision intervals of
equal size through rounding. For example min-
max quantization maps a group of weights u to
integers {−2b−1, . . . , 2b−1 − 1} via the function
clamp

(
round(1su);−2b−1, 2b−1 − 1

)
, where s =

max(|u|)
2b−1−1

is a scaling factor. Recent methods im-
prove upon min-max quantization by using cali-
bration data (Frantar et al., 2022; Lin et al., 2023;
Shao et al., 2023; Ma et al., 2024b). When both the
weights and activations are quantized uniformly, it
is possible to use INT matmuls to enable speed-ups
beyond the savings from reduced memory move-
ment. However, activation quantization remains
difficult due to the presence of outlier channels,
which necessitate sophisticated mitigation strate-
gies (Wei et al., 2022; Dettmers et al., 2022; Xiao
et al., 2022; Zhao et al., 2023; Ashkboos et al.,
2023, 2024; Nrusimha et al., 2024; Lin et al., 2024).
Weight-only quantization thus remains a popular
choice for LLMs. Moreover, if only the weights
are quantized, it is possible to reduce quantization
error further by applying quantization at a more
fine-grained levels (e.g., a block of 128 weight val-
ues) than at row- or column-level.

Non-uniform quantization generalizes uniform
quantization by mapping weights to potentially
unequal intervals (Miyashita et al., 2016; Zhou
et al., 2017; Zhang et al., 2018; Yang et al., 2019).
Lookup table (LUT) quantization is a flexible vari-
ant of non-uniform quantization which can map
intervals to arbitrary values via a lookup table (Car-
dinaux et al., 2020; Wang et al., 2022). LUT quan-

tization needs to trade off the size of the lookup
table and the granularity of the groups at which the
weights are quantized. For example, SqueezeLLM
(Kim et al., 2023) applies K-means clustering at the
column (output channel) level to obtain the lookup
table, while NormalFloat quantization (Dettmers
et al., 2023) uses a tensor-level lookup table ob-
tained from the quantiles of a Normal distribution
that is multiplicatively modified through group-
level parameters. While it is possible to perform
matmuls with activations/weights that are quan-
tized non-uniformly (e.g., through LUT-based mat-
muls (Xu et al., 2021; Park et al., 2022)), these
methods cannot leverage specialized accelerators
on modern GPUs which are typically optimized
for FP matmuls. We thus seek efficient kernels
which can simultaneously make use of quantized
representations (to minimize memory movement)
as well as GPU-native matrix multiplications in FP.

3 FLUTE: A Fast and Flexible Kernel for
Mixed-Type Matrix Multiplications

Let Q ∈ Zk×n be a quantized matrix obtained from
quantizing the weight matrix W ∈ Rk×n using a
lookup table T. Concretely, given a lookup table
T = [v0, . . . , v2b−1] where b is the number of bits
and each vi is a floating-point number, each entry
of Q is given by,

Qij = quantize(Wij ;T) = argmin
c

|Wij − vc|,

where Qij ∈ {0, . . . , 2b−1}. Now let Ŵ ∈ Rk×n

be the dequantized matrix where

Ŵij = dequantize(Qij ,T) = T[Qij].

Our objective is to perform a fast matrix multi-
plication between a dense input activation matrix
X ∈ Rm×k (typically stored in FP16) and Ŵ.

A straightforward implementation of such
mixed-type matrix multiplication uses separate ker-
nels. The first kernel loads the quantized matrix
Q from the GPU’s off-chip global memory into
its on-chip memory, performs dequantization, and
writes back the dequantized matrix Ŵ back to the
DRAM. The second kernel is a standard FP matmul
kernel over X and Ŵ. This separate-kernel can
introduce substantial overhead since Ŵ is moved
back and forth. We can achieve faster matmuls
by fusing the dequantization and matmul kernels,
where we dequantize on chip and immediately use
the dequantized values for the matmul.

12421

Algorithm 1 FLUTE (Simplified)

Require: Xg: inputs in HBM
Qg: quantized weight in HBM
Sg: scales in HBM
Tg: lookup table in HBM
Yg: outputs in HBM

————— Terminology and Shapes (of X only for brevity) —————
tile: a block of matrix entries that fits into shared memory
fragment: a block of tile entries that fit into registers
g(lobal), s(shared), r(egisters) denotes where data reside
Xg: [M tiles, K tiles, fragments per tile, fragment size]
Xs: [fragments per tile, fragment size]
Xr: [fragment size]
————— Offline Preprocessing and Host-side Code —————
Qg

1,Q
g
2 ← reorder_and_split(Qg) ▷ Section 3.1

Tg
v ← make_vectorized_LUT(Tg) ▷ Section 3.2

tile_scheduler← StreamKTileScheduler(NSMs) ▷ Section 3.3
launching blocks proportional to SMs
Nblocks ← tile_scheduler.num_blocks()
————— Kernel Launches and Device-side Code —————
parallel for block index b ← 1 to Nblocks do

partitioning works for this block
tile_scheduler.initialize(b)
copy lookup table from global to shared memory
copyg→s(Tg

v,T
s
v)

initialize the register-backed accumulator
Yr ← 0
main loop (pipelined in practice, not shown here)
while ¬tile_scheduler.done() do

copy data tile from global to shared memory
(X is shown but the same applies to Q1,Q2,S)
itile, jtile, ktile ← tile_scheduler.get_tile_index()
copyg→s(Xg[itile, ktile, :, :],X

s)
for fragment index tfragment ← 1 to Nfragments do

copy data fragment from shared memory to registers
(X is shown but the same applies to Q1,Q2,S)
copys→r(Xs[tfragment, :],X

r)
combine two bit-slices in registers (3-bit)
Qr

1+2 ← combine(Qr
1,Q

r
2) ▷ Section 3.1

vectorized dequantization in registers

Ŵr ← vec_dequantize(Qr
1+2,S

r,Ts) ▷ Section 3.2

i.e., Yr ← Yr + XrŴr

Yr ← tensor_core_mma(Yr,Xr,Ŵr)
end for
if tile_scheduler.end_of_output_tile() then

Ŷr ← to_fp16(Yr) ▷ Section 3.3
write output tile from Registers to HBM

copyr→g(Ŷr,Yg[itile, jtile, :])
end if
update the internal counter of scheduler
tile_scheduler.step()

end while
end parallel for

However, implementing a fused weight-only
LUT-quantized matmul that leads to speed-ups
presents several challenges. For one, high-
performance matmul necessitates the use of special-
ized primitives, such as Tensor Cores, which have
strict requirements regarding the types, shapes, and
layout of data. Second, efficient dynamic indexing
is crucial for LUT-based dequantization; however,
GPUs do not natively support dynamic indexing of
a lookup table in their fastest on-chip registers. Fi-
nally, with smaller input matrices arising from low-
bit and low-batch deployment, achieving workload
balance across SMs is vital for maintaining speed,
thus necessitating sophisticated partitioning strate-
gies. FLUTE addresses these challenges through a
combination of offline restructuring of the quan-
tized weight matrix (§3.1), vectorization and dupli-
cation of the lookup table to mitigate shared band-

Shared Memory

Registers

scales

Inputs

Quantized
Weight

table

asynchronous global memory
to shared memory copy

de-quantization

TensorCore MMA

Global Memory

registers to global
memory copy

shared memory
to registers copy

Outputs

4

3

2

1

5

cyclic shared
memory buffer

Figure 1: A simplified view of a kernel that fuses the de-
quantization and matmul steps. Each threadblock (group of
threads) is responsible for computing one or more output tiles
by performing the matrix product between specific rows of
inputs and columns of weights. (1) The threadblock issues
asynchronous copy instructions to fetch small chunks of input
data (tiles) from global memory to shared memory. (2) As
soon as a tile arrives in shared memory, it is further sliced into
smaller chunks (fragments) and copied into registers. (3) Once
all necessary components are in the registers, the quantized
matrix undergoes dequantization. (4) The dequantized matrix
and inputs are then processed by Tensor Cores using MMA
(Matrix Multiply Accumulate) instructions. (5) Finally, the
accumulated results are written back from the registers to the
outputs in global memory.

width constraints (§3.2), and Stream-K workload
partitioning to minimize wave quantization (§3.3).
Alg. 1 gives a simplified version of the FLUTE ker-
nel, while Fig. 1 shows a high-level overview. (See
Alg. 2 in the Appendix for more details).

3.1 Offline Matrix Restructuring
Modern GPUs feature specialized primitives (Ten-
sor Cores)—distinct from general-purpose vector
ALUs—which can substantially accelerate dense
matrix multiplications. For example, A100’s FP16
tensor core matmuls are 16× faster than FP32 vec-
tor matmuls. However, this acceleration comes
at the expense of generality and programmability.
Tensor Core MMA (matrix-multiply-accumulate) op-
erations require the input matrices to adhere to
specific layout specifications within the registers
of 32 threads. The fused kernel needs to first load
fragments of the quantized weight into registers, de-
quantize the matrix, and then perform the MMA oper-
ation between the input fragments and dequantized
matrix fragments. This necessitates that the post-
dequantization matrix layout meets the required
specifications. While runtime data reordering is
one approach, it introduces a substantial number
of operations. Instead, we leverage the fact that Q

12422

Quantized Weights

unpacking

(shift + mask)

vectorized

table lookup

vectorized

scaling

write

results

lookup table

int-4 int-4

int16 int16

Dequantized

Weights

Scales

SM2SM1SM0

N

SM2SM1SM0

K K

M M
N

N

K

Slice-K (2D View) Slice-K (3D View) Stream-K (3D View)

M

Figure 2: Vectorized Lookup Table Design (Left). Instead of dequantizing one element at a time, we vectorize the lookup
table by creating another table that holds the values of all possible pairs of indices. This can look up two values simultaneously,
followed by efficient vectorized scaling operations. Stream-K Work Decomposition (Right). In classic work decomposition,
output tile production is independently assigned to threadblocks. Each threadblock processes one (or more) rows of the left
operand and one (or more) columns of the right operand, slicing down the inner K dimension to compute the corresponding
output tile (Slice-K). However, when the weight matrix is heavily quantized, the reduced size can lead to “stragglers” in Slice-K
due to uneven workload assignment. Stream-K (Osama et al., 2023) addresses this by decomposing work at a finer granularity,
enabling multiple threadblocks to collaboratively compute a single output tile.

(the quantized weights) are static during inference,
allowing for offline weight reordering such that af-
ter dequantization, the weights are already laid out
exactly in the expected format (Frantar et al., 2024;
Xia et al., 2024b; Lin et al., 2024).

The above strategy is difficult to straightfor-
wardly extend to the case of non-evenly-divisible
bit widths (e.g., 3 bits). Kernels employ vector-
ized data access when loading data from global
to shared memory. Hence each thread should ac-
cess the quantized weight in granularity of 128 bits
(or at least in powers of 2). While this could be
addressed by padding, this would be inefficient.
We instead split the (3-bit) quantized weight into
two partitions (Xia et al., 2024b), or bit-slices: one
containing the 1-bit portion and the other the 2-bit
portion, and issue two separate vectorized (asyn-
chronous) data copy instructions. Once the two
bit-slices are loaded into the registers, we combine
them before dequantization.

3.2 Vectorized Lookup in Shared Memory
During dequantiation each element c in the quan-
tized array needs to access a 16-bit element T[c]
from the lookup table. Each thread needs to access
the lookup table using different indices, and such
“non-uniform access” can degrade runtime perfor-
mance when implemented naïvely. While storing
the lookup table in on-chip shared memory can re-
duce expensive off-chip memory access, this still
introduces significant traffic to shared memory. To
reduce memory access instructions we “vectorize”
the lookup operation by accessing two elements at
a time (Fig. 2, left). We build an alternative lookup
table for every possible pair of values, with each
element containing a tuple of 16-bit values. The
storage overhead from the vectorized lookup table

is minimal compared to the rest of memory usage.
For example, for 4-bit LUT the table has only 24

elements of 16-bit values, and thus the vectorized
table has only 28 elements of 32-bit values, slightly
more than 1KB of storage. This is a fraction of the
48KB-163KB of shared memory on modern GPUs.
Reducing bank conflicts. Shared memory is or-
ganized such that each successive 32-bit segment
corresponds to a “bank”, and there are 32 such
banks. Each memory address in shared memory
corresponds to the ⌊addr32 ⌋mod32 bank. If threads
in a warp access data from different banks, access
is parallelized. However, if two threads access data
from the same bank (but not the same address),
the access is serialized. For the 4-bit and 3-bit
vectorized tables, a simple implementation could
thus cause up to 8-way bank conflicts (4-bit) or
2-way bank conflicts (3-bit). To mitigate this, we
duplicate the 4-bit vectorized lookup table multiple
times, placing copies in different memory banks,
which allows threads to access values from differ-
ent banks with reduced bank conflicts.

3.3 Stream-K Workload Partitioning
For high SM occupancy, standard matmul imple-
mentations block the computation using a data-
parallel tiling of the output matrix, where a group
of threads (“thread block”) is assigned to com-
pute the work on one output tile. This is shown
on the left of Figure 2. As each thread block can
only occupy one SM, it is important to avoid “wave
quantization”, which happens when the number of
output tiles is not an even multiple of the number
of processor cores. In this case the last wave uses
only a subset of the cores, leaving the rest idle.

Wave quantization and workload imbalance are
especially problematic in low-bit and low-batch

12423

Batch Size Batch SizeSp
ee
du
ps
 a
ga
in
st
 t
or
ch
.m
m

Marlin (4-bit, integer)
BitsandBytes (4-bit, LUT)

BitBlas (4-bit, integer)
BitBlas (4-bit, LUT) FLUTE (4-bit, LUT) A100A6000

1

0

4

2

3

1

0

4

2

3

1

0

4

2

3

1

0

4

2

3

4 8 16 321 2 4 8 16 321 2 4 8 16 321 2 4 8 16 321 2 4 8 16 321 2 4 8 16 321 24 8 16 321 2 4 8 16 321 2 4 8 16 321 2 4 8 16 321 2 4 8 16 321 2 4 8 16 321 2 4 8 16 321 2 4 8 16 321 24 8 16 321 2 4 8 16 321 2

Figure 3: Runtime performance of FLUTE in the standard W4G128 setting where, the weights are quantized to 4 bits in groups
of 128. We show speedup against 16-bit torch.mm. The matrix shapes for our benchmarks are selected based on those used
in Llama-3-8B (top row) and Llama-3-70B (bottom row) models. For each M-N-K shape tuple, we generate three random
sets of data, run each kernel on the data 100 times, and average. While our main comparisons are against other LUT kernels
(bitsandbytes, BitBLAS-NF4), for reference we also include comparisons with kernels that only support uniform (integer)
dequantization (Marlin, BitBLAS). These results are represented with dashed lines in our figures.

scenarios, which result in smaller input matrices
(activations and quantized weights), thus making
the effect of wave quantization more pronounced.
To mitigate this, we implement a method known as
Stream-K workload decomposition (Osama et al.,
2023), which distributes the tiles such that each
SM’s computations can span beyond specific rows
or columns. This method is depicted on in Fig. 2
(Right). Here, the 35 M-N-K tiles are more evenly
divided among the 3 SMs than in the simpler Slice-
K partitioning (Figure 2, middle), in which SM’s
computations do not span beyond rows/columns.

Mixed precision accumulation and global reduc-
tion. In Stream-K, when multiple SMs compute
the same M-N dimension across different K tiles,
they must reconcile their partial sums in off-chip
global memory. SMs that complete their share of
K tiles write their partial sums to a global scratch
space, allowing subsequent SMs to read, reduce,
and write back these sums. For numerical stability,
most kernels perform multiplications in FP16 but
accumulate results in FP32. However, writing to
global memory in FP32 results in significant traf-
fic. We thus implement in-register accumulation in
FP32 and globally reduce partial sums in FP16.

4 Experiments
Our experiments consist of two settings: kernel-
level experiments which compare FLUTE matmuls
standalone against existing mixed-input matmul
kernels (§4.1), and end-to-end experiments which
assess whether practicals speed-ups are obtainable
on realistic LLM workloads (§4.2).

4.1 Kernel Benchmarks
For each matrix size, we compile multiple instan-
tiations of the kernel with various configurations,
including different tile sizes, pipeline stages, and
the number of lookup table duplicates, selecting
the best-performing configuration based on bench-

marking.1 We compare FLUTE against a collec-
tion of weight-quantized matrix multiplication ker-
nels, including those capable of flexible LUT-based
dequantization such as bitsandbytes (Dettmers
et al., 2023)2 and BitBLAS (Wang et al., 2024).

LUT quantization method. There are many
methods for LUT quantization; we follow the
popular NormalFloat LUT quantization scheme
(Dettmers et al., 2023), where a tensor-level table
T is modified to be a group-level table via a scaling
factor sg for each group g, resulting in a group-
level table Tg = [sg · v0, . . . , sg · v2b−1]. Here
sg ∈ R+ is a scalar that varies per group. This ap-
proach requires maintaining a tensor-level lookup
table T and group-level scalars {sg}d

2/g
g=1 , and thus

incur almost the same memory overhead as uni-
form quantization (which also requires maintaining
the group-level scalars). While we primarily focus
on LUT kernels, for completeness we also com-
pare against high-performance kernels specialized
for uniformly quantized weights (BitBLAS3 and
Marlin4 (Frantar et al., 2024)). These kernels do
not require dynamic indexing into a lookup table
and can perform dequantization in registers using
highly tuned PTX assembly instructions that are
not applicable to LUT-based dequantization.

Results. Figure 3 presents the results with the
standard setting of 4-bit quantization and a group
size of 128, where memory traffic is reduced by

1Concretely, we randomly generate three sets of input data
based on the matrix shapes for 8B/70B LLMs, run the kernel
on the data 100 times, and report the average performance on
both A100 and A6000 GPUs.

2For most of the kernels, we pre-allocate the output mem-
ory buffer and use the out keyword to exclude the memory
allocation time from our measurements. However, as of this
writing, bitsandbytes still allocates memory in some cases.
Our preliminary experiments indicate that this introduces an
overhead of approximately 2.5%.

3https://github.com/microsoft/BitBLAS
4https://github.com/IST-DASLab/marlin

12424

https://github.com/microsoft/BitBLAS
https://github.com/IST-DASLab/marlin

Sp
ee

du
ps

 a
ga

in
st

 t
or

ch
.m

m

Batch Size (M) Batch Size (M)

group size = 32
group size = 64
group size = 128
group size = 256

group size = 32
group size = 64
group size = 128
group size = 256

group size = 32
group size = 64
group size = 128
group size = 256

A6000 A100

Figure 4: Runtime performance at various bit-widths and group sizes with N=K=8192. FLUTE consistently achieves speedups
across different settings, including the in the 3-bit configuration.

4x (modulo the overhead coming from scales).
FLUTE achieves favorable performance across a
wide range of matrix shapes on both A6000 and
A100, occasionally nearing the peak theoretical
speedup (of 4x) on A6000. Other LUT-compatible
kernels achieve similar speedups only with a batch
size of 1, and their performance quickly degrades.
FLUTE also compares favorably to Marlin, which
is highly specialized for cases where the input is
FP16 and the weight is uniform-quantized to INT4.

We further showcase the flexibility of FLUTE
by experimenting with different group sizes not
just in terms of its lookup-table design but also in
supporting various bit-widths and group sizes. In
particular, FLUTE can perform multiplications with
3-bit matrices (§3.1), a capability that the afore-
mentioned alternatives do not support. The results
in Figure 4 demonstrate consistent speed-ups over
torch.mm across across a wide rage of settings.

4.2 End-to-End LLM Benchmarks
As an application of FLUTE, we experiment with
quantizing LLaMA3-8B and LLaMA3-70B. The
LLaMA3 family of models has been found to be
more difficult to quantize than other open source
models (Huang et al., 2024), and thus presents a
testing ground for different quantization strategies.

For the LUT quantization method, we use a sim-
ple extension of NormalFloat (NF) quantization
(Dettmers et al., 2023). Standard NF quantiza-
tion calculates 2b−1 evenly-spaced values from
[δ, 12], and 2b−1 + 1 evenly-spaced values from
[12 , 1 − δ], where δ = 1

2(
1
30 + 1

32). This re-
sults in 2b probability values [p0, . . . , p2b−1] where
p0 = δ, p2b−1−1 = 1

2 , and p2b−1 = 1 − δ.
These probabilities are converted into quantiles
[q0, . . . , q2b−1] where qi = Φ−1(pi) is the Gaus-
sian quantile for pi. The quantiles are then normal-
ized to [−1, 1] by q̃i =

qi
q
2b−1

. Then, given a group

of weights u = [u1, . . . , uB] and the absmax value
s = max(|u|) for that group, the weights uj in
this group are quantized to the nearest quantile,
i.e., cj = argmini∈{0,...,2b−1}

∣∣q̃i − uj

s

∣∣. Given

an NF-quantized matrix Q ∈ {0, . . . , 2b − 1}k×n,
the matmul kernel loads the tensor-level lookup
table T = [q̃0, . . . q̃2b−1], as well as the group-
level scales s1, . . . s kn

B
, and then dequantizes via

T[Qij] · s(i×j) mod B .
Our simple extension builds upon the above

by using calibration data to refine the scales,
which has been found to be beneficial for uni-
form quantization (Shao et al., 2023). Since the
lookup table consists of quantiles from N

(
0, σ2

)

with standard deviation σ = 1
Φ−1(1−δ)

, we can
reformulate the quantization function as cj =
argmini∈{0,...,2b−1} |sσ̃qi − uj |. For learning, we
initialize σ̃ = 1

Φ−1(1−δ)
and optimize this with gra-

dient descent against the negative log-likelihood
of calibration samples, where we use the straight-
through estimator.5 After learning, we can save sσ̃

σ
as the new scale, and hence the number of scalar
values to be loaded for dequantization remains un-
changed. We use use 128 examples of length 2048
from WikiText-2 training as our calibration dataset.

We conducted end-to-end evaluations by inte-
grating the FLUTE kernels into two libraries:

1. GPT-Fast6 is a simple yet performant
PyTorch-native implementation for trans-
former text generation. We follow most
of its default settings, running benchmarks
with a batch size of 1.7 We additionally
use torch.compile to optimize the model,
which, in early experiments, nearly tripled the
throughput of the 16-bit unquantized model.

2. vLLM (Kwon et al., 2023) is a high-throughput
5We also experimented with a variant of this approach

where each value of the tensor-level lookup table is updated
to be the average of all the weights that were bucketed to that
value (as in K-means). We did not find meaningful improve-
ments with this approach.

6https://github.com/pytorch-labs/gpt-fast
7This configuration makes the reported tokens per second

(tokens/s) equivalent to “tokens/s/user.” We set the prompt
length to just 1, focusing our measurements on the decoding
step in text generation rather than the prefill stage. We also do
not use CUDA Graphs due to its incompatibility with FLUTE.

12425

https://github.com/pytorch-labs/gpt-fast

Quantization PPL ↓ Speedups ↑
Configuration GB Wiki C4 A6000 x4 A100 x2

8B Unquant. 15.1 6.1 9.2 1.0x 1.0x
W4G32 5.7 6.1 9.4 2.0x 1.3x
W4G64 5.5 6.1 9.4 2.1x 1.3x
W4G128 5.4 6.2 9.5 2.2x 1.3x
W3G32 4.9 6.9 11.0 2.1x 1.3x
W3G64 4.7 7.2 11.3 2.3x 1.4x
W3G128 4.6 7.5 11.7 2.4x 1.5x

70B Unquant. 131.7 2.9 6.9 OOM 1.0x OOM 1.0x
W4G32 40.1 3.0 7.0 2.9x 1.9x 1.8x 1.4x
W4G64 38.1 3.0 7.1 3.1x 1.9x 1.8x 1.5x
W4G128 37.1 3.1 7.2 3.4x 1.9x 1.9x 1.5x
W3G32 32.1 3.9 8.0 3.1x 1.9x 2.0x 1.5x
W3G64 30.1 4.1 8.4 3.8x 1.9x 2.3x 1.7x
W3G128 29.1 5.2 10.1 4.1x 1.9x 2.4x 1.7x

Table 1: Perplexity and decoding speed of LLaMA-3 with
learned NF quantization using various quantization config-
urations, denoted as W(bits)G(group-size). Decoding
speedup is measured in tokens per GPU-second. The un-
quantized LLaMA-3 70B model requires multiple GPUs with
Tensor Parallelism. Therefore, we compare its speed to that
of the quantized models using one GPU, accounting for the
number of GPUs used (Xia et al., 2024b), and to the quantized
models with Tensor Parallelism applied (labeled as x4 and
x2). For the 8B models, since all models fit into one GPU, we
report only single GPU results. Please see Table 3 for details.

and memory-efficient inference and serving
engine for LLMs widely used in practice. We
benchmarked the latency of processing a sin-
gle batch of requests, following most of its
default settings, but varied the input length,
output length, and batch size to assess perfor-
mance under different conditions.

For the 70B model, the unquantized model does
not fit into a single GPU. Consequently, we ap-
ply tensor parallelism across 4xA6000 or 2xA100
GPUs. Since the quantized model fits into a single
GPU, we report two sets of numbers (single- and
multi-GPUs) to represent different use cases.

Results. We first compare our “learned NF quan-
tization” approach against standard 4- and 3-bit
setting with group size 128 against other quanti-
zation methods. The results are shown in Table 2,
where we find that this variant of LUT quantiza-
tion improves upon ordinary NF quantization and
compares favorably against existing baselines. See
Tables 4 and 5 of the appendix for the full results.
We also find that combining NF with AWQ (Lin
et al., 2023) to be beneficial, although a learned
NF+AWQ did not help. (However we emphasize
that the quantization method itself is not the main
contribution of the present work.) We next exploit
the flexibility of FLUTE and conduct end-to-end ex-
periments with various bit- and group-size settings.
This is shown in Table 1. With small enough group
sizes, our approach is able to almost approach the

#P Method Wiki PPL ↓ C4 PPL ↓ LLM Eval ↑
4-bit 3-bit 4-bit 3-bit 4-bit 3-bit

8B Unquantized 6.1 9.2 68.6
RTN 8.5 27.9 13.4 1.1E2 63.9 40.2
GPTQ 6.5 8.2 10.4 13.7 67.3 61.7
AWQ 6.6 8.2 9.4 11.6 68.2 64.4
OmniQuant 6.6 8.4 10.1 13.5 68.3 62.4

NF 6.6 9.2 9.5 13.0 68.0 62.3
NF + AWQ 6.5 8.0 9.3 11.5 67.8 65.1
NF (learned) 6.2 7.5 9.5 11.7 67.9 63.7

70B Unquantized 2.9 6.9 75.3
RTN 3.6 11.8 8.9 22.0 74.3 48.0
GPTQ 3.3 5.2 6.9 10.5 74.9 70.6
AWQ 3.3 4.8 7.0 8.0 74.9 73.2
OmniQuant 3.3 5.4 7.5 9.3 74.2 70.2

NF 3.4 8.7 7.6 16.7 74.0 64.3
NF + AWQ 3.2 4.6 6.9 7.8 75.2 73.8
NF (learned) 3.1 5.2 7.2 10.1 74.4 66.4

Table 2: Evaluation of post-training quantization on LLaMA3-
8B and LLaMA3-70B. The RTN, GPTQ (Frantar et al., 2022),
AWQ (Lin et al., 2023) results are from Huang et al. (2024);
the rest are from our implementations. All non-NF methods
use uniform weight quantization.

16 bit baseline in terms of WikiText2 perplexity.8

We are able to observe meaningful speedups even
in the end-to-end case over an optimized baseline.

Finally, we evaluated end-to-end latency using
the popular model service framework vLLM (Kwon
et al., 2023). Based on our earlier experiments, we
selected a group size of 64, which strikes a good
balance between quality and speed. We conducted
experiments across various configurations, includ-
ing bit precision, model sizes, number of GPUs,
input lengths, output lengths, and batch sizes. Addi-
tionally, we conducted experiments with the newly
released Gemma-2 models (9B and 27B). For the
largest open-sourced Gemma-2 27B model, which
fits into a 2xA6000 and 1xA100 setup, we adjusted
the tensor parallelism settings accordingly. The
results, presented in Fig. 5, further showcase the
end-to-end performance of the kernel.

To demonstrate the scalability of our approach,
we evaluated FLUTE on the LLaMA-3.1 (405B)
model (Dubey et al., 2024), shown in Fig. 6. It is
worth noting that, without quantization, the 405B
model’s parameters alone would require multiple
GPU nodes. However, with FLUTE, we were able
to perform inference on a single node, highlighting
the efficiency and scalability of our solution.

5 Discussion and Conclusion
Early work on LLM quantization generally worked
with uniform quantization methods (Frantar et al.,
2022; Dettmers et al., 2022; Xiao et al., 2022).

8Note that the WikiText-2 validation data is different from
the calibration data.

12426

NA NA NA NA

S
in

gl
e

G
P

U

(8

B
, 9

B
)

LLaMA-3 (A6000) LLaMA-3 (A100) Gemma-2 (A6000) Gemma-2 (A100)

S
in

gl
e

G
P

U

(7

0
B

, 2
7B

)
Te

ns
or

 P
ar

al
le

l

(7

0
B

, 2
7B

)

Unquantized

3-bit

4-bit

Figure 5: End-to-end latency benchmark for processing a single batch of requests using vLLM. We evaluated LLaMA-3 (8B and
70B) and Gemma-2 (9B and 27B) models with various configurations, including different bits, model sizes, number of GPUs,
input lengths, output lengths, and batch sizes. The models were quantized using a group size of 64 to achieve a good balance
between quality and speed.

Figure 6: End-to-end vLLM latency benchmark for processing
a single batch of requests using LLaMA-3.1 (405B, W4G64).

More recent work has shown the benefits of LUT-
quantization, both from PTQ (Kim et al., 2023) and
finetuning (Dettmers et al., 2023) perspectives. In-
sofar as lookup tables can represent flexible quanti-
zation functions, our hope is that FLUTE can enable
researchers and practitioners to explore new quanti-
zation algorithms that can learn better lookup tables
(Yamamoto, 2021; Cardinaux et al., 2020; Wang
et al., 2022). For example, recent work has found
that codebook-based quantization schemes—which
generalize lookup tables to vector-valued values—
can enable even lower-bit (e.g., 2-bit) LLM quan-
tization without significant performance degrada-
tions (Tseng et al., 2024; Egiazarian et al., 2024).
We anticipate that ideas from this work can aid in
developing kernels for such methods.

Algorithmic considerations aside, one of the
main challenges in developing fused quantized ma-

trix multiplication kernels stems from the lack of
hardware support for “mixed-type” instructions,
necessitating software-level implementations. Ex-
isting Tensor Core instructions support scenarios
where the input and output/accumulation data have
different types (e.g., compute in FP16 and out-
put/accumulate in FP32). However, they do not
support cases where the input operands themselves
are of different types (e.g., FP16 inputs and INT4
weights). As weight-only quantization becomes in-
creasingly common in LLM inference applications,
native support for such instructions in future hard-
ware could be beneficial. Additionally, the lack of
in-register dynamic indexing means that develop-
ers must devise software solutions. Enhanced hard-
ware acceleration for indexing into small lookup
tables could also prove beneficial in the upcoming
generations of AI accelerator hardware.

6 Conclusion

This work introduces FLUTE, a CUDA kernel de-
signed for fused quantized matrix multiplications
to accelerate LLM inference. FLUTE offers flexi-
bility, supporting flexible mappings between quan-
tized and dequantized values through a lookup ta-
ble, and accommodating a wide range of bit widths
and group sizes. We demonstrate its performance
through both kernel-level benchmarks and end-to-
end evaluations on state-of-the-art LLMs.

12427

Limitations

FLUTE has several limitations. For one, it is mostly
optimized for Ampere-generation GPUs, and it
does not take advantage of the newer hardware
features available in subsequent generations, such
as Hopper GPUs (H100). However, the majority
of the methods discussed could still be applica-
ble to the newer hardware. For Ampere genera-
tion GPUs, the latest tensor cores support perform-
ing MMA operations on matrix fragments of shape
[16,16]x[16,8]. When the batch size is smaller
than 16, input data needs to be padded within
shared memory. Although this padding increases
on-chip data movements (between shared mem-
ory and registers) and computations, it does not
increase data movement between off-chip and on-
chip memory, allowing us to achieve speed-ups in
memory-bound cases. In such scenarios, switching
to SIMT cores could further enhance performance.
FLUTE is designed for memory-bound scenarios
such as LLM decoding. Its performance tends to
degrade with larger batch sizes, which are more
common during training when the workload be-
comes more compute-bound. Finally, while FLUTE
demonstrates strong performance among kernels
that support LUT-based dequantization, its perfor-
mance on A100s still falls short of the peak per-
formance that kernels specialized for uniformly
quantized matrices can achieve.

Acknowledgements

We thank Yijie Bei and Dmytro Ivchenko for help-
ful discussion. HG was supported by a Microsoft
PhD Fellowship. EX acknowledges the support
of NGA HM04762010002, NSF IIS1955532,
NSF CNS2008248, NIGMS R01GM140467,
NSF IIS2123952, NSF DMS2027737, NSF
BCS2040381, NSF DMS2112273, NSF
IIS2311990, Semiconductor Research Cor-
poration (SRC) AIHW award 2024AH3210, and
DARPA ECOLE HR00112390063. This study was
additionally supported by MIT-IBM Watson AI
Lab and the MLA@CSAIL initiative.

References

Saleh Ashkboos, Ilia Markov, Elias Frantar, Tingxuan
Zhong, Xincheng Wang, Jie Ren, Torsten Hoefler,
and Dan Alistarh. 2023. Towards end-to-end 4-bit
inference on generative large language models. arXiv
preprint arXiv:2310.09259.

Saleh Ashkboos, Amirkeivan Mohtashami, Maximil-
ian L Croci, Bo Li, Martin Jaggi, Dan Alistarh,
Torsten Hoefler, and James Hensman. 2024. Quarot:
Outlier-free 4-bit inference in rotated LLMs. arXiv
preprint arXiv:2404.00456.

Fabien Cardinaux, Stefan Uhlich, Kazuki Yoshiyama,
Javier Alonso García, Lukas Mauch, Stephen Tiede-
mann, Thomas Kemp, and Akira Nakamura. 2020.
Iteratively training look-up tables for network quan-
tization. IEEE Journal of Selected Topics in Signal
Processing, 14(4):860–870.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke
Zettlemoyer. 2022. LLM.int8(): 8-bit matrix mul-
tiplication for transformers at scale. Advances in
Neural Information Processing Systems, 35:30318–
30332.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. QLoRA: Efficient finetun-
ing of quantized LLMs. Advances in Neural Infor-
mation Processing Systems, 36.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Vage Egiazarian, Andrei Panferov, Denis Kuznedelev,
Elias Frantar, Artem Babenko, and Dan Alistarh.
2024. Extreme compression of large language
models via additive quantization. arXiv preprint
arXiv:2401.06118.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and
Dan Alistarh. 2022. GPTQ: Accurate post-training
compression for generative pretrained transformers.
arXiv preprint arXiv:2210.17323.

Elias Frantar, Roberto L Castro, Jiale Chen, Torsten
Hoefler, and Dan Alistarh. 2024. Marlin: Mixed-
precision auto-regressive parallel inference on large
language models. arXiv preprint arXiv:2408.11743.

Amir Gholami, Zhewei Yao, Sehoon Kim, Coleman
Hooper, Michael W Mahoney, and Kurt Keutzer.
2024. AI and memory wall. IEEE Micro.

Han Guo, Philip Greengard, Eric P Xing, and Yoon
Kim. 2024. LQ-LoRA: Low-rank plus quantized
matrix decomposition for efficient language model
finetuning. In Proceedings of ICLR.

Wei Huang, Xudong Ma, Haotong Qin, Xingyu Zheng,
Chengtao Lv, Hong Chen, Jie Luo, Xiaojuan Qi, Xi-
anglong Liu, and Michele Magno. 2024. How good
are low-bit quantized LLaMA3 models? an empirical
study. arXiv preprint arXiv:2404.14047.

Sehoon Kim, Coleman Hooper, Amir Gholami, Zhen
Dong, Xiuyu Li, Sheng Shen, Michael W Ma-
honey, and Kurt Keutzer. 2023. SqueezeLLM:
Dense-and-sparse quantization. arXiv preprint
arXiv:2306.07629.

12428

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-
cient memory management for large language model
serving with pagedattention. In Proceedings of the
ACM SIGOPS 29th Symposium on Operating Systems
Principles.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang,
Xingyu Dang, and Song Han. 2023. AWQ:
Activation-aware weight quantization for LLM
compression and acceleration. arXiv preprint
arXiv:2306.00978.

Yujun Lin, Haotian Tang, Shang Yang, Zhekai Zhang,
Guangxuan Xiao, Chuang Gan, and Song Han. 2024.
QServe: W4A8KV4 quantization and system co-
design for efficient LLM serving. arXiv preprint
arXiv:2405.04532.

Shuming Ma, Hongyu Wang, Lingxiao Ma, Lei Wang,
Wenhui Wang, Shaohan Huang, Li Dong, Ruiping
Wang, Jilong Xue, and Furu Wei. 2024a. The era of
1-bit LLMs: All large language models are in 1.58
bits. arXiv preprint arXiv:2402.17764.

Yuexiao Ma, Huixia Li, Xiawu Zheng, Feng Ling, Xue-
feng Xiao, Rui Wang, Shilei Wen, Fei Chao, and
Rongrong Ji. 2024b. AffineQuant: Affine transfor-
mation quantization for large language models. arXiv
preprint arXiv:2403.12544.

Daisuke Miyashita, Edward H Lee, and Boris Mur-
mann. 2016. Convolutional neural networks us-
ing logarithmic data representation. arXiv preprint
arXiv:1603.01025.

Aniruddha Nrusimha, Mayank Mishra, Naigang Wang,
Dan Alistarh, Rameswar Panda, and Yoon Kim. 2024.
Mitigating the impact of outlier channels for lan-
guage model quantization with activation regulariza-
tion. arXiv preprint arXiv:2404.03605.

Muhammad Osama, Duane Merrill, Cris Cecka,
Michael Garland, and John D Owens. 2023. Stream-
K: Work-centric parallel decomposition for dense
matrix-matrix multiplication on the GPU. In Pro-
ceedings of the 28th ACM SIGPLAN Annual Sympo-
sium on Principles and Practice of Parallel Program-
ming, pages 429–431.

Gunho Park, Baeseong Park, Minsub Kim, Sungjae Lee,
Jeonghoon Kim, Beomseok Kwon, Se Jung Kwon,
Byeongwook Kim, Youngjoo Lee, and Dongsoo Lee.
2022. LUT-GEMM: Quantized matrix multiplica-
tion based on luts for efficient inference in large-
scale generative language models. arXiv preprint
arXiv:2206.09557.

Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng
Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang, Peng
Gao, Yu Qiao, and Ping Luo. 2023. OmniQuant:
Omnidirectionally calibrated quantization for large
language models. arXiv preprint arXiv:2308.13137.

Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr
Kuleshov, and Christopher De Sa. 2024. Quip#:
Even better LLM quantization with hadamard in-
coherence and lattice codebooks. arXiv preprint
arXiv:2402.04396.

Lei Wang, Lingxiao Ma, Shijie Cao, Quanlu Zhang, Ji-
long Xue, Yining Shi, Ningxin Zheng, Ziming Miao,
Fan Yang, Ting Cao, Yuqing Yang, and Mao Yang.
2024. Ladder: Enabling efficient low-precision deep
learning computing through hardware-aware tensor
transformation. In 18th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI
24).

Longguang Wang, Xiaoyu Dong, Yingqian Wang,
Li Liu, Wei An, and Yulan Guo. 2022. Learnable
lookup table for neural network quantization. In Pro-
ceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 12423–12433.

Xiuying Wei, Yunchen Zhang, Xiangguo Zhang, Ruihao
Gong, Shanghang Zhang, Qi Zhang, Fengwei Yu, and
Xianglong Liu. 2022. Outlier suppression: Pushing
the limit of low-bit transformer language models.
Advances in Neural Information Processing Systems,
35:17402–17414.

Haojun Xia, Zhen Zheng, Yuchao Li, Donglin Zhuang,
Zhongzhu Zhou, Xiafei Qiu, Yong Li, Wei Lin, and
Shuaiwen Leon Song. 2024a. Flash-LLM: Enabling
cost-effective and highly-efficient large generative
model inference with unstructured sparsity. In Pro-
ceedings of VLDB.

Haojun Xia, Zhen Zheng, Xiaoxia Wu, Shiyang Chen,
Zhewei Yao, Stephen Youn, Arash Bakhtiari, Michael
Wyatt, Donglin Zhuang, Zhongzhu Zhou, et al. 2024b.
FP6-LLM: Efficiently serving large language mod-
els through FP6-centric algorithm-system co-design.
arXiv preprint arXiv:2401.14112.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu,
Julien Demouth, and Song Han. 2022. SmoothQuant:
Accurate and efficient post-training quantization for
large language models. arXiv:2211.10438.

Shiyu Xu, Qi Wang, Xingbo Wang, Shihang Wang, and
Terry Tao Ye. 2021. Multiplication through a single
look-up-table (LUT) in CNN inference computation.
IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 41(6):1916–1928.

Kohei Yamamoto. 2021. Learnable companding quanti-
zation for accurate low-bit neural networks. In Pro-
ceedings of th e IEEE/CVF conference on computer
vision and pattern recognition, pages 5029–5038.

Jiwei Yang, Xu Shen, Jun Xing, Xinmei Tian, Houqiang
Li, Bing Deng, Jianqiang Huang, and Xian-sheng
Hua. 2019. Quantization networks. In Proceedings
of the IEEE/CVF conference on computer vision and
pattern recognition, pages 7308–7316.

Dongqing Zhang, Jiaolong Yang, Dongqiangzi Ye, and
Gang Hua. 2018. LQ-Nets: Learned quantization for

12429

https://www.usenix.org/conference/osdi24/presentation/wang-lei
https://www.usenix.org/conference/osdi24/presentation/wang-lei
https://www.usenix.org/conference/osdi24/presentation/wang-lei

highly accurate and compact deep neural networks.
In Proceedings of the European conference on com-
puter vision (ECCV), pages 365–382.

Yilong Zhao, Chien-Yu Lin, Kan Zhu, Zihao Ye, Lequn
Chen, Size Zheng, Luis Ceze, Arvind Krishnamurthy,
Tianqi Chen, and Baris Kasikci. 2023. Atom: Low-
bit quantization for efficient and accurate LLM serv-
ing. arXiv preprint arXiv:2310.19102.

Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and
Yurong Chen. 2017. Incremental network quanti-
zation: Towards lossless CNNs with low-precision
weights. arXiv preprint arXiv:1702.03044.

A Appendix

Please see Algorithm 2 for a detailed version of the
algorithm, and Tables 4, 5 for detailed experimental
results.

12430

Algorithm 2 FLUTE
Require: Xg: inputs in HBM

Qg: quantized weight in HBM
Sg: scales in HBM
Tg: lookup table in HBM
Yg: outputs in HBM
Ssemaphore: scratch space for semaphore in HBM
Spartials: scratch space for partials in HBM

————— Offline Preprocessing and Host-side Code —————
Qg

1,Q
g
2 ← reorder_and_split(Qg) ▷ Section 3.1

Tg
v ← make_vectorized_LUT(Tg) ▷ Section 3.2

tile_scheduler← StreamKTileScheduler(NSMs) ▷ Section 3.3
Nblocks ← tile_scheduler.num_blocks() ▷ launching blocks proportional to SMs

————— Kernel Launches —————
parallel for block index b ← 1 to Nblocks do

tile_scheduler.initialize(b) ▷ partitioning works for this block
allocates(Xs,Qs

1,Q
s
2,S

s,Ts
v) ▷ allocate circular buffer in shared memory

allocater(Xr,Qr
1,Q

r
2,Q

r
1+2,S

r,Ŵr,Yr, Ŷr) ▷ allocate fragments in register
isread ← 0, iswrite ← 0 ▷ shared memory pipeline index
ircurrent ← 0, irnext ← 0 ▷ register pipeline index

————— Global Memory to Shared Memory Prefetch —————
copyg→s(Tg

v,T
s
v)

for prefetch stage tprefetch ← 0 to Nstages−1 do
igread ← tile_scheduler.get_tile_index()
copyg→s(Xg[b, :, igread],X

s[:, iswrite]) # and the same for Q1,Q2,S
iswrite = (iswrite + 1)mod Nstages
tile_scheduler.step()

end for

————— Shared to Registers Prefetch —————
wait_for_one_tile()
copys→r(Xs[ircurrent, i

s
read],X

r[ircurrent]) # and the same for Q1,Q2,S

————— Pipelined Main Loop —————
Yr ← 0
while ¬tile_scheduler.done() do

for fragment index tfragment ← 1 to Nfragments do
if tfragment == Nfragments then

wait_for_one_tile() ▷ Wait until the next prefetched tile
iread = (iread + 1)mod Nstages

end if
irnext ← ircurr + 1 ▷ overlap MMA with next register load
copys→r(Xs[irnext, i

s
read],X

r[irnext]) # and the same for Q1,Q2,S
if tfragment == 0 then

igread ← tile_scheduler.get_tile_index() ▷ overlap MMA with SMEM load
copyg→s(Xg[b, :, igread],X

s[:, iswrite]) # and the same for Q1,Q2,S
iswrite = (iswrite + 1)mod Nstages
tile_scheduler.step()

end if
Qr

1+2 ← combine(Qr
1,Q

r
2) ▷ Section 3.1

Ŵr ← vectorized_dequantization(Qr
1+2,S

r,Ts) ▷ Section 3.2

Yr ← tensor_core_mma(Yr,Xr,Ŵr)
end for

————— StreamK Fixup (partial sums reductions) —————
if tile_scheduler.end_of_output_tile() then

ifixup ← tile_scheduler.get_fixup_index()

Ŷr ← to_fp16(Yr) ▷ Section 3.3
if ¬tile_scheduler.finished_output_tile() then ▷ share partial sums through scratch

accumulate_and_store_partials(Ŷr, Spartials[ifixup])
signal(Ssemaphore[ifixup])

else
if ¬tile_scheduler.started_output_tile() then ▷ aggregate partial sums

wait(Ssemaphore[ifixup])
Ŷr ← Ŷr + load_partials(Spartials[ifixup])

end if
ioutput ← tile_scheduler.get_output_tile_index()

epilogue(Ŷr,Yg[ioutput]) ▷ Write output tile from Registers to HBM
end if

end if
end while

end parallel for

12431

Model Configuration Perplexity Tokens / Second
Bits Group Bits / Param GB WikiText2 C4 1xA6000 4xA6000 1xA100 2xA100

LLaMA-3 8B 16 N/A 16.00 15.1 6.1 9.2 44.8 1.0x 90.2 1.0x
4 32 4.50 5.7 6.1 9.4 91.3 2.0x 113.7 1.3x
4 64 4.25 5.5 6.1 9.4 95.9 2.1x 119.4 1.3x
4 128 4.13 5.4 6.2 9.5 98.1 2.2x 121.6 1.3x
4 256 4.06 5.4 6.3 9.5 99.8 2.2x - 121.7 1.3x -
3 32 3.50 4.9 6.9 11.0 91.9 2.1x 117.7 1.3x
3 64 3.25 4.7 7.2 11.3 104.1 2.3x 128.5 1.4x
3 128 3.13 4.6 7.5 11.7 108.1 2.4x 133.5 1.5x
3 256 3.06 4.6 7.9 12.2 110.0 2.5x 135.5 1.5x

LLaMA-3 70B 16 N/A 16.00 131.7 2.9 6.9 OOM OOM 17.2 1.0x OOM OOM 19.9 1.0x
4 32 4.50 40.1 3.0 7.0 12.6 - 33.0 1.9x 17.4 - 28.3 1.4x
4 64 4.25 38.1 3.0 7.1 13.5 - 33.1 1.9x 18.0 - 29.5 1.5x
4 128 4.13 37.1 3.1 7.2 14.7 - 33.1 1.9x 18.6 - 30.3 1.5x
4 256 4.06 36.6 3.5 7.8 15.2 - 32.9 1.9x 19.0 - 31.0 1.6x
3 32 3.50 32.1 3.9 8.0 13.3 - 32.8 1.9x 20.0 - 30.8 1.5x
3 64 3.25 30.1 4.1 8.4 16.3 - 33.3 1.9x 22.4 - 33.8 1.7x
3 128 3.13 29.1 5.2 10.1 17.7 - 32.7 1.9x 23.9 - 34.5 1.7x
3 256 3.06 28.6 15.4 26.4 18.6 - 33.6 2.0x 24.9 - 34.8 1.7x

Table 3: Perplexity and decoding speed of LLaMA-3 with learned NF quantization using various quantization configurations.
Decoding speedup is measured in tokens per second. The unquantized LLaMA-3 70B model requires multiple GPUs with Tensor
Parallelism. Therefore, we report the speed with one GPU, and with Tensor Parallelism applied (labeled as x4 and x2). For the
8B models, since all models fit into one GPU, we report only single GPU results.

Method Bits Group PPL↓ LLM Eval↑
WikiText2 C4 PIQA ARC-e ARC-c HellaSwag Wino Avg.

Unquantized 16 N/A 6.1 9.2 79.9 80.1 50.4 60.2 72.8 68.6

RTN 4 128 8.5 13.4 76.6 70.1 45.0 56.8 71.0 63.9
3 128 27.9 1.1e2 62.3 32.1 22.5 29.1 54.7 40.2

GPTQ 4 128 6.5 10.4 78.4 78.8 47.7 59.0 72.6 67.3
3 128 8.2 13.7 74.9 70.5 37.7 54.3 71.1 61.7

AWQ 4 128 6.6 9.4 79.1 79.7 49.3 59.1 74.0 68.2
3 128 8.2 11.6 77.7 74.0 43.2 55.1 72.1 64.4

OmniQuant 4 128 6.6 10.1 79.1 80.0 49.7 59.4 73.2 68.3
3 128 8.4 13.5 76.4 70.0 40.9 55.1 69.5 62.4

NormalFloat 4 128 6.6 9.5 78.6 79.6 49.6 59.0 73.5 68.0
3 128 9.2 13.0 75.4 72.0 40.5 54.4 69.4 62.3

NormalFloat 4 128 6.2 9.5 79.0 79.6 49.0 59.4 72.6 67.9
learned σ 3 128 7.5 11.7 77.1 74.1 41.7 55.8 69.7 63.7

NormalFloat 4 128 6.5 9.3 79.6 78.0 48.5 59.0 73.8 67.8
+ AWQ 3 128 8.0 11.5 77.0 75.5 44.6 55.9 72.3 65.1

Table 4: Detailed evaluation of post-training quantization on LLaMA3-8B. The RTN, GPTQ (Frantar et al., 2022), AWQ (Lin
et al., 2023) results are from Huang et al. (2024); the rest are from our implementations. All non-NormalFloat methods use
uniform weight quantization.

12432

Method Bits Group PPL↓ LLM Eval↑
WikiText2 C4 PIQA ARC-e ARC-c HellaSwag Wino Avg.

Unquantized 16 N/A 2.9 6.9 82.4 86.9 60.3 66.4 80.6 75.3

RTN 4 128 3.6 8.9 82.3 85.2 58.4 65.6 79.8 74.3
3 128 11.8 22.0 64.2 48.9 25.1 41.1 60.5 48.0

GPTQ 4 128 3.3 6.9 82.9 86.3 58.4 66.1 80.7 74.9
3 128 5.2 10.5 80.6 79.6 52.1 63.5 77.1 70.6

AWQ 4 128 3.3 7.0 82.7 86.3 59.0 65.7 80.9 74.9
3 128 4.8 8.0 81.4 84.7 58.0 63.5 78.6 73.2

OmniQuant 4 128 3.3 7.5 82.0 85.6 58.0 66.0 79.6 74.2
3 128 5.4 9.3 80.8 80.6 50.9 63.7 75.2 70.2

NormalFloat 4 128 3.4 7.6 82.0 85.6 56.7 66.1 79.5 74.0
3 128 8.7 16.7 76.6 76.9 42.7 55.8 69.3 64.3

NormalFloat 4 128 3.1 7.2 82.3 85.7 58.2 66.4 79.6 74.4
learned σ 3 128 5.2 10.1 77.3 76.7 44.3 62.4 71.2 66.4

NormalFloat 4 128 3.2 6.9 82.6 86.8 60.1 65.9 80.5 75.2
+ AWQ 3 128 4.6 7.8 81.4 85.3 58.5 64.6 79.2 73.8

Table 5: Detailed evaluation of post-training quantization on LLaMA3-70B. The RTN, GPTQ (Frantar et al., 2022), AWQ (Lin
et al., 2023) results are from Huang et al. (2024); the rest are from our implementations. All non-NormalFloat methods use
uniform weight quantization.

12433

