
Findings of the Association for Computational Linguistics: EACL 2024, pages 12497–12507
November 12-16, 2024 ©2024 Association for Computational Linguistics

Enhancing Discourse Dependency Parsing with Sentence Dependency
Parsing: A Unified Generative Method Based on Code Representation

Zizhuo Shen and Yanqiu Shao∗ and Wei Li
Beijing Language and Culture University, China

blcushzz@gmail.com, yqshao163@163.com, liweitj47@blcu.edu.cn

Abstract

Due to the high complexity of Discourse De-
pendency Parsing (DDP) tasks, their existing
annotation resources are relatively scarce com-
pared to other NLP tasks, and different DDP
tasks also have significant differences in an-
notation schema. These issues have led to
the dilemma of low resources for DDP tasks.
Thanks to the powerful capabilities of Large
Language Models (LLMs) in cross-task learn-
ing, we can use LLMs to model dependency
parsing under different annotation schema in
an unified manner, in order to alleviate the
dilemma of low resources for DDP tasks. How-
ever, enabling LLMs to deeply comprehend
dependency parsing tasks is a challenge that
remains underexplored. Inspired by the ap-
plication of code-based methods in complex
tasks, we propose a code-based unified depen-
dency parsing method. We treat the process
of dependency parsing as a search process of
dependency paths and use code to represent
this search process. Furthermore, we use a
curriculum-learning based instruction tuning
strategy for joint training of multiple depen-
dency parsing tasks. The experimental results
show that our proposed code-based DDP sys-
tem has achieved good performance on two
Chinese DDP tasks (especially significant im-
provement on the DDP task with relatively less
training data).

1 Introduction

Discourse Dependency Parsing (DDP) is a struc-
tured prediction task. The input of this task is a
sequence of Elementary Discourse Units (EDUs),
and the output of this task is a dependency structure
(a dependency tree labeled with discourse relation
labels). As one of the fundamental tasks in the field
of Natural Language Processing (NLP), DDP can
assist downstream tasks such as emotion recogni-
tion (Ong et al., 2022), pronoun resolution (Yang

∗Corresponding Author

et al., 2021), and event relation extraction (Tang
et al., 2021).

Although the neural network-based NLP tech-
nology has greatly promoted the development of
DDP tasks (Zhou and Feng, 2022; Liu et al., 2023).
However, there are still some unresolved issues
with DDP tasks. Firstly, the cost of annotating
DDP data is relatively high, compared to Sentence-
level Dependency Parsing (SDP) data, the existing
scale of DDP data is smaller. Secondly, there are
large differences in the annotation schema of DDP
tasks, and heterogeneous data under different anno-
tation schema are difficult to be effectively utilized
(Nishida and Matsumoto, 2022). These problems
have led to the dilemma of low resources in DDP
tasks, limiting the application and development of
DDP tasks.

Recently, Large Language Models (LLMs) has
shown significant advantages in few-shot learning
(Brown et al., 2020) and cross-task learning sce-
narios (Mishra et al., 2022) due to its powerful
semantic understanding ability and transfer learn-
ing ability. Therefore, using LLM to design an
unified dependency parsing method helps to break
through the gap between dependency parsing tasks
under different annotation granularity and differ-
ent annotation schema, thereby overcoming the the
dilemma of low resources in DDP tasks.

However, how to more effectively use LLMs
for dependency parsing tasks remains an issue that
requires more attention. Specifically, we need to
face challenges from the following two aspects.

1. How to linearize dependency structures to suit
the modeling method of language models?

2. How to design unified and LLM-friendly
prompts for dependency parsing tasks?

For the first challenge, we propose a path
decomposition-based strategy for linearizing de-
pendency structures. Inspired by related work

12497



on Chain of Thought technology (Wei et al., 2022;
Zhou et al., 2023) in complex tasks, we treat the
dependency parsing task as a step-by-step search
process of dependency paths. The model needs to
gradually search out the entire dependency struc-
ture from the root node according to some search
order, such as depth-first search (DFS) or breadth-
first search (BFS). This strategy not only adapts to
the modeling method of language models but also
retains the structural information in the dependency
structure.

For the second challenge, inspired by LLM-
related works in the field of information extrac-
tion (Li et al., 2023; Sainz et al., 2023). We pro-
posed a code-based representation method for
dependency parsing tasks. Firstly, we use code
language to represent the basic elements in depen-
dency parsing tasks. Specifically, we use variables
to represent the sequence of semantic units and
semantic relation labels; classes to represent de-
pendency arcs and their constituent head nodes,
dependent nodes, and dependency relations; func-
tions to represent some specific operations in the
process of dependency analysis. Then, based on
these basic elements, we can transform the process
of dependency parsing into the process of code
execution. This method can not only use code
language to describe the process of dependency
parsing clearly and concisely but also leverage the
powerful underlying code generation capability of
LLMs.

We attempt to model the SDP task and DDP task
in an unified way, in order to achieve the goal of
enhancing the DDP task using the SDP task. Specif-
ically, we set the SDP task (we chose a syntactic de-
pendency parsing task and a semantic dependency
parsing task) as the source task, and set the DDP
task as the target task. Leveraging our proposed
dependency structure linearization strategy and the
code-based dependency parsing task representation
method, we are able to craft unified dependency
parsing prompts for these tasks, and employ in-
struction tuning to equip LLMs with dependency
parsing capabilities.

To achieve better performance on DDP tasks, we
further adopt a Curriculum Learning-based (CL-
based) instruction tuning strategy. Specifically,
we first calculate a difficulty value for each sample
in the dependency parsing task based on prior fea-
tures such as the type of dependency parsing task,
the number of dependency paths, and the average

depth of dependency paths. Then, we dynamically
adjust the loss weight of each sample during the
entire training process according to the difficulty
value of the sample and the current training steps,
so as to achieve a training mode that learns from
simple samples first, and then learns from difficult
samples.

Our contributions can be summarized in the fol-
lowing three aspects: 1) we first propose to treat the
dependency parsing process as a search process of
dependency paths and design a code-based unified
dependency parsing task prompt to represent this
process. 2) We use a curriculum learning-based in-
struction tuning strategy to jointly train SDP tasks
and DDP tasks, aiming to enhance the performance
of DDP tasks with SDP tasks. 3) Our experimental
results show that our code-based DDP system has
achieved good performance in two Chinese DDP
tasks, confirming the effectiveness of our proposed
method.

2 Approach

Figure 1 illustrates code-based unified dependency
parsing method we proposed. First, we give a
definition of the unified dependency pasing task.
Then, based on the path decomposition-based lin-
earization strategy, we treat different types of de-
pendency parsing tasks as the search process of
dependency paths and use code-based prompt to
represent this process. Finally, we propose a cur-
riculum learning-based instruction tuning strategy
to more effectively achieve the goal of using SDP
tasks to improve DDP tasks.

2.1 Formal Definition of Unified Dependency
Parsing Tasks

Given a sequence of semantic units U and a set of
semantic relation labels L, the dependency parsing
model needs to predict a set of dependency arcs A
based on U and L. Each element ai = (hi, di, ri)
in the dependency arc set A is a triplet. In the triplet,
hi represents the head node of the dependency arc,
di represents the dependent node of the dependency
arc, and ri represents the dependency relation label.
Among them, hi ∈ U , di ∈ U , ri ∈ L. The triples
in the dependency arc set A can form the entire
dependency structure D according to the linking
relation.

12498



Figure 1: Illustration of the code-based unified dependency parsing method. Figure (a) shows different types of
dependency parsing tasks. Figure (b) shows the construction idea of code-based dependency parsing task prompt.
Figure (c) shows the process of curriculum learning-based instruction tuning strategy.

2.2 Path Decomposition-based Linearization
Strategy

We regard the process of dependency parsing as
a search process for dependency paths. For a
given dependency structure, taking the root node
as the starting node and through depth-first search
or breadth-first search, we can transform it into a
sequence P = {Pi} composed of several depen-
dency paths. For any two adjacent dependency
arcs ai = (hi, di, ri) and aj = (hj , dj , rj) in this
sequence, they all satisfy the condition di = hj .

Furthermore, through the path decomposition-
based linearization strategy, we can model the task
of dependency parsing as a structure-aware con-
ditional language modeling task. For a given se-
quence of semantic units U and a set of seman-
tic relation labels L, we can infer the dependency
structure D through the following formula:

D = argmax
n∑

i

logp(ai+1|ai, U, L) (1)

2.3 Code-based Representation Method
We use the concepts of variables, classes, and
functions in the code language to design the code
schema that can be used to represent dependency
parsing tasks. Figure 2 shows the code schema we
designed.

Variables: We use the concept of variables to
represent the semantic unit sequence and the set

# Code Schema
## Variable
index = "Index of a semantic unit"
text = "Text of a semantic unit"
label = "Label of a semantic relation"
## Class
class Head(object):

def __init__(self, index:str, text:str):
self.index = index
self.text = text

class Dep(object):
def __init__(self, index:str, text:str):

self.index = index
self.text = text

class Rel(object):
def __init__(self, label:str):

self.label = label
class Arc(object):

def __init__(self, head:Head, dep:Dep, rel:Rel):
self.head = head
self.dep = dep
self.rel = rel

## Function
def findRels():

return [label,]
def searchPath(index:str):

return
def findArc(index:str):

return Arc(Head(index, text), Dep(index, text), Rel(label))
def stop():

return

Figure 2: The code schema that can be used to represent
dependency parsing tasks.

of semantic relation labels. The semantic unit se-
quence contains two parts of information, one part
is the positional information of the semantic unit in
the sequence, and the other part is the textual infor-
mation of the semantic unit itself. For positional
information, we use the variable name index to rep-
resent the positional index of the semantic unit, and
the value range of this variable is 0 ∼ N , where
N is the length of the semantic unit sequence. For
textual information, we use the variable name text
to represent it, and the value range of this variable
is all texts of the semantic units in the sample. We
use the variable name label to represent the label

12499



of semantic relation.
Classes: We use the concept of classes to repre-

sent the dependency arc and its components: head
node, dependent node, and dependency relation.
The head node is represented by the Head class,
and the dependent node is represented by the Dep
class. Both classes need to be instantiated with the
index variable and text variable. The dependency
relation is represented by the Rel class, which is
instantiated by passing the label variable. The Arc
class is used to represent the dependency arc, which
is instantiated by passing the Head class, Dep class,
and Arc class.

Functions: We use the concept of functions to
represent specific operations in the process of de-
pendency parsing. The function findLabels is used
to find all possible semantic relation labels between
current semantic units, which takes no input and
returns a set of semantic relation labels. The func-
tion searchPath is used to start searching for a new
dependency path, which takes the position index of
the starting semantic unit of the dependency path as
input and has no return value. The function findArc
is used to find a dependency arc, which takes the
position index of the head node of the dependency
arc as input and returns an instance of a dependency
arc class. The function stop is used to indicate that
all dependency paths in the dependency structure
have been obtained, which takes neither input nor
return value.

2.4 Code-based Unified Dependency Parsing
Task Prompt

Figure 3 presents an example of the code-based
unified dependency parsing task prompt.

The input part of the prompt mainly includes
the following sections of information: Task De-
scription, Code Schema, Task Name, and Semantic
Units. The Task Description section is a natural
language explanation of the dependency parsing
task. The Code Schema section contains all code
languages needed in the process of dependency
parsing. The Task Name indicates the type of de-
pendency parsing task. The Semantic Units section
contains position index information and text infor-
mation of the semantic unit sequence, which we
store in a dictionary data structure with the index
as the key and the text information as the value.

The output part of the prompt is the whole pro-
cess of dependency parsing based on the current
semantic unit. According to the example in Figure

3, we can see that firstly, LLM needs to call the
findLabels function to predict all possible semantic
relation labels in the current sample. Then, LLM
will call searchPath and findArc functions to pre-
dict all possible dependency paths in the current
sample until the output of the stop function ends.

2.5 Curriculum Learning-based Instruction
Tuning

To better utilize SDP tasks to enhance the perfor-
mance of DDP tasks, we adopt a CL-based instruc-
tion tuning strategy for LLMs. Inspired by the work
of (Elgaar and Amiri, 2023; Wang et al., 2022a),
we implement a simple and effective instance-level
weighting-based curriculum learning algorithm.

Firstly, for each sample, we count several fea-
tures: the type of dependency parsing task, the
number of semantic units, the number of semantic
relation labels, the number of dependency paths,
and the average depth of dependency paths. For
the type of dependency parsing task, we set the
weight of syntactic dependency parsing task to 0.2,
the weight of sentence-level semantic dependency
parsing task to 0.3, and the weight of discourse-
level dependency parsing task to 0.5. For the other
features, we calculate the normalized value of each
feature using formula 2, where Xi represents the
value of a feature, Xmax represents the maximum
value of that feature class, and Xmin represents the
minimum value of that feature class.

σi =
Xi −Xmin

Xmax −Xmin
(2)

Secondly, We calculate the average of all fea-
tures for each sample using formula 3. This value
can be regarded as the difficulty value of each sam-
ple.

ϕj =

∑n
i σi
n

(3)

Finally, we use the negative-sigmoid formula to
calculate the weight of each sample throughout the
entire training process. The input value of formula
4 is the difficulty value ϕj , the training progress
p ∈ [0, 1], and a hyperparameter β ∈ [1,∞) that
controls the rate of weight growth.

wj =
1

1 + exp(ϕj − p× β)
(4)

For a certain batch of samples, we can calculate
the weighted loss through formula 5 for model

12500



# Task Description
Please describe the dependency parsing process of semantic units based on the given 
code schema.
# Code Schema
{{……}}
# Task Name
SU-CDTB
# Semantic Units
key is index, value is text.
{0: '<Root>', 1: '大熊猫是世界上最珍贵的濒危动物之一，', 2: '被称为活化石，', 3: '仅存
的一千只左右野生大熊猫主要分布在中国四川、甘肃及陕西省。', 4: '其中百分之八十
左右的大熊猫生活在四川省境内。'}

# Parsing Process
<func> findLabels()
<return> ['ROOT', 'coordination', 'summary-elaboration’]

<func> searchPath(0)
<func> findArc(0)
<return> Arc(Head(0, <Root>), Dep(1, 大熊猫是世界上最珍贵的濒危动物之一，), 
Rel(ROOT))
<func> findArc(1)
<return> Arc(Head(1, 大熊猫是世界上最珍贵的濒危动物之一，), Dep(2, 被称为活化
石，), Rel(coordination))
<func> findArc(2)
<return> Arc(Head(2, 被称为活化石，), Dep(3, 仅存的一千只左右野生大熊猫主要分布
在中国四川、甘肃及陕西省。), Rel(coordination))

<func> searchPath(1)
<func> findArc(1)
<return> Arc(Head(1, 大熊猫是世界上最珍贵的濒危动物之一，), Dep(4, 其中百分之八
十左右的大熊猫生活在四川省境内。), Rel(summary-elaboration))

<func> stop()

大熊猫是世界上最珍贵的濒危动物之一， (The giant panda is one of the world's most 
precious endangered animals,)
被称为活化石， (known as a living fossil,)
仅存的一千只左右野生大熊猫主要分布在中国四川、甘肃及陕西省。 (there are only 
about a thousand wild giant pandas left, mainly distributed in Sichuan, Gansu and 
Shaanxi Provinces in China.)
其中百分之八十左右的大熊猫生活在四川省境内。 (Among them, about 80% of giant 
pandas live within the territory of Sichuan Province.)

Input
Output

Semantic Units (Translation in English)

Figure 3: An example of the unified dependency parsing task prompt. In the lower left of the figure, we offer the
Chinese and English translations of the semantic unit text (this is not part of the prompt).

Algorithm 1 Curriculum Learning-based Instruc-
tion Tuning
Require: Training Samples Dtrain, Model Θ, Loss function

f
1: step← 0
2: while step < total_steps do
3: batch← GetBatch(step,Dtrain)
4: loss← GetLoss(batch, Θ, f )
5: ϕ← GetDifficulty(batch)
6: w← GetWeight(step, ϕ)
7: weighted_loss← loss ⊗ w
8: Θ← UpdateModel(weighted_loss, Θ)
9: step← step + 1

10: end while

training. The entire CL-based instruction tuning
strategy can be described as algorithm 1.

loss =
∑

j=1

−wjlogpj(ai+1|ai, U, L) (5)

3 Experiments

3.1 Datasets

Sentence-level Dependency Parsing (SDP) Tasks:
For sentence-level dependency parsing tasks, we
chose a syntactic dependency parsing task and a
semantic dependency parsing task for experiments.
The dataset used for syntactic dependency parsing
is Chinese Treebank 5.0 (CTB5), and the dataset
used for semantic dependency parsing is Chinese
Semantic Dependency Graph (CSDG) (Shao et al.,
2023; Che et al., 2016). The basic information of
these two datasets is shown in Table 1.

Discourse-level Dependency Parsing (DDP)
Tasks: For DDP tasks, we chose a DDP dataset
based on news corpus (SU-CDTB) (Li et al., 2014)
and a DDP dataset based on scientific paper ab-
stracts (Sci-CDTB) (Cheng and Li, 2019) for exper-

iments. The basic information of these two datasets
is shown in Table 1.

3.2 Implementation Details

We refer to the DDP system proposed in this work
as the Code-based (if the system uses a curriculum
learning-based instruction tuning strategy, we will
refer it as Code-based + CL). In the main experi-
ment, we primarily select baichuan2-7b-base 1 and
deepseek-llm-7b-base 2, two 7B Base LLMs, to
train our Code-based DDP System. Due to compu-
tational resource constraints, we adopt a QLoRA-
based approach (Dettmers et al., 2023) for instruc-
tion tuning. The hyperparameters used during in-
struction tuning are as follows: learning_rate is 2e-
4, lora_rank is 64, lora_alpha is 16, lora_dropout is
0.05, and the maximum number of epochs is 30.

3.3 Baseline Systems

In this work, the baseline systems we employ are
categorized into three types: statistical machine
learning-based (SML-based) systems, pre-trained
language model-based (PLM-based) systems, and
LLM-based systems.

SML-based Systems: We mainly compare
the SML-based methods used in previous work.
Graph-based System (Li et al., 2014) utilizes
a perceptron-based algorithm to implement the
DDP system. Vanilla Transition-based System
(Nivre, 2003) uses an SVM-based model to pre-
dict transition actions and achieve DDP. Two-stage
Transition-based System(Wang et al., 2017) ini-
tially uses an SVM-based model to predict transi-

1https://huggingface.co/baichuan-inc/Baichuan2-7B-
Base

2https://huggingface.co/deepseek-ai/deepseek-llm-7b-
base

12501



Datasets # labels avg.# units Train Dev Test

# samples # arcs # samples # arcs # samples # arcs

SDP CTB5 12 26 16091 437991 803 - - -
CSDG 56 17 19055 389226 2069 - - -

DDP SU-CDTB 18 5 1599 7533 350 1186 374 1794
Sci-CDTB 23 13 68 885 20 267 21 255

Table 1: Data statistics. "#" and "avg." indicate "number of" and "average number of", respectively.

tion actions for the prediction of dependency struc-
tures, followed by another SVM-based model to
accomplish the prediction of dependency relations.

PLM-based Systems: We select some open-
source PLM-based DDP systems as baselines.
BERT-based Two-stage System (Zhou and Feng,
2022) is a two-stage transition-based DDP system.
This system first uses a transition-based model
(BERT (Devlin et al., 2019) is used for the ex-
traction of transition system state features) to pre-
dict dependency structures, and then uses a BERT-
based sequence labeling model to predict depen-
dency relations. BERT-based Biaffine System
(Nishida and Matsumoto, 2022) is a classic graph-
based DDP system. This system uses BERT to
extract EDU features and uses Biaffine networks
(Dozat and Manning, 2017) to predict dependency
structures and dependency relations. DAMT-based
System (Fan et al., 2022) is a DDP system that
uses a multi-task learning method. This system
combines the advantages of transition-based DDP
systems and graph-based DDP systems, and uses
XLNet (Yang et al., 2019) to extract EDU features.

LLM-based Systems: To verify the effective-
ness of the code-based DDP system proposed in
this paper, we implement a Tuple-based DDP sys-
tem. The input of the tuple-based DDP system is
the semantic unit of the current sample, and the
output is the collection of all possible dependency
relation tuples in the current sample. Each depen-
dency relation tuple is represented in the form of
a five-tuple: (head node semantic unit index, head
node semantic unit text, dependent node seman-
tic unit index, dependent node semantic unit text,
semantic relation label).

3.4 Main Results

According to the experimental results in Table 2,
we can draw several conclusions.

The code-based DDP system has achieved
competitive results on DDP tasks. On the SU-
CDTB test set with more training samples, the

code-based DDP system has reached a level com-
parable to multiple PLM-based DDP systems. On
the Sci-CDTB test set with fewer training samples,
the effect of the code-based DDP system has sur-
passed that of the PLM-based DDP system. These
experimental results indicate that the code-based
DDP system may have a better ability to learn from
small scale samples.

The code-based DDP system performs bet-
ter than the tuple-based DDP system on DDP
tasks. In several experiments based on LLM,
whether using baichuan2-7b-base or deepseek-llm-
7b-base, the code-based DDP system performs bet-
ter than the tuple-based DDP system on both test
sets. These experimental results suggest that LLM
might more easily understand data in code form,
and the structural information in the code-based
DDP system may help improve the performance of
DDP.

Introducing SDP tasks and performing CL-
based instruction tuning can significantly im-
prove the performance of code-based DDP sys-
tems. These experimental results indicate that SDP
tasks have a positive effect on DDP tasks. Fur-
thermore, we believe that the unified dependency
parsing task prompt build a bridge between differ-
ent forms of dependency parsing tasks, enabling
LLM to learn the common features of dependency
parsing tasks from different dependency parsing
tasks, thereby realizing cross-task transfer.

3.5 Detailed Analysis

Comparison of Different Instruction Tuning
Strategies: To verify the effectiveness of the CL-
based instruction tuning strategy, we implement
two additional instruction tuning strategies for com-
parative experiments.

The first is multi-task learning-based (MTL-
based) instruction tuning. Under this strategy, we
merge the training data of all tasks together for
training. Throughout the training process, we do
not adjust the weight of each sample’s loss based

12502



Systems SU-CDTB Sci-CDTB

UAS LAS UAS LAS

SML-based
Graph 58.5 41.5 33.8 17.5
Vanilla Transition-based 80.3 58 52.5 27.6
Two-stage 80.3 58.7 52.5 27.6

PLM-based
BERT-based Two-stage 82.2 64.8 59.5 35.5
BERT-based Biaffine 80.1 59.8 58.8 34.9
DAMT-based 80.6 59.9 59.8 36.8

LLM-based

Tuple-based (baichuan2-7b-base) 80.5 59.1 71.2 39.9
Tuple-based (deepseek-llm-7b-base) 80.1 57.5 59.9 29.5
Code-based (baichuan2-7b-base) 84.3 62.2 76.2 49.4
Code-based (deepseek-llm-7b-base) 82.6 59.4 62.5 29.9
Code-based (baichuan2-7b-base) + CL 85.1 64.5 78.3 51.2
Code-based (deepseek-llm-7b-base) + CL 84.5 61.3 70.5 39.9

Table 2: Results of all systems on DDP tasks.

Strategies SU-CDTB Sci-CDTB

UAS LAS UAS LAS

Code-based 84.3 62.2 76.2 49.4
Code-based + CL 85.1 64.5 78.3 51.2
Code-based + MTL 84.6 62.1 76.3 49.6
Code-based + MSL 84.9 63.9 77.7 49.9

Table 3: Results of different instruction tuning strate-
gies on DDP tasks. In these experiments, we use the
baichuan2-7b-base model for training.

on the difficulty of the sample and the current
progress of training steps. The second is multi-
stage learning-based (MST-based) instruction tun-
ing. Under this strategy, we train the model in
two stages. Firstly, we carry out the first stage of
training on SDP tasks. Then, based on the model
obtained from the first stage of training, we perform
the second stage of training on DDP tasks.

According to the experimental results in Table
3, we find that the CL-based instruction tuning
strategy outperforms the other two instruction
tuning strategies on both test sets. These experi-
mental results indicate that the CL-based instruc-
tion tuning strategy can better enhance the LLM’s
learning of DDP tasks, thereby effectively avoiding
multi-task conflicts, catastrophic forgetting, and
other problems present in the other two training
methods.

Comparison of Different Types of Models: In
order to compare the effects of different types of
LLMs on DDP tasks, we chose several different
types of LLMs released by DeepSeek to train Code-
based DDP systems and conduct a comparative
analysis. The deepseek-llm-7b-base model (Base
Model) is trained from scratch on a vast dataset

of 2T tokens in both English and Chinese. The
deepseek-llm-7b-chat model (Chat Model) 3 is ini-
tialized from deepseek-llm-7b-base and fine-tuned
on extra instruction data. The deepseek-coder-7b-
instruct model (Code Model) 4 is initialized from
deepseek-llm-7b-base and fine-tuned on extra code
data and instruction data.

According to the experimental results in Figure
4, firstly, we find that the performance of Code
model and Base model on DDP tasks is signifi-
cantly better than that of Chat model. This indi-
cates that the Chat model has lost a certain de-
gree of code ability after enhancing its dialogue
ability. Secondly, although the Code model per-
forms slightly worse than the Base model on the
SU-CDTB test set, the Code model’s performance
on the Sci-CDTB test set is significantly better
than the Base model. This suggests that further
enhancing the code ability of LLM can help im-
prove the performance of Code-based DDP on
DDP tasks, especially on tasks with relatively less
training data.

Comparison of Different Linearization Or-
ders: To compare the effects of data obtained from
different linearization orders on DDP tasks, we
use data obtained from DFS linearization, BFS
linearization, and a mixture of DFS and BFS lin-
earization to train Code-based DDP systems.

According to the experimental results in Figure
5, we find that whether the data obtained by using
the DFS linearization or the BFS linearization, the
performance of the Code-based DDP system on

3https://huggingface.co/deepseek-ai/deepseek-llm-67b-
chat

4https://huggingface.co/deepseek-ai/deepseek-coder-7b-
instruct-v1.5

12503



UAS(SU) LAS(SU) UAS(Sci) LAS(Sci)
Metrics

20

30

40

50

60

70

80

90
V

al
ue

s
80.1

82.6
78.5

58.9 59.4
55.7

70.7

62.5
60.1

43.6

29.9 30.0

Code Model Base Model Chat Model

Figure 4: Results of different types of models on DDP
tasks. SU stands for the SU-CDTB dataset. Sci stands
for the Sci-CDTB dataset.

UAS(SU) LAS(SU) UAS(Sci) LAS(Sci)
Metrics

20

30

40

50

60

70

80

90

V
al

ue
s

84.3 83.9 84.6

62.2 61.8 62.3

76.2 76.2 76.4

49.4 49.3 49.6

DFS BSF DFS+BFS

Figure 5: Results of different linearization orders on
DDP tasks. SU stands for the SU-CDTB dataset. Sci
stands for the Sci-CDTB dataset.

DDP tasks is basically the same. This indicates
that the Code-based DDP system may not be sen-
sitive to data obtained from different linearization
orders. Furthermore, training the Code-based DDP
system with data obtained from a mixed with DFS
and BFS linearization did not achieve a signifi-
cant improvement on DDP tasks. This indicates
that there is no significant information gain for the
Code-based DDP system from data obtained from
different linearization orders.

4 Related Works

Dependency parsing: Common dependency pars-
ing methods can be divided into three categories:
graph-based methods (Dozat and Manning, 2017,
2018; Zhang et al., 2020), transition-based methods
(Wang et al., 2022b; Zhou and Feng, 2022), and au-
toregressive generative methods (Li et al., 2018; He
and Choi, 2023). The graph-based method treats
the dependency parsing task as a graph search prob-

lem. This method requires a scoring model to calcu-
late the scores of each edge in the dependency struc-
ture. The transition-based method treats the depen-
dency parsing task as a sequence-to-action conver-
sion problem (Sun et al., 2022). This method usu-
ally requires different transition systems to be de-
signed for different types of dependency structures.
The autoregressive generative method treats the de-
pendency parsing task as a sequence-to-sequence
generation problem. This method usually requires
linearizing the dependency structure to fit the mod-
eling method of autoregressive generative models.
Thanks to the powerful generation capabilities of
LLMs, we also try to use the autoregressive gen-
erative method to build our dependency parsing
system. Unlike previous work, we first attempt
to use code to represent different types of depen-
dency parsing tasks, and use a curriculum-learning
based instruction tuning strategy for joint training
of multiple dependency parsing tasks.

Code-based Methods for NLP: Given that
LLMs are typically pre-trained using code data and
have developed strong capabilities in code com-
prehension and generation, consequently, some re-
searchers have embarked on exploring the use of
code for complex NLP tasks, aiming to harness
the inherent code processing strengths of LLMs.
Wang et al. (2023) use code language to repre-
sent event extraction tasks, improving the perfor-
mance of LLM in event extraction tasks. Bi et al.
(2023) use code language to represent triple extrac-
tion tasks for automatic construction of knowledge
graphs. Li et al. (2024) propose a code-based uni-
fied information extraction method and verifiy the
effectiveness of this method in few-shot learning
scenarios and instruction tuning scenarios. Inspired
by above works, we first try to use code language to
represent more complex dependency paring tasks.

5 Conclusion

In order to better utilize LLMs to alleviate the
low-resource dilemma of DDP tasks, we propose
a code-based unifed dependency parsing method.
Specifically, we regard the process of dependency
parsing as a search process of dependency paths
and design a code-based unifed dependency pars-
ing task prompt based on this search process. Fur-
thermore, we use a curriculum learning-based in-
struction tuning strategy to jointly train SDP tasks
and DDP tasks under different annotation shema,
achieving the goal of using SDP tasks to enhance

12504



DDP tasks. Experimental results show that our
code-based DDP system can take advantage of
LLM’s strengths in code understanding, enabling
it to achieve good performance on DDP tasks.

Limitations

The main limitations of our research include the
following aspects: 1) Computational resource limi-
tations. When selecting models, we only consider
models with a parameter size of 7B for testing,
without exploring models with larger parameter
sizes; in terms of training strategies, we only adopt
the parameter-efficient fine-tuning method, without
attempting the full parameter fine-tuning method.
2) Test set limitations. Our experiments only in-
volved two representative Chinese DDP test sets,
without extending to more languages or domains.
3) Experimental scenario limitations. We only ver-
ify the effectiveness of the proposed method in the
supervised fine-tuning scenario, without conduct-
ing experiments in the in-context learning scenario.

We plan to conduct experiments on more models
and test sets in future work and verify the effec-
tiveness of our proposed method in the in-context
learning scenario.

Acknowledgements

This research project is supported by the Na-
tional Natural Science Foundation of China
(No.62306045), the Humanities and Social Sci-
ence Project of the Ministry of Education
(24YJAZH119), Science Foundation of Beijing
Language and Culture University (supported by
"the Fundamental Research Funds for the Central
Universities") (18ZDJ03).

References
Zhen Bi, Jing Chen, Yinuo Jiang, Feiyu Xiong, Wei Guo,

Huajun Chen, and Ningyu Zhang. 2023. Codekgc:
Code language model for generative knowledge
graph construction. CoRR, abs/2304.09048.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.

2020. Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Process-
ing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual.

Wanxiang Che, Yanqiu Shao, Ting Liu, and Yu Ding.
2016. SemEval-2016 task 9: Chinese semantic de-
pendency parsing. In Proceedings of the 10th Interna-
tional Workshop on Semantic Evaluation (SemEval-
2016), pages 1074–1080, San Diego, California. As-
sociation for Computational Linguistics.

Yi Cheng and Sujian Li. 2019. Zero-shot Chinese dis-
course dependency parsing via cross-lingual map-
ping. In Proceedings of the 1st Workshop on Dis-
course Structure in Neural NLG, pages 24–29, Tokyo,
Japan. Association for Computational Linguistics.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. Qlora: Efficient finetuning
of quantized llms. In Advances in Neural Information
Processing Systems 36: Annual Conference on Neu-
ral Information Processing Systems 2023, NeurIPS
2023, New Orleans, LA, USA, December 10 - 16,
2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 4171–4186. Association for Computational
Linguistics.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings. Open-
Review.net.

Timothy Dozat and Christopher D. Manning. 2018.
Simpler but more accurate semantic dependency pars-
ing. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 2: Short Papers), pages 484–490, Melbourne,
Australia. Association for Computational Linguistics.

Mohamed Elgaar and Hadi Amiri. 2023. Ling-CL: Un-
derstanding NLP models through linguistic curricula.
In Proceedings of the 2023 Conference on Empiri-
cal Methods in Natural Language Processing, pages
13526–13542, Singapore. Association for Computa-
tional Linguistics.

Yaxin Fan, Peifeng Li, Fang Kong, and Qiaoming Zhu.
2022. A distance-aware multi-task framework for
conversational discourse parsing. In Proceedings of
the 29th International Conference on Computational
Linguistics, pages 912–921, Gyeongju, Republic of
Korea. International Committee on Computational
Linguistics.

12505

https://doi.org/10.48550/arXiv.2304.09048
https://doi.org/10.48550/arXiv.2304.09048
https://doi.org/10.48550/arXiv.2304.09048
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.18653/v1/S16-1167
https://doi.org/10.18653/v1/S16-1167
https://doi.org/10.18653/v1/W19-8104
https://doi.org/10.18653/v1/W19-8104
https://doi.org/10.18653/v1/W19-8104
http://papers.nips.cc/paper_files/paper/2023/hash/1feb87871436031bdc0f2beaa62a049b-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1feb87871436031bdc0f2beaa62a049b-Abstract-Conference.html
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/N19-1423
https://openreview.net/forum?id=Hk95PK9le
https://openreview.net/forum?id=Hk95PK9le
https://doi.org/10.18653/v1/P18-2077
https://doi.org/10.18653/v1/P18-2077
https://doi.org/10.18653/v1/2023.emnlp-main.834
https://doi.org/10.18653/v1/2023.emnlp-main.834
https://aclanthology.org/2022.coling-1.76
https://aclanthology.org/2022.coling-1.76


Han He and Jinho D. Choi. 2023. Unleashing the
true potential of sequence-to-sequence models for
sequence tagging and structure parsing. Transac-
tions of the Association for Computational Linguis-
tics, 11:582–599.

Peng Li, Tianxiang Sun, Qiong Tang, Hang Yan, Yuan-
bin Wu, Xuanjing Huang, and Xipeng Qiu. 2023.
CodeIE: Large code generation models are better
few-shot information extractors. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 15339–15353, Toronto, Canada. Association
for Computational Linguistics.

Sujian Li, Liang Wang, Ziqiang Cao, and Wenjie Li.
2014. Text-level discourse dependency parsing. In
Proceedings of the 52nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 25–35, Baltimore, Maryland.
Association for Computational Linguistics.

Zixuan Li, Yutao Zeng, Yuxin Zuo, Weicheng Ren,
Wenxuan Liu, Miao Su, Yucan Guo, Yantao Liu, Xi-
ang Li, Zhilei Hu, et al. 2024. Knowcoder: Coding
structured knowledge into llms for universal informa-
tion extraction. arXiv preprint arXiv:2403.07969.

Zuchao Li, Jiaxun Cai, Shexia He, and Hai Zhao. 2018.
Seq2seq dependency parsing. In Proceedings of the
27th International Conference on Computational Lin-
guistics, pages 3203–3214, Santa Fe, New Mexico,
USA. Association for Computational Linguistics.

Tianyi Liu, Yansong Feng, and Dongyan Zhao. 2023.
Learning dynamic representations for discourse de-
pendency parsing. In Findings of the Association
for Computational Linguistics: EMNLP 2023, Sin-
gapore, December 6-10, 2023, pages 14253–14263.
Association for Computational Linguistics.

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and
Hannaneh Hajishirzi. 2022. Cross-task generaliza-
tion via natural language crowdsourcing instructions.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 3470–3487, Dublin, Ireland.
Association for Computational Linguistics.

Noriki Nishida and Yuji Matsumoto. 2022. Out-of-
domain discourse dependency parsing via bootstrap-
ping: An empirical analysis on its effectiveness and
limitation. Transactions of the Association for Com-
putational Linguistics, 10:127–144.

Joakim Nivre. 2003. An efficient algorithm for pro-
jective dependency parsing. In Proceedings of the
Eighth International Conference on Parsing Tech-
nologies, pages 149–160, Nancy, France.

Donovan Ong, Jian Su, Bin Chen, Anh Tuan Luu, Ashok
Narendranath, Yue Li, Shuqi Sun, Yingzhan Lin, and
Haifeng Wang. 2022. Is discourse role important for
emotion recognition in conversation? Proceedings of
the AAAI Conference on Artificial Intelligence, page
11121–11129.

Oscar Sainz, Iker García-Ferrero, Rodrigo Agerri,
Oier Lopez de Lacalle, German Rigau, and Eneko
Agirre. 2023. Gollie: Annotation guidelines im-
prove zero-shot information-extraction. CoRR,
abs/2310.03668.

Yanqiu Shao, Wanxiang Che, Ting Liu, and Yu Ding.
2023. The construction of a chinese semantic depen-
dency graph bank. In Chinese Language Resources:
Data Collection, Linguistic Analysis, Annotation and
Language Processing, pages 211–226. Springer.

Tianxiang Sun, Xiangyang Liu, Xipeng Qiu, and Xuan-
jing Huang. 2022. Paradigm shift in natural language
processing. Int. J. Autom. Comput., 19(3):169–183.

Jialong Tang, Hongyu Lin, Meng Liao, Yaojie Lu, Xi-
anpei Han, Le Sun, Weijian Xie, and Jin Xu. 2021.
From discourse to narrative: Knowledge projection
for event relation extraction. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers).

Peiyi Wang, Liang Chen, Tianyu Liu, Damai Dai, Yunbo
Cao, Baobao Chang, and Zhifang Sui. 2022a. Hier-
archical curriculum learning for AMR parsing. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), pages 333–339, Dublin, Ireland. As-
sociation for Computational Linguistics.

Xingyao Wang, Sha Li, and Heng Ji. 2023. Code4Struct:
Code generation for few-shot event structure predic-
tion. In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 3640–3663, Toronto,
Canada. Association for Computational Linguistics.

Yizhong Wang, Sujian Li, and Houfeng Wang. 2017.
A two-stage parsing method for text-level discourse
analysis. In Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 2: Short Papers), pages 184–188, Vancouver,
Canada. Association for Computational Linguistics.

Yuxuan Wang, Wanxiang Che, Jiang Guo, and Ting
Liu. 2022b. A neural transition-based approach for
semantic dependency graph parsing. Proceedings of
the AAAI Conference on Artificial Intelligence.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022. Chain-of-thought prompting
elicits reasoning in large language models. In Ad-
vances in Neural Information Processing Systems 35:
Annual Conference on Neural Information Process-
ing Systems 2022, NeurIPS 2022, New Orleans, LA,
USA, November 28 - December 9, 2022.

Jingxuan Yang, Kerui Xu, Jun Xu, Si Li, Sheng Gao,
Jun Guo, Nianwen Xue, and Ji-Rong Wen. 2021. A
joint model for dropped pronoun recovery and conver-
sational discourse parsing in chinese conversational

12506

https://doi.org/10.1162/tacl_a_00557
https://doi.org/10.1162/tacl_a_00557
https://doi.org/10.1162/tacl_a_00557
https://doi.org/10.18653/v1/2023.acl-long.855
https://doi.org/10.18653/v1/2023.acl-long.855
https://doi.org/10.3115/v1/P14-1003
https://aclanthology.org/C18-1271
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.951
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.951
https://doi.org/10.18653/v1/2022.acl-long.244
https://doi.org/10.18653/v1/2022.acl-long.244
https://doi.org/10.1162/tacl_a_00451
https://doi.org/10.1162/tacl_a_00451
https://doi.org/10.1162/tacl_a_00451
https://doi.org/10.1162/tacl_a_00451
https://aclanthology.org/W03-3017
https://aclanthology.org/W03-3017
https://doi.org/10.1609/aaai.v36i10.21361
https://doi.org/10.1609/aaai.v36i10.21361
https://doi.org/10.48550/ARXIV.2310.03668
https://doi.org/10.48550/ARXIV.2310.03668
https://doi.org/10.1007/S11633-022-1331-6
https://doi.org/10.1007/S11633-022-1331-6
https://doi.org/10.18653/v1/2021.acl-long.60
https://doi.org/10.18653/v1/2021.acl-long.60
https://aclanthology.org/2022.acl-short.37
https://aclanthology.org/2022.acl-short.37
https://doi.org/10.18653/v1/2023.acl-long.202
https://doi.org/10.18653/v1/2023.acl-long.202
https://doi.org/10.18653/v1/2023.acl-long.202
https://doi.org/10.18653/v1/P17-2029
https://doi.org/10.18653/v1/P17-2029
https://doi.org/10.1609/aaai.v32i1.11968
https://doi.org/10.1609/aaai.v32i1.11968
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://doi.org/10.18653/v1/2021.acl-long.138
https://doi.org/10.18653/v1/2021.acl-long.138
https://doi.org/10.18653/v1/2021.acl-long.138


speech. In Proceedings of the 59th Annual Meeting
of the Association for Computational Linguistics and
the 11th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers).

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Car-
bonell, Ruslan Salakhutdinov, and Quoc V. Le. 2019.
Xlnet: Generalized autoregressive pretraining for
language understanding. In Advances in Neural In-
formation Processing Systems 32: Annual Confer-
ence on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, pages 5754–5764.

Yu Zhang, Zhenghua Li, and Min Zhang. 2020. Effi-
cient second-order TreeCRF for neural dependency
parsing. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 3295–3305, Online. Association for Computa-
tional Linguistics.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc V. Le, and Ed H.
Chi. 2023. Least-to-most prompting enables com-
plex reasoning in large language models. In The
Eleventh International Conference on Learning Rep-
resentations, ICLR 2023, Kigali, Rwanda, May 1-5,
2023. OpenReview.net.

Yifei Zhou and Yansong Feng. 2022. Improve discourse
dependency parsing with contextualized representa-
tions. In Findings of the Association for Computa-
tional Linguistics: NAACL 2022, Seattle, WA, United
States, July 10-15, 2022, pages 2250–2261. Associa-
tion for Computational Linguistics.

12507

https://doi.org/10.18653/v1/2021.acl-long.138
https://proceedings.neurips.cc/paper/2019/hash/dc6a7e655d7e5840e66733e9ee67cc69-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/dc6a7e655d7e5840e66733e9ee67cc69-Abstract.html
https://doi.org/10.18653/v1/2020.acl-main.302
https://doi.org/10.18653/v1/2020.acl-main.302
https://doi.org/10.18653/v1/2020.acl-main.302
https://openreview.net/pdf?id=WZH7099tgfM
https://openreview.net/pdf?id=WZH7099tgfM
https://doi.org/10.18653/V1/2022.FINDINGS-NAACL.173
https://doi.org/10.18653/V1/2022.FINDINGS-NAACL.173
https://doi.org/10.18653/V1/2022.FINDINGS-NAACL.173

