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Abstract
The advancement in healthcare has shifted fo-
cus toward patient-centric approaches, partic-
ularly in self-care and patient education, facil-
itated by access to Electronic Health Records
(EHR). However, medical jargon in EHRs
poses significant challenges in patient compre-
hension. To address this, we introduce a new
task of automatically generating lay definitions,
aiming to simplify complex medical terms into
patient-friendly lay language. We first created
the README dataset, an extensive collection
of over 50,000 unique (medical term, lay def-
inition) pairs and 300,000 mentions, each of-
fering context-aware lay definitions manually
annotated by domain experts. We have also en-
gineered a data-centric Human-AI pipeline that
synergizes data filtering, augmentation, and se-
lection to improve data quality. We then used
README as the training data for models and
leveraged a Retrieval-Augmented Generation
method to reduce hallucinations and improve
the quality of model outputs. Our extensive
automatic and human evaluations demonstrate
that open-source mobile-friendly models, when
fine-tuned with high-quality data, are capa-
ble of matching or even surpassing the perfor-
mance of state-of-the-art closed-source large
language models like ChatGPT. This research
represents a significant stride in closing the
knowledge gap in patient education and advanc-
ing patient-centric healthcare solutions 1.

1 Introduction

Throughout the extensive history of natural lan-
guage processing (NLP), enhancing individuals’
ability to read and comprehend complex texts has
been a significant research goal that remains only
partially achieved (Zeng et al., 2020). Among
the various tasks in this field, improving the com-
prehension of medical electronic health records

1Our data is released at https://github.com/
seasonyao/NoteAid-README and https://huggingface.
co/datasets/bio-nlp-umass/NoteAid-README with
CC-BY-NC 4.0 license.

Figure 1: A visualization of the NoteAid pipeline, where
NLP tools first identify jargon that may be challenging
for patients to understand. The lay definitions corre-
sponding to these jargon terms are then retrieved from
relevant dictionaries and presented to the patients, en-
hancing their comprehension and engagement with their
health information.

(EHRs) stands out due to the complexity and speci-
ficity of medical terminology (Nutbeam, 2023).
Efforts to enhance the comprehension of EHRs
can not only advance NLP’s goal of aiding the
understanding of complex texts but also hold sub-
stantial social significance by increasing efficiency
and reducing errors for both patients and health-
care professionals (Nanna et al., 2009; Boling,
2009; Spooner et al., 2019; Baldry et al., 1986;
Schillinger et al., 2009).

However, despite advancements in EHRs man-
agement (Walker et al., 2019), one significant bar-
rier persists in the form of medical jargon 2 in
EHRs, impeding patient understanding and self-
care (Kujala et al., 2022; Choudhry et al., 2016;
Khasawneh et al., 2022). As shown in Figure 1,
tools like NoteAid (Chen et al., 2018; Kwon et al.,
2022), which employs NLP to demystify complex

2A “medical jargon term” is the specialized language
healthcare professionals use that can be complex for non-
medical individuals. A “lay definition” translates this jargon
into accessible language for the general public, aiming to
bridge the understanding gap and enhance the communication
of health-related information.
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medical terms, have been instrumental in bridging
the communication gap between healthcare profes-
sionals and patients (Lalor et al., 2018, 2021, 2023).
However, lay language dictionary resources like the
Consumer Health Vocabulary (CHV) (Zeng and
Tse, 2006; He et al., 2017; Ibrahim et al., 2020) are
limited in scale, posing a challenge to NoteAid. For
instance, only a fraction (about 4%) of the medical
terms in NoteAid have been annotated with lay def-
initions, highlighting the need for a more scalable
solution to address this knowledge gap effectively.

Addressing this issue requires shifting our focus
to online health education materials such as Unified
Medical Language System (UMLS) (Bodenreider,
2004), MedlinePlus (Patrias and Wendling, 2007),
Wikipedia, and Google. However, as indicated in
Table 4, these resources often present too difficult
information for the average patient to understand.
For example, these resources’ average readability
measured by the Flesch Kincaid Grade Level (Sol-
nyshkina et al., 2017) was post-secondary or higher
education, while the average readability of a US
adult was 7-8th grade level (Doak et al., 1996,
1998; Eltorai et al., 2014). To bridge this gap,
we have engaged medical experts to meticulously
curate lay definitions for jargon terms found in
NoteAid-MedJEx (Kwon et al., 2022), targeting a
comprehension level suitable for individuals with
a 7th to 8th-grade education. Each jargon term
has been redefined across various contexts, ensur-
ing their applicability in diverse clinical scenarios.
This effort led to our creation of the REsource of
lAy Definitions for MEdical jargon (README)
dataset, an expansive resource containing over
51,623 (medical jargon term, lay definition) pairs.
The README dataset comprises an impressive
308,242 data points, each consisting of a clinical
note context, a medical jargon term, and its corre-
sponding lay definition. Thus, the dataset signifi-
cantly enhances the accessibility and comprehensi-
bility of medical information for patients.

Yet, the critical aspect of generating lay defi-
nitions remains largely unexplored. As patients
gain more access to their EHRs, the demand for
lay definition resources is escalating. Despite our
efforts to expand them, they are inevitably destined
to surpass the capacity of current expert-annotated
resources. Moreover, the dynamic nature of "jar-
gon" based on individual and context makes pre-
annotated expert resources less adaptable to real-
life scenarios. The model-driven automatic genera-

tion of lay definitions from medical jargon emerges
as a viable solution. Recent research highlighted
ChatGPT’s potential in its integration with the field
of medicine (Brown et al., 2020; OpenAI, 2023;
Yang et al., 2023), including generating human-
readable definitions for biomedical terms (Remy
and Demeester, 2023). Nonetheless, our evaluation
of open-source models (refer to Figure 3) shows a
significant performance degradation compared to
ChatGPT. Using open-source large language mod-
els like Llama2 (Touvron et al., 2023) and small lan-
guage models such as GPT-2 (Radford et al., 2019)
is crucial because proprietary LLMs accessed via
third-party APIs may not always be feasible, espe-
cially in fields like healthcare with strict privacy re-
quirements and economic constraints. Open-source
models offer the necessary privacy, while smaller
models provide economic and infrastructural bene-
fits, addressing distinct concerns about effectively
deploying NLP tools in healthcare scenarios.

To bridge this gap, we aim to train an in-house
system using open-source models for automatic
lay definition generation to provide reliable lay
definitions for jargon in patient education tools
like NoteAid. Inspired by research on Retrieval-
Augmented Generation (RAG) in general and med-
ical domains (Lewis et al., 2020; Asai et al., 2023;
Xiong et al., 2024; Wang et al., 2024; Guo et al.,
2024), we designed to use external resources to
overcome the limitations of these open-source mod-
els in medical knowledge (Sung et al., 2021; Yao
et al., 2022, 2023; Chen et al., 2023). We are
positioning automatic lay definition generation
as a form of text simplification, where language
models are prompted to generate context-aware,
jargon-specific, and layperson-friendly definitions
based on general definitions retrieved from exter-
nal knowledge resources. Specifically, in this work,
we use the UMLS to retrieve general definitions
of jargon terms and construct a dataset upon the
README that includes context, jargon terms, gen-
eral definitions, and lay definitions.

To improve the initial README dataset’s
data quality for model training, we developed a
data-focused process called Examiner-Augmenter-
Examiner (EAE), as illustrated in Figure 2. Draw-
ing inspiration from the human-in-the-loop con-
cept (Monarch, 2021), we employed human ex-
perts to guide AI in both the examiner and aug-
menter stages. The examiner filters high-quality
training data, which may come from expert an-
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notations before the augmenter stage or from AI-
generated content after. The augmenter gener-
ates potentially high-quality synthesized data to
increase data points. In the end of EAE, Hu-
man annotators review filtered data to ensure
its quality. After obtaining high-quality expert-
annotated and AI-synthesized datasets, we em-
ployed the AI-synthesized dataset to augment the
expert-annotated dataset, aiming to explore the ef-
fectiveness of AI-synthesized data in training. We
implemented a range of heuristic data selection
strategies to integrate AI synthetic data, allowing
us to incorporate suitable data points into our train-
ing process.
In summary, our contributions are as follows:
• Introduced a new task of automatically generat-

ing lay definitions for medical jargon. We created
a substantial expert-annotated dataset of 308,242
data points that can be used directly as a de-
tailed lay-language dictionary for patient educa-
tion tools such as NoteAid and as training data
for this new task.

• Developed a robust, data-centric pipeline that ef-
fectively integrates data filtering, augmentation,
and the selection of synthetic data. This approach
enhances the quality of README datasets, merg-
ing the strengths of AI with human expertise to
achieve optimal results.

• Our extensive automatic and human evaluations
reveal that when trained with high-quality data,
open-source, mobile-friendly small models can
achieve or even exceed the performance of
cutting-edge closed-source large language mod-
els, such as ChatGPT.

2 Problem Statement

Consider a dataset D = {X,Y, Z+} comprising
t EHRs, where X = {x1, x2, . . . , xt} represents
the contexts of these EHRs, Y = {y1, y2, . . . , yt}
denotes the corresponding jargon terms, and Z+ =
{z1+, z2+, . . . , zt+} are the ground truth expert lay
definitions. Each EHR context xi is a sequence of
n tokens, expressed as xi = {xi1, xi2, . . . , xin}, and
each lay definition zi+ consists of m tokens, given
by zi+ = {zi+,1, z

i
+,2, . . . , z

i
+,m}. The README

lay definition generation task T aims to train
a reference model Mref such that Mref (z

i
+ |

xi, yi) is optimized. The standard approach for
fine-tuning Mref on T involves using the cross-
entropy loss ℓce(zi+,Mref (x

i, yi)) over the dataset
D. To enhance the training of Mref , we intro-
duce an additional set of general definitions Z− =

{z1−, z2−, . . . , zt−}, where each zi− corresponds to
the general definition of the jargon term yi, gener-
ated using openly available data sources (UMLS)
or GPT-3.5-turbo. Our proposed EAE pipeline
is designed to acquire high-quality general defini-
tion data Z−, culminating in the augmented dataset
Dsimp = {X,Y, Z+, Z−}. The README lay def-
inition generation task T is then formalized as a
text simplification task, where Mref is trained to
produce Z+ based on X,Y, and Z−. This process
utilizes a selected subset DSEL ⊆ Dsimp, chosen
according to one of the selection criteria: RAN-
DOM, SYNTAX, SEMANTIC, or MODEL.

3 Method

3.1 README Data Collection

The dataset source is a collection of publicly avail-
able deidentified EHR notes from hospitals af-
filiated with an anonymized institution. Herein,
18,178 sentences were randomly sampled, and do-
main experts then annotated the sentences for med-
ical jargon and corresponding lay definition.

3.2 Lay Definition Annotation

Domain-experts read each sentence and identified
as medical jargon terms that would be considered
difficult to comprehend for anyone no greater than
a 7th-grade education 3. Overall, 51,623 unique
(medical jargon term, lay definition) pairs with
308,242 mentions 4 in the EHR repository have
been annotated by complying with the annotation
guidelines presented in Appendix A.

3.3 General Definition Retrieval

We then employed the Scispacy library 5 to re-
trieve the corresponding UMLS definitions (Lind-
berg et al., 1993) of these annotated medical jargon
terms as the general definitions. We follow the re-
trieval and preprocessing steps in Appendix C to
filter the valid general definitions for the README
dataset 6. This preliminary cleaning results in
308,242 data points in the README-exp (e.g., ex-
pert annotated) dataset, each consisting of a clinical

3The rule of thumb is that if a term has a lay definition com-
prehensible to a 4-7th grader as judged by FKGL (Solnyshkina
et al., 2017), this term is included as a jargon term.

4So there are 308,242 data points with (EHR context, med-
ical jargon term, lay definition) format.

5We used the Scispacy en_core_sci_lg model to obtain the
data. https://github.com/allenai/scispacy

6We discuss the concept ambiguity issue in Appendix D
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Figure 2: Our Data-Centric NLP pipeline, comprising the Examiner-Augmenter-Examiner (EAE) framework and
different data selection methods. EAE shows how humans (physicians) and AI (LLM, e.g. ChatGPT) cooperate to
make a high-quality README dataset. We collect general definitions for every jargon term from external knowledge
resources such as UMLS. “R” is “README”. “exp” is “expert annotation version”, “syn” is “AI synthetic version”.
“instruction” and “demo” (examples for in-context learning) are combined into the prompt for LLM. In the pipeline,
the human duties at different stages are annotator (labeling the initial dataset) and instructor (providing suitable
prompts to guide AI at every stage). The AI duties at different stages are examiner (filter high-quality data) and
augmenter (improve the quality of low-quality data). Appendix Table 5 describes the number of different versions
of the README dataset in each step. After we get two high-quality datasets, R-exp_good and R-syn_good, from
the EAE pipeline, we then deploy 4 different data selection strategies to combine high-quality expert-annotated data
R-exp_good and high-quality AI-synthetic data R-syn_bad for in-house system training.

note context, a medical jargon term, a correspond-
ing lay definition, and a corresponding general def-
inition, as shown in Figure 2.

3.4 Examiner-Augmenter-Examiner (EAE)
Examiner (expert-annotated data) Initially, ba-
sic data cleaning, as outlined in Appendix C, was
applied. To enhance this, we employed GPT-3.5-
turbo, using a few-shot learning approach with
seven examples - four demonstrating acceptable
data points and three showing unacceptable ones.
These prompts served as the ‘Human’ element in
our Human-AI-in-the-loop model, as depicted in
Figure 2 and detailed in Algorithm 1. The prompts
are detailed in Table 9. We choose GPT-3.5-turbo
here because our evaluation (Section 4.3 and Ap-
pendix F) shows that the definitions it generates for
medical terms can reach a human-satisfying level.
Post-cleaning 7, approximately 39% of UMLS gen-
eral definitions were deemed suitable by the Exam-
iner (e.g., GPT-3.5-turbo). The suitable 113,659
data points were archived in R-exp_good, while the

7More GPT Running Details are in Appendix B.4

unsuitable 177,140 ones were stored in R-exp_bad.

Augmenter Given the low yield of usable UMLS
definitions, we employed GPT-3.5-turbo to aug-
ment our dataset. The augmentation process, a
critical part of our Data-centric pipeline, involved
the system prompt: “Generate a general definition
of the term.” This step, accompanied by two ex-
amples (Table 9), aimed to create correct general
definitions but may not be suitable for laypeople
(similar to the UMLS definitions). The outcome of
this process was R-syn (e.g., AI synthetic), contain-
ing 171,831 newly generated definitions.

Examiner (AI-synthetic data) The ChatGPT-
generated definitions underwent a second clean-
ing round using the same methodology as in Sec-
tion 3.4 Examiner (expert-annotated data). Here,
approximately 56% of the ChatGPT definitions
were found suitable for model training, with the
remaining being either contextually inappropriate
or incompatible with the expert-provided lay defini-
tions. The final tally was 96,668 ‘good’ and 75,175
‘bad’ general definitions, stored in R-syn_good
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and R-syn_bad, respectively. We discuss the EAE
pipeline efficacy in Appendix E

Qaulty Checking After the end of the EAE, we
sampled 500 medical jargon terms each from the
R-exp_good and R-syn_good datasets. We con-
ducted human verification 8 on corresponding data
points for these 1000 jargon terms. We obtained
a high human agreement for both the R-exp_good
and R-syn_good datasets’ quality. After correcting
individual invalid data, we used this portion of the
data as evaluation and test data (in a 1:1 ratio). We
used the remaining R-exp_good and R-syn_good
datasets as training data, ensuring that these 1,000
medical jargon terms would not appear in the train-
ing data. Table 5 shows the overall dataset statistics
of all the README versions across the pipeline.

3.5 Integration of Synthetic and Expert Data

We adopted four distinct sampling strategies to
integrate the AI-synthetic training data (e.g., R-
syn_good) into the expert-annotated training data
(e.g., R-exp_good):
• RANDOM: This approach randomly selected

N entries from the R-syn_good dataset. This is
the baseline for our subsequent three heuristic
methods.

• SYNTAX: For the syntax-based sampling ap-
proach, the ROUGE_L metrics F1 score in
Section 4.1 was used as a key evaluative tool.
ROUGE_L focuses on the longest common sub-
sequence, which measures the longest string of
words that occurs in both the predicted and ref-
erence texts. By using this metric, we could
rank the synthetic definitions according to their
syntactic closeness to the human-written defini-
tions, which helped us select samples that would
potentially be more understandable and natural-
sounding.

• SEMANTIC: For semantic-based sampling, we
utilized SentenceTransformers 9. Renowned for
its text semantic analysis efficiency, this model
enabled us to measure the semantic similarity
between lay definitions in R-exp_good and R-
syn_good datasets. We ranked synthetic data
based on these scores, considering higher scores
as indicative of greater semantic closeness to ex-
pert annotations.

8The details about Data Quality Checking and Train/E-
val/Test Split can be found in Appendix F

9We used default model all-MiniLM-L6-v2 in https://
github.com/UKPLab/sentence-transformers.

• MODEL: In model-based sampling, we used
models initially trained on the R-exp_good
dataset to generate definitions for the R-syn_good
dataset. We employed the ROUGE_L F1 score to
evaluate the alignment between model-generated
and actual R-syn_good lay definitions. This tech-
nique aids in mitigating training challenges as-
sociated with data heterogeneity. It enriches the
dataset with examples that enhance the model’s
convergence towards the desired distribution (e.g.,
expert-annotated lay definitions).

4 Experiments

4.1 Automatic Evaluation Metrics

We evaluate the efficacy of our model in produc-
ing lay definitions by contrasting them with the
ground-truth reference lay definitions, utilizing the
ROUGE (Lin, 2004) and METEOR (Banerjee and
Lavie, 2005) metrics. However, they are based
on the exact word overlap and therefore provide
insight into the informativeness of the generated
lay definitions but do not necessarily reflect their
factual accuracy (Maynez et al., 2020). We also em-
ploy Scispacy to extract medical concepts from the
model-generated and the reference lay definitions.
We then compute the F1 Scores for these concept
lists, referred to as UMLS-F1, to specifically mea-
sure the factuality of the generated content 10.

4.2 Experimental Setting

We use the following base models: GPT-2, Distil-
GPT2, BioGPT, and Llama2 in our experiments 11.
We use the following symbols:

1. jargon2lay(J2L): Directly generates a lay defi-
nition for a given jargon term.

2. jargon+context2lay(J+C2L): Generates a lay
definition for a given jargon term based on the
context information from clinical documents.

3. jargon+gen2lay(J+G2L): Generates a lay def-
inition for a given jargon term based on the
general definition provided by UMLS.

4. jargon+context+gen2lay(J+C+G2L): Gener-
ates a lay definition for a given jargon term
based on both the context information from
clinical documents and the general definition
provided by UMLS.

We use one jargon, ’EDG’, as an example and
show the input prompt of different settings J2L,

10The details about UMLS-F1 can be found in Appendix G
11More Experimental Setting details are in Appendix H.
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J+C2L, J+G2L, J+C+G2L 12 on Table 8.
Our experiments were divided into five distinct

parts. In Set-1, we aimed to evaluate the perfor-
mance gap on the J2L task between open-source
base models and GPT3.5/4 models. We do one-shot
prompting for Llama2 13, GPT-3.5-turbo, and GPT-
4 with prompts in Table 6. Set-2 explored the vary-
ing data quality across different versions within our
EAE pipeline, where we fine-tuned the base mod-
els on J+G2L task. Set-3 focused on evaluating the
effects of various data selection strategies on data
augmentation outcomes. To do this, we ranked AI-
synthetic data (R-syn_good) using different meth-
ods in Section 3.5, selecting either the top N en-
tries with the highest scores (e.g., ‘SEMANTIC’ in
Table 2) or the bottom N entries with the lowest
scores (e.g., ‘SEMANTIC_r’). These selections
were then evenly combined with expert-annotated
data (R-exp_good) at a one-to-one ratio. Follow-
ing this, we fine-tuned the base models using these
diverse, mixed datasets to determine the impact
of each selection method on model performance.
In Set-4, we investigated the effects of incorporat-
ing different types of information (EHR context
and UMLS-retrieved general definition) into the
model inputs. In Set-5, we fine-tuned models of
varying sizes (ranging from DistilGPT2-88M to
Llama2-7B) and compared the outcomes with GPT-
3.5-turbo using best settings learned from previous
Set-2, Set-3, and Set-4. More experiment designs
and results can be found in Appendix I

4.3 Results

Figure 3: One-shot performances on jargon2lay.

12We use "context" and "C" interchangeably to refer to the
EHR context in which the jargon occurs. Similarly, we use
"general definition" and "G" interchangeably to refer to the
general definition retrieved from UMLS.

13Because smaller open source language models Distil-
GPT2/GPT2/BioGPT do not have the ability to complete in-
struction following under zero-shot or few-shot settings, we
only compare the results of Llama2 as a representative of open
source language models with GPT3.5/4 to see the gap.

J+G2L ROUGE1 ROUGE2 ROUGEL METEOR UMLS-F1 Rank

R-exp 23.94 8.95 22.79 17.75 12.83 4
R-exp_good 26.99 10.76 25.57 21.19 16.88 2
R-exp_bad 22.25 7.46 21.09 17.18 11.72 5

R-syn_good 25.71 9.75 24.41 20.23 16.01 3
R-exp+syn_good 29.82 13.14 28.47 24.42 20.09 1

Table 1: Various README versions data performance.

We start with our experiments with some base mod-
els’ performance on the J2L dataset with Set-1.
In Appendix F, we showed a high level of human
evaluators’ agreement for the definitions generated
by GPT-3.5-turbo, which underlines its efficacy in
crafting human-readable explanations for biomedi-
cal concepts. Consequently, GPT-3.5-turbo serves
as a strong baseline for quality in README lay
definition generation, indicative of a standard that
meets human satisfaction. Despite this, our anal-
ysis of Llama2, illustrated in Figure 3, reveals a
significant performance gap. This discrepancy un-
derscores the critical necessity for enhancing the
capabilities of Llama2 and other open-source mod-
els to achieve high-quality output in lay definition
generation tasks, thereby improving patient educa-
tion together with systems like NoteAid. Addition-
ally, we observed that GPT-3.5-turbo and GPT4 14

exhibited comparable proficiency in this task.

4.3.1 Effectiveness of EAE pipeline
In Set-2, we focus on the efficacy of different
data versions when finetuning with the GPT-2
model. The results, as reflected in Table 1, indicate
that high-quality expert data (R-exp_good) demon-
strates clear superiority over unexamined expert
data (R-exp), emphasizing the crucial role of ECE-
examiner in enhancing data quality. Furthermore,
high-quality synthetic data (R-syn_good) outper-
forms the unexamined expert data (R-exp), under-
scoring the significant value of ECE-augmenter.
Notably, the combination of R-exp_good and R-
syn_good shows improved performance over R-
exp_good alone, suggesting that including syn-
thetic data is beneficial. This composite approach
of R-exp_good+R-syn_good leading the rank un-
derscores the efficacy of our EAE pipeline.

4.3.2 Expert and Synthetic Data Integration
In Set-3, we explored the effects of various data
selection strategies on data augmentation outcomes.
We found the results of SEMANTIC are closer to

14All GPT experiments in our paper were conducted us-
ing Microsoft Azure, which can be used HIPAA-compliantly,
ensuring the ethical handling of sensitive data.
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ROUGE1 J2L J+C2L J+G2L J+C+G2L

RANDOM 19.03 19.65 26.21 26.97
SYNTAX(R) 19.82(-2.28) 20.65(-2.78) 27.56(-8.36) 28.33(-8.84)

SEMANTIC(R) 19.74(-1.11) 19.94(-1.39) 26.42(-0.92) 27.19(-1.96)
MODEL(R) 20.18(-0.8) 20.46(-1.88) 27.9(-2.37) 28.65(-4.22)

UMLS-f J2L J+C2L J+G2L J+C+G2L

RANDOM 8.05 9.09 15.78 16.72
SYNTAX(R) 8.53(-0.11) 9.99(-1.00) 17.76(-5.11) 17.42(-5.54)

SEMANTIC(R) 8.98(-0.38) 9.07(-0.69) 15.93(-0.02) 16.74(-0.93)
MODEL(R) 9.18(-0.63) 9.4(-0.78) 18.34(-2.5) 18.45(-2.55)

Table 2: Different data selection methods performance.
The values in parentheses represent the difference be-
tween the corresponding X_r (bottom N) and X (top
N), i.e., X_r - X. The smaller this value, the more it
indicates that the X method can select higher quality
synthetic data for data augmentation; conversely, the
closer this value is to 0, the more it suggests that the X
method cannot identify the higher-quality synthetic data
for training.

RANDOM than SYNTAX and MODEL, and SE-
MANTIC_r - SEMANTIC is close to 0. However,
significant differences can be observed in SYNTAX
and SYNTAX_r, MODEL and MODEL_r. Table 2
highlights two main findings: firstly, data selec-
tion is crucial, as all methods have better perfor-
mance with higher-ranked data (e.g., SYNTAX, SE-
MANTIC, MODEL) over lower (e.g., SYNTAX_r,
SEMANTIC_r, MODEL_r). All three methods,
SYNTAX, SEMANTIC, and MODEL, have bet-
ter results than the RANDOM baseline. Secondly,
SYNTAX and MODEL are more effective in se-
lecting higher-quality synthetic data for data aug-
mentation than SEMANTIC and RANDOM. We
selected SYNTAX as the default data augmentation
method for subsequent experiments.

4.3.3 Retrieval-augmented Generation

ROUGE1 ROUGE2 ROUGEL METEOR UMLS-F1

Without data augmentation (R-exp_good)
J2L 19.47 6.06 18.53 14.74 8.76

J+C2L 19.40 6.40 18.38 15.12 9.24
J+G2L 26.99 10.76 25.57 21.19 16.88

J+C+G2L 27.58 11.31 26.35 21.72 17.12
Data augmentation (R-exp+syn_good with SYNTAX)

J2L 21.98 7.42 20.88 16.98 10.95
J+C2L 22.13 7.90 21.04 17.54 10.71
J+G2L 29.82 13.14 28.47 24.42 20.09

J+C+G2L 29.89 13.48 28.49 24.65 20.27

Table 3: Efficacy of incorporating EHR context and
general definition in input data. The retrieved general
definitions significantly aid the overall performance of
the model (ROUGE and METEOR) and also reduce
hallucinations (UMLS factuality score).

Set-4 results underscore the significant improve-
ment in model performance when input data is
enriched with UMLS-retrieved general definitions.

As illustrated in Table 3, regardless of whether we
utilize only expert-annotated data or data augmen-
tation with AI-synthetic data, including general def-
initions consistently enhances effectiveness. This
finding confirms the value of RAG with the gen-
eral definition in the lay definition generation task.
Meanwhile, adding EHR context to the input data
yields a moderate impact on model performance.

4.3.4 Model Performances Against ChatGPT

Figure 4: Comparative performance analysis of Distil-
GPT2, BioGPT, and LLAMA2 against GPT-3.5-turbo.

In Set-5, we observed that LLAMA2-7B’s
ROUGE-1 and UMLS-F1 metrics surpassed GPT-
3.5-turbo in the J2L task post-training. For
the J+G2L setting, DistilGPT2-88M demon-
strated equivalent results to GPT-3.5-turbo, while
BioGPT’s performance exceeded it, and LLAMA2-
7B significantly outperformed the GPT-3.5-turbo.
These findings, as depicted in Figure 4, emphasize
the effectiveness of open-source, mobile-adapted
small models when appropriately fine-tuned with
high-quality datasets, offering a promising avenue
for deploying lightweight yet powerful NLP tools
in mobile healthcare applications to help patient
education.

5 Human Evaluation

5.1 Human Evaluation settings

Our human evaluation was conducted by 5 human
evaluators 15. We randomly selected 50 pairs of
(jargon, generated lay definitions) from the test
dataset for this human evaluation. The task for eval-
uators was to reference the expert definitions and
choose a binary preference among the following
four groups of definitions: 1) DistilGPT2-J2L vs.

15Since the generated lay definition is provided to lay peo-
ple, five people without medical background were found to
conduct the human evaluation here.
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GPT-3.5-turbo, 2) DistilGPT2-J+C+G2L vs. GPT-
3.5-turbo, 3) LLAMA2-J2L vs. GPT-3.5-turbo, 4)
LLAMA2-J+C+G2L vs. GPT-3.5-turbo. After we
get judgments from multiple people per instance,
we do not aggregate their labels before calculating
the win rate but count them individually.

5.2 Human Evaluation Results

Figure 5: Human evaluation results (win rate %).

As shown in Figure 5, although the result of adding
EHR context and general definition (DistilGPT2-
J+C+G2L) is better than DistilGPT2-J2L, the win
rate of the two DistilGPT2 models’ output is still
significantly behind the result of GPT-3.5-turbo.
For LLAMA-2, generating lay definitions directly
from jargon is still not as good as GPT-3.5-turbo,
but adding context and general definitions is of
great help. Human evaluators prefer LLAMA2-
J+C+G2L more than GPT-3.5-turbo. There are
some inconsistencies between the results of human
evaluation and automatic evaluation. We further
interviewed our medical experts about the reasons
for our system win or loss cases and concluded the
following conclusions to help future improvements:
1. While all our in-house systems perform satisfac-
torily, GPT-3.5-turbo stands out for its flexibility
and user-friendliness. It excels at elaborating com-
plex medical terms, offering detailed explanations
and practical examples to improve comprehension.
2. Recent advancements (Cai et al., 2023; Zhang
et al., 2023b) reveal ChatGPT’s role in enhancing
patient education through interactive formats like
NoteAid-interactive (Zhang et al., 2023a). It en-
ables patients to actively ask questions and seek
clarifications while the AI tailors responses to aid
their understanding. This interactive approach, ab-
sent in traditional dictionary-style definitions like
our README dataset, calls for next-step model
distillation work or further refinement in aligning
the in-house system’s outputs with patient pref-
erences. 3. Additionally, developing automatic
metrics aligning closely with human evaluation is

another critical next step.

6 Related Work

The evolution of patient-centric healthcare necessi-
tates simplified patient access to medical informa-
tion. Tools like NoteAid and MedJEx have initiated
efforts to make EHR content more comprehensible
(Chen et al., 2018; Kwon et al., 2022). However,
sentence-level text simplification efforts have been
expanded to larger datasets that capture broader
biomedical contexts (Jonnalagadda et al., 2010;
Guo et al., 2021; Devaraj et al., 2021). Recent re-
search has similarly focused on the development
of datasets and methods for text simplification, pri-
marily at the sentence level, with the expansion
into datasets capturing broader contexts of biomed-
ical abstracts (Cao et al., 2020; Lu et al., 2023;
Goldsack et al., 2022; Luo et al., 2022b). Notably,
efforts such as the CELLS, PLABA, and AGCT
datasets have contributed significantly to this do-
main, providing extensive resources for training
models capable of translating scientific discourse
into lay language (Guo et al., 2024; Attal et al.,
2023; Remy and Demeester, 2023). Our work di-
verges from these existing efforts by introducing
the README dataset, an expansive collection ex-
plicitly designed for context-aware lay definitions,
addressing the nuanced task of generating patient-
friendly definitions directly from medical terms,
filling a critical gap in patient education resources.

In line with advancing the quality of gener-
ated texts, we have embraced Retrieval-Augmented
Generation (RAG) to mitigate common issues in
natural language generation, such as "hallucina-
tions" (Karpukhin et al., 2020; Shuster et al., 2021).
Two main categories of information retrieval meth-
ods have been used to augment the generation of
biomedical natural language generation, definition-
based and embedding-based retrieval techniques
(Guo et al., 2024; Alambo et al., 2022; Moradi
and Ghadiri, 2018; Xiong et al., 2024). Our RAG
belongs to the definition-based retrieval technique.

Finally, our contributions distinctly highlight
the integration of a robust, data-centric Human-AI
pipeline that improves data quality and the effi-
ciency of models trained on the README dataset.
This innovative pipeline leverages the Data-centric
AI framework, navigating through phases of col-
lection, labeling, preparation, reduction, and aug-
mentation to build a dataset that is both expansive
and representative (Zha et al., 2023; Ng et al., 2021;
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Whang et al., 2023). The process begins with metic-
ulous data collection and expert labeling, ensuring
a foundation of high-quality, domain-specific data
(Section 3.1 - 3.3). During the preparation phase,
raw data undergoes rigorous cleaning and transfor-
mation, readying it for effective model training (Kr-
ishnan and Wu, 2019). The dataset is then enriched
through strategic data augmentation techniques, in-
corporating verified quality AI-synthetic data to
expand its scope and utility (Section 3.4). Further-
more, data reduction strategies are employed to
select the most suitable instances for integration,
enhancing the dataset’s overall effectiveness (Sec-
tion 3.5). Through these meticulous stages, the
README dataset not only supports but signifi-
cantly enhances the capabilities of smaller, open-
source models, allowing them to match or even ex-
ceed the performance of larger proprietary models
like ChatGPT in specific healthcare applications.

7 Conclusions

Our study underscores the potential of NLP to de-
mocratize medical knowledge, enabling patient-
centric care by simplifying complex medical ter-
minology. Developing the README dataset and
implementing a data-centric pipeline has improved
dataset quality and expanded AI training possibili-
ties. Our experiments show that small open-source
models can match advanced close-source LLMs
like ChatGPT with well-curated data. README
will be open to the community as an important lay
dictionary for patient education. We hope our work
can help the innovative patient education commu-
nity advance toward a future where all patients can
easily understand their health information.

8 Limitations and Ethical Considerations

This study provides valuable insights, but exper-
imental results evaluated in humans demonstrate
limitations of the current work and some future di-
rections. First, better automatic evaluation metrics
need to be explored to be closer to human evalua-
tion results. Secondly, in this paper, we have only
explored some heuristic data selection methods,
and we need to explore more sophisticated meth-
ods in the future. In addition, the next step of the
in-house system is to collect patient preferences
for human alignment, which can help us gener-
ate a more user-friendly or customized lay defini-
tion. Also, we can use ChatGPT or LLAMA2-J-
C-G2L to serve as the teacher and use DistilGPT2-

based systems to serve as the students, perform-
ing distillation to improve the performance of the
small models post current supervisor-fine-tuning
on README. Finally, more interactive ways need
to be considered in the future to make the in-house
system more user-friendly and patient-centric.

Consider Privacy Implications, LLMs (espe-
cially third-party APIs like ChatGPT) may raise
privacy concerns when conducting patient educa-
tion, which may violate HIPAA regulations. In this
study, we manually annotated lay definitions on
publicly available MedJEx jargon terms and ob-
tained general definitions from accessible UMLS.
We also make AI-synthetic data to help training
since synthetic data generation is an active field in
the clinical domain especially to overcome privacy
concerns (Pereira et al., 2022; Shafquat et al., 2022;
Mishra et al., 2023). The trained in-house system
can be deployed on the patient’s mobile to avoid
patient data leaving the local area, which can better
protect the patient’s privacy and security. Consider
Biases, LLMs trained on large amounts of text data
may inadvertently capture and reproduce biases
present in the data. Therefore, an in-house system
trained on our data (whether expert annotation or
AI synthetic) may perpetuate incorrect information
or provide inaccurate answers. Finally, although
we used UMLS-based RAG to reduce hallucina-
tions, LLMs may still generate factual errors when
conducting patient education.
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A Annotation Guideline

The dataset was annotated for medical jargon and
lay definition by six domain experts from medicine,
nursing, biostatistics, biochemistry, and biomed-
ical literature curation 16. Herein, the annotators
applied the following rules for identifying what was
jargon and how to write a suitable lay definition:
Rule 1. Medical terms that would not be recog-
nized by about 4 to 7th graders, or that have a
different meaning in the medical context than
in the lay context (homonym) were labeled. For
example:
• accommodate: When the eye changes focus from

far to near.
• antagonize: A drug or substance that stops the

action or effect of another substance.
• resident: A doctor who has finished medical

school and is receiving more training.
• formed: Stool that is solid.
Rule 2. Terms that are not strictly medical, but are
frequently used in medicine. For example:
• "aberrant", "acute", "ammonia", "tender", "in-

tact", "negative", "evidence"
Rule 3. When jargon words are commonly used to-
gether, or together they mean something distinct
or are difficult to understand from the individ-
ual parts quickly were labeled. For example:
• vascular surgery: Medical specialty that performs

surgery on blood vessels.
• airway protection: Inserting a tube into the wind-

pipe to keep it wide open and prevent vomit or
other material from getting into the lungs.

• posterior capsule: The thin layer of tissue behind
the lens of the eye. It can become cloudy and blur
vision.

• right heart: The side of the heart that pumps blood
from the body into the lungs.

• intracerebral hemorrhage: A stroke.
Rule 4. Terms whose definitions are widely
known (e.g., by a 3rd grader) do NOT need to
be labeled. For example:
• “muscle”, “heart”, “pain”, “rib”, “hospital”

Rule 4.1 When in doubt, label the term. For
example:
• “colon”, “immune system”

B Evaluation of the Annotation

An observational study was performed to evalu-
ate the annotators’ reliability in identifying jargon

16The annotator agreement scores can be found in Ap-
pendix B.

and providing lay definitions, and assess the agree-
ment of the dataset annotators with each other and
laypeople.

B.1 Data Collection and Setting

For evaluation, twenty sentences were randomly
selected from deidentified inpatient EHR notes in
the EHR repository of one hospital affiliated with
an anonymized institution. Sentences consisting
only of administrative data, sentences less than ten
words long, and sentences substantially indistin-
guishable from another sentence were filtered out.

Note that the annotators had never seen the sam-
pled sentences. The twenty sentences were made
up of 904 words in total. Common words were
discarded so as not to inflate the calculated agree-
ment. These consisted of all pronouns, conjunc-
tions, prepositions, numerals, articles, contractions,
months, punctuation, and the most common 25
verbs, nouns, adverbs, and adjectives. Terms occur-
ring more than one time in a sentence were counted
only once. Furthermore, multi-word terms were
counted as single terms to ameliorate the double-
counting issue. Two members of the research team
determined multi-word terms by consensus. In
this work, multi-word terms were defined as ad-
jacent words that represented a distinct medical
entity (examples: “PR interval”, “internal capsule”,
“acute intermittent porphyria”), were commonly
used together (examples: “hemodynamically sta-
ble”, “status post”, “past medical history”) and
terms that were modified by a minor word (exam-
ples: “trace perihepatic fluid”, “mild mitral regurgi-
tation”, “rare positive cells”, “deep pelvis”). After
applying these rules, 325 candidate medical jar-
gon terms and their lay definition were utilized.
The laypeople comprised 270 individuals recruited
from Amazon Mechanical Turk (MTurk) (Aguinis
et al., 2021).

B.2 Annotation Reliability

The results showed that there was good agreement
among annotators (Fleiss’ kappa = 0.781). The
annotators had high sensitivity (91.7%) and speci-
ficity (88.2%) in identifying jargon terms and pro-
viding suitable lay definitions as determined by the
laypeople (the gold standard).
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Source Definition FKGL
UMLS An endoscopic procedure that visualizes the upper part of the gastrointestinal

tract up to the duodenum.
13.5

MedlinePlus Esophagogastroduodenoscopy (EGD) is a test to examine the lining of the
esophagus, stomach, and first part of the small intestine (the duodenum).

16.1

Wikipedia Esophagogastroduodenoscopy (EGD), also called by various other names, is
a diagnostic endoscopic procedure that visualizes the upper part of the gas-
trointestinal tract down to the duodenum. It is considered a minimally invasive
procedure since it does not require an incision into one of the major body cavi-
ties and does not require any significant recovery after the procedure (unless
sedation or anesthesia has been used).

20.9

Google An EGD is a procedure in which a thin scope with a light and camera at its tip
is used to look inside the upper digestive tract – the esophagus, stomach, and
first part of the small intestine, called the duodenum. It’s also called an upper
endoscopy, or an esophagogastroduodenoscopy.

13.2

README [Esophagogastroduodenoscopy] A procedure that looks at the food pipe, stom-
ach, and the first part of the small bowel.

5.6

Table 4: Definitions of Esophagogastroduodenoscopy from various sources.

README-version Dataset Description DataPoints
README-exp (ehr context, jargon, lay def, general definition) 308,242
README-exp (jargon, lay def, general definition) 51,623
README-exp_good (ehr context, jargon, lay def, general definition) 113,659
README-exp_good (jargon, lay def, general definition) 11,765
README-exp_bad (ehr context, jargon, lay def, general definition) 177,140
README-exp_bad (jargon, lay def, general definition) 39,856
README-syn (ehr context, jargon, lay def, general definition) 177,140
README-syn (jargon, lay def, general definition) 39,856
README-syn_good (ehr context, jargon, lay def, general definition) 96,668
README-syn_good (jargon, lay def, general definition) 96,668
README-syn_bad (ehr context, jargon, lay def, general definition) 75,157
README-syn_bad (jargon, lay def, general definition) 75,157

Table 5: The Dataset Statistics of Different README versions.

B.3 Details about Jargons and Lay Definitions
Statistics in README-exp

B.4 GPT Running Details in Examiner step

To optimize computing resources, we streamlined
our dataset by removing EHR context and focusing
solely on unique data points with (medical jargon
term, lay definition, general definition) format in
this Examiner step 17. This reduced our dataset
from 308,242 to 51,623 data points. Upon process-
ing these through Examiner, 11,765 were classified
as ‘good’ quality general definitions, and 39,856

17This was done because, in many cases, we have the same
jargon term, general definition from UMLS, and lay definition
but different EHR contexts. We can reduce the amount of GPT
running if we ignore the EHR context difference.

as ‘bad’. We subsequently performed an SQL join
operation, integrating the ‘good’ and ‘bad’ datasets
with the previously removed EHR context data,
which resulted in 113,659 ‘good’ and 194,580 ‘bad’
data points with (EHR context, medical jargon
terms, lay definition, general definition) format.
After eliminating duplicates, the final count for bad
data points in R-exp_bad was 177,140.

C General Definition Retrieval and
Preprocessing

UMLS (Lindberg et al., 1993) is a set of files and
software that combines many health and biomed-
ical vocabularies and standards to enable interop-
erability between computer systems. Given the
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Figure 6: General definitions of two jargon examples.

complexity of medical terminology, it’s notewor-
thy that some terms in UMLS are associated with
multiple definitions. This reflects the reality that a
medical term’s meaning can vary depending on its
contextual use. To accurately select the most appro-
priate general definition for each context, we uti-
lized the SentenceBERT (Reimers and Gurevych,
2019) similarity score between lay definitions and
all possible UMLS definitions available for a jargon
term to identify the most fitting definition.

Jargon terms in our dataset varied in length and
composition, with not all words necessarily hav-
ing corresponding UMLS definitions. This vari-
ability necessitated the development of distinct ap-
proaches for different scenarios:

1. Single-word Terms: In cases where the jar-
gon term comprised a single word, we either
found a UMLS definition or none. Data points
lacking a UMLS definition in this category
were excluded.

2. Two-word Terms: For jargon terms com-
posed of two words (word1 and word2), we
considered several subcases:

(a) Only word1 has a UMLS definition.
(b) Only word2 has a UMLS definition.
(c) Both word1 and word2 have UMLS defi-

nitions.
(d) The phrase “word1 word2” has a collec-

tive UMLS definition.

3. Terms with More than Two Words: Similar
to the case with two words, we can have cases
where few words have UMLS definitions in
the jargon term and few do not.

Our solution to address these scenarios involved
a unified approach, given the impracticality of tack-
ling each case individually. As illustrated in Fig-
ure 6, we extracted the UMLS definitions for all
phrases within a jargon term. This process yielded
a list of strings, providing a comprehensive general
definition for each term. We then concatenate these
strings in a comma-separated manner to get one

string used as a general definition. There might
not be a UMLS definition for all the words in the
jargon term. In that case, we are concatenating the
word directly.

The initial README dataset has a lot of unus-
able data. There are many reasons why a data point
might not be useful. The main reasons are (i) the
lay definition provided by the annotator is not cor-
rect or missing. (ii) The jargon term is missing.
(iii)The general definition obtained from UMLS is
too scientific or not relevant to the jargon term. This
was done by making sure there were no empty col-
umn values and removing parsing issues of comma-
separated files. Using this data for training would
be bad for the training as these data points will
make the model worse. So these data points are not
considered. This preliminary cleaning brings out
data from 350K to 308K.

D Discussion on Concept Ambiguity

An important aspect that merits discussion is the
potential ambiguity of medical concepts and its
impact on generating lay user explanations. The
inherent complexity and context-dependency of
medical terms can create challenges in crafting
universally understandable definitions, potentially
leading to patient misinterpretations. Our ap-
proach to addressing the ambiguity of medical
concepts is rooted in the Word-Sense Disambigua-
tion (WSD) phase, as elaborated in related works
such as (Kwon et al., 2022). The WSD phase
links ambiguous medical terms to accurate, dis-
ambiguated definitions from medical concept dic-
tionaries. These definitions serve as the foundation
for generating lay definitions suitable for patient
understanding, especially when dictionary defini-
tions lack readability. In our study, the WSD phase
is implicitly managed during the general definition
retrieval stage using Scispacy and UMLS tools.

E Discussion on EAE Pipeline Efficacy

The primary objective of the EAE pipeline is to
validate the effectiveness of Scispacy + UMLS for
Word Sense Disambiguation (WSD), rather than
addressing quality issues in the expert-annotated
lay definitions. While quality checks and filtering
for (jargon, context, lay definition) do not necessi-
tate an LLM, they are essential for (jargon, context,
lay definition, general definition) due to the noise
introduced by Scispacy + UMLS tools. It is crucial
to note that this noise is outside the scope of this
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paper.
An important aspect that merits discussion is the

efficacy of the EAE pipeline design, particularly re-
garding the high number of data points categorized
as R-exp_bad or R-syn_bad in Table 5. Ideally, a
more efficient pipeline would achieve a higher num-
ber of R-exp_good data points, thereby reducing
the need for additional verification rounds. How-
ever, our current settings prioritize reducing false
positives, even if this results in an increased number
of false negatives. Strict AI verification is essen-
tial to mitigate false positives, which could lead to
patient misunderstandings if incorrect definitions
are generated. Given the large size of the original
README dataset, the harm of false negatives is
more acceptable.

Therefore, we have intentionally set a stricter
standard for AI during prompting (as shown in
Table 9). This approach may classify some good-
quality data as bad, but it ensures that any data
passing the Examiner stage is of high quality. This
is corroborated by the high human agreement rates
observed in Appendix F. Consequently, the final
small human verification step is manageable with-
out significantly increasing the workload.

The EAE pipeline and related prompts effec-
tively detect and filter (jargon, context, lay defini-
tion, general definition) with minimal human effort,
ensuring a sufficient quantity of valid data for sub-
sequent training. In scenarios where the dataset is
smaller or where more false positives are accept-
able, the sensitivity of the AI examiner may need
to be adjusted. Nevertheless, the three stages of the
E→A→E pipeline are crucial for maintaining data
quality in our task, as highlighted in Table 1, and
can be extended to other similar scenarios.

F Data Quality Checking and
Train/Eval/Test Split after EAE
Pipeline

After the end of the EAE, we use R-exp_good and
R-syn_good as high-quality data for our system.
The dataset was split into two categories: human
examination data (which will also be used as final
evaluation and test data since medical experts exam-
ine this split), and training data, where we ensure
the medical jargon in the human examination will
not appear in the training split. We sampled 500
medical jargon terms each from the R-exp_good
and R-syn_good datasets. Therefore the human
examination split consisted of 1000 unique terms,

each accompanied by general and lay definitions to
be rated based on two criteria:

1. Hard Correlation: Marked ‘Yes’ if the lay def-
inition closely rephrases or shares significant
wording with the general definition, implying
comprehensibility without advanced medical
knowledge.

2. Soft Correlation: Marked ‘Yes’ if the general
definition accurately represents the term but is
slightly contextually misaligned; marked ‘No’
if the definition is incorrect or overly verbose,
complicating the derivation of a lay definition.

Here is one example for Term ‘von Willebrand
disease’:

Expert Definition(lay definition): A bleeding
disorder. It affects the blood’s ability to clot

General definition: Hereditary or acquired co-
agulation disorder characterized by a qualitative
or quantitative deficiency of the von Willebrand
factor. The latter plays an important role in platelet
adhesion. Signs and symptoms include bruises,
nose bleeding, gum bleeding following a dental
procedure, heavy menstrual bleeding, and gastroin-
testinal bleeding.

Although the lay definition is not incorrect, it is
very wordy and complex and matches less to the lay
definition. We consider this soft correlated and not
hard correlated. A Hard Correlation automatically
implies a Soft Correlation.

Two medical students 18 help us finish this hu-
man examination. Our findings revealed that 88%
of R-exp_good and 100% of R-syn_good met the
Hard Correlation criteria. There is a 100% soft
Correlation criteria for both R-exp_good and R-
syn_good. After correcting individual invalid data
(e.g., those cases where Soft is not satisfied), we
used this human examination dataset as evaluation
and test data (in a 1:1 ratio).

G Factuality metrics: UMLS-F1

The assessment of factual accuracy in generated
lay definition leverages the UMLS concept over-
lap metric. The Unified Medical Language System
(UMLS), established by (Bodenreider, 2004), sig-
nificantly contributes to the biomedical domain’s
interoperability. It achieves this by amalgamating
and disseminating a comprehensive collection of
biomedical terminologies, classification systems,
and coding standards from many sources. By doing

18Both have hospital internship experience
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In this task, we ask for your expertise in generating the corresponding lay definition from the medical jargon. Mainly, we
provide the target medical jargon term. We need you to generate a lay definition for this jargon term.

Example:
jargon term: [TERM]
lay definition: [DEFINITION]

jargon term: [TERM]
lay definition:

Table 6: One shot prompt for experiment set-1.

so, UMLS aids in reconciling semantic variances
and representational disparities found across differ-
ent biomedical concept repositories.

For the identification and alignment of medical
named entities within texts to their corresponding
biomedical concepts in UMLS, we employed the
Scispacy library 19. Scispacy excels in identifying
and clarifying entities, thus facilitating the accu-
rate association of named entities found in lay def-
initions with the relevant UMLS concepts. This
capability is critical for evaluating the lay defini-
tions’ factual accuracy and is used by recent related
work (Adams et al., 2023).

The analytical process for lay definitions utilizes
metrics of precision and recall. Precision represents
the ratio of concepts present in both the generated
and reference lay definitions, serving as a measure
of the generated lay definition’s factual correctness.
In contrast, recall evaluates how well the informa-
tion in the generated lay definition matches the
intended content, reflecting the relevance of the
presented information.

To calculate these metrics, we consider the con-
cept sets from both the reference lay definition
(Cref ) and the generated lay definition (Cgen). The
formulas for recall and precision are as follows:

Recall =
|Cref ∩ Cgen|

|Cref |

Precision =
|Cref ∩ Cgen|

|Cgen|
.

The F1 score, derived from the above precision
and recall values, is reported to provide a balanced
measure of the generated lay definition’s accuracy
and relevance.

19We used the Scispacy en_core_sci_lg model.

H More Experimental Settings

We use the following base models: GPT-2 20 (Rad-
ford et al., 2019), DistilGPT2 21, BioGPT 22 (Luo
et al., 2022a), and Llama2 23 (Touvron et al., 2023)
in our experiments. We trained the base models
on the different README dataset variants with
Supervised Fine-tuning for 100000 steps (batch
size 8) 24. In all our evaluations, we used a beam
size of 4, no-repeat-ngram-size=2, and minimum
length and maximum length of sentences were set
as (10, 100). We used five different random seeds
to sample training data for all our experiments, and
the scores reported in the tables are the average of
these random seeds.

Here, we provide an example for jar-
gon2lay(J2L), jargon+context2lay(J+C2L),
jargon+gen2lay(J+G2L), and jar-
gon+context+gen2lay(J+C+G2L) for easier
understanding. Let’s assume we one data point in
README dataset with (jargon, EHR context, lay
def, general def) format:

• jargon: EGD

• lay def: [esophagogastroduodenoscopy] A
procedure that looks at the food pipe, stomach,
and the first part of the small bowel.

• EHR context: [ * * 11 - 22 * * ] EGD Grade
I varices - ablated [ * * 11 - 22 * * ] sigmoi-
doscopy friability , reythema , congest and
abnormal vasularity in a small 5 mm area of
distal rectum .

• general def: [’An endoscopic procedure that
visualizes the upper part of the gastrointestinal
tract up to the duodenum.’]

20https://huggingface.co/gpt2
21https://huggingface.co/distilgpt2
22https://huggingface.co/microsoft/biogpt
23https://huggingface.co/meta-llama/

Llama-2-7b-chat-hf
24We did all the experiments with 1 NVIDIA Tesla RTX

8000 GPU - 40 GB memory, with Adam optimizer – be-
tas=(0.9,0.999), epsilon=1e-08, learning rate=5e-04.
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The input of different settings J2L, J+C2L,
J+G2L, J+C+G2L can be found on Table 8.

I More Experimental Designs and Results

In Section 4, our experimental design focuses on
evaluating the quality of outputs generated by dif-
ferent systems. Here, “quality” is measured by two
main criteria: the overall similarity between the
system’s output and the ground truth lay definition
(e.g., ROUGE or METEOR), and the presence or
absence of factual inaccuracies in the generated lay
definition (UMLS-F1). In this appendix section, we
will focus more on readability. Specifically, we fol-
low the ReadCtrl (Tran et al., 2024) to explore how
the README dataset aids models in generating
outputs with more controllable readability. There-
fore, we conducted instruction-following experi-
ments with GPT-3.5 (few-shot), GPT-4 (few-shot),
Claude3-opus (few-shot), Llama2-chat (few-shot),
and Llama2-README-finetuning (few-shot). The
prompt used was: “Given an input jargon term and
general definition, please output a lay definition
with a readability score around target readability
[X].”
where [X] was replaced by FKGL 1-12. A good
instruction following should output lay definitions
with readability scores similar to the target FKGL.

[X] GPT-3.5 GPT-4 Claude3 Llama2 Ours
1 7.1410 6.0820 7.5364 10.4919 3.8800
2 6.7836 6.5907 7.2024 10.4365 4.5106
3 6.7412 7.4916 7.9721 10.4571 5.5185
4 7.5948 7.7300 8.4284 10.9103 6.1644
5 7.9722 8.1104 9.7814 10.6538 6.6462
6 8.7160 8.4608 10.9537 10.3240 6.9269
7 9.0761 8.9479 11.1111 10.3477 7.4499
8 10.0191 9.6390 13.3369 10.6044 8.2328
9 11.3319 11.0364 14.7280 10.5953 8.9487
10 12.4661 11.9267 16.5011 10.0969 9.5266
11 13.4467 12.4227 16.8663 10.6457 10.0348
12 13.2357 13.3720 17.2713 10.2263 10.5039

Table 7: Mean FKGL Scores for Each Model

As illustrated in Table 7 and Figure 7, our
investigation across a range of state-of-the-art
LLMs shows varying degrees of compliance with
readability-controlled instructions. Mainstream
models like GPT-3.5, GPT-4, and Claude3 are
upward but far from the perfect curve, indicat-
ing they can follow instructions but not precisely.
Llama2 does not show an upward trend, suggesting
it cannot follow instructions. In contrast, Llama2-
README closely follows the perfect curve, indi-
cating precise instruction-following capability.

Figure 7: ReadCtrl (Tran et al., 2024) instruction fol-
lowing ability using README dataset.

These results suggest that the README dataset
contains sufficiently diverse readability informa-
tion, making it highly useful for controllable text
generation, particularly in readability control. This
capability has significant potential for personalized
patient education and represents a promising future
research direction.
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jargon2lay(J2L):
In this task, we ask for your expertise in generating the corresponding lay definition from the medical jargon. Mainly, we
provide the target medical jargon term. We need you to generate a lay definition for this jargon term.
jargon term: EGD
lay definition:

jargon+context2lay(J+C2L):
In this task, we ask for your expertise in generating the corresponding lay definition from the medical jargon. Mainly, we
provide the target medical jargon term along with the contextual snippets in which they appear in the text. We need you to
generate a lay definition for this jargon term.
jargon term: EGD
context: [ * * 11 - 22 * * ] EGD Grade I varices - ablated [ * * 11 - 22 * * ] sigmoidoscopy friability , reythema , congest and
abnormal vasularity in a small 5 mm area of distal rectum .
lay definition:

jargon+gen2lay(J+G2L):
In this task, we ask for your expertise in generating the corresponding lay definition from the medical jargon. Mainly, we
provide the target medical jargon term. In addition, we also provide a definition from the dictionary for reference. We need
you to generate a lay definition for this jargon term.
jargon term: EGD
dictionary definition: [’An endoscopic procedure that visualizes the upper part of the gastrointestinal tract up to the
duodenum.’]
lay definition:

jargon+context+gen2lay(J+C+G2L):
In this task, we ask for your expertise in generating the corresponding lay definition from the medical jargon. Mainly, we
provide the target medical jargon term along with the contextual snippets in which they appear in the text. In addition, we also
provide a definition from the dictionary for reference. We need you to generate a lay definition for this jargon term.
jargon term: EGD
context: [ * * 11 - 22 * * ] EGD Grade I varices - ablated [ * * 11 - 22 * * ] sigmoidoscopy friability , reythema , congest and
abnormal vasularity in a small 5 mm area of distal rectum .
dictionary definition: [’An endoscopic procedure that visualizes the upper part of the gastrointestinal tract up to the
duodenum.’]
lay definition:

Table 8: The prompt of different settings J2L, J+C2L, J+G2L, J+C+G2L.
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README-EAE
inputs :README-exp
output :Final README dataset with

best general definitions and lay
definitions

Initialize :
examp = examinerpromptforgpt3;

augp =
augmenterpromptsforChatGPT ;

foreach
datapoint : README − exp do

if examp(datapoint) == yes then
R-exp_good.add(datapoint);

end
else

R-exp_bad.add(datapoint);
end

end
foreach datapoint : R− exp_bad do

temp = augp(datapoint);
R-syn.add(temp);
if examp(temp) == yes then

R-syn_good.add(temp);
end
else

R-syn_bad.add(temp);
end

end
return R-syn_bad;

Algorithm 1: Algorithm for Data Cleaning
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Prompt

Examiner - 1

model = "gpt-3.5-turbo(ChatGPT API)"
[This examiner prompt does not use context as discussed in section 3.2.1]

Decide whether the general definition is correct.

If we can generate the lay definition from the general definition then answer is yes.

term : mg
general definition : this is short for milligram which is 1/1000 of a gram usually considered a small amount.
lay definition : A tiny amount of something, usually a drug.
answer : yes

term : vitamin c
general definition : [`A nutrient that the body needs in small amounts to function and stay healthy. Vitamin C helps fight infections, heal wounds,

↪→ and keep tissues healthy. It is an antioxidant that helps prevent cell damage caused by free radicals (highly reactive chemicals).
↪→ Vitamin C is found in all fruits and vegetables, especially citrus fruits, strawberries, cantaloupe, green peppers, tomatoes, broccoli,
↪→ leafy greens, and potatoes. It is water-soluble (can dissolve in water) and must be taken in every day. Vitamin C is being studied in the
↪→ prevention and treatment of some types of cancer.']

lay definition : A nutrient needed by the body to form and maintain bones, blood vessels, and skin.
answer : yes

term : nodule
general definition : [`A small lump, swelling or collection of tissue.']
lay definition : A growth or lump that may be cancerous or not.
answer : yes

term : qd
general definition : [`Occurring or done each day.']
lay definition : Every day.
answer : yes

If the general definition contains many words from the term then answer is no.

term : prochlorperzine
general definition : [`prochlorperzine', ` ']
lay definition : A drug used to prevent or reduce nausea and vomiting.
answer : no

term : mg
general definition : [`mg']
lay definition : A tiny amount of something, usually a drug.
answer : no

If the lay definition can not be generated by the general definition then answer is no.

term : Virt - Vite
general definition : [`Virt', ` - ', `The determination of the amount of Vitamin E present in a sample.']
lay definition : A mix of vitamins. It provides vitamin B-6, vitamin B-12 and folic acid to people who do not have enough of these for good health.
answer : no

Augmenter

system_prompt = "your job is to generate a general definition of the term."
model="gpt-3.5-turbo(ChatGPT API)",
messages=[

{"role": "system", "content": system_prompt},
{"role": "user", "content": ""},
{"role": "user", "content": "term : incisional."},
{"role": "assistant", "content": "general definition : An intentional cut made to an individual's body with the intent of performing a

↪→ diagnostic or therapeutic intervention."},
{"role": "user", "content": "term : PO"},
{"role": "assistant", "content": "general definition : Of, or relating to, or affecting, or for use in the mouth.."},
{"role": "user", "content": prompt_t}

]

Examiner - 2

model = "gpt-3.5-turbo(ChatGPT API)"
exactly same as that of Examiner - 1

Table 9: All Examiner-Augmenter-Examine prompts.
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