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Abstract

Long-context capabilities are essential for large
language models (LLMs) to tackle complex
and long-input tasks. Despite numerous efforts
made to optimize LLMs for long contexts, chal-
lenges persist in robustly processing long in-
puts. In this paper, we introduce GraphReader,
a graph-based agent system designed to han-
dle long texts by structuring them into a graph
and employing an agent to explore this graph
autonomously. Upon receiving a question, the
agent first undertakes a step-by-step analysis
and devises a rational plan. It then invokes a
set of predefined functions to read node con-
tent and neighbors, facilitating a coarse-to-fine
exploration of the graph. Throughout the ex-
ploration, the agent continuously records new
insights and reflects on current circumstances
to optimize the process until it has gathered suf-
ficient information to generate an answer. Ex-
perimental results on the LV-Eval dataset reveal
that GraphReader, using a 4k context window,
consistently outperforms GPT-4-128k across
context lengths from 16k to 256k by a large
margin. Additionally, our approach demon-
strates superior performance on four challeng-
ing single-hop and multi-hop benchmarks.

1 Introduction

Large language models (LLMs) have made great
progress on natural language understanding and
generation (Zhao et al., 2023; Liu et al., 2024a;
Feng et al., 2022; Peng et al., 2020; Xv et al., 2022;
Peng et al., 2023b; Bu et al., 2021). However,
transformer-based LLMs still struggle in handling
long contexts due to the limitation of context win-
dow and memory usage.

Current techniques for solving the long-context
tasks of LLMs can be divided into two perspec-
tives: 1) Model-level, which includes finetuning
with modified positional embeddings (Chen et al.,
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Figure 1: Performance on LV-Eval at 5 context length
levels. GraphReader outperforms existing open-sourced
and closed-source models while demonstrating a scal-
able performance in very long contexts. In contrast,
other models exhibit a significant decrease in perfor-
mance as context length increases.

2023b; Zhu et al., 2023; Peng et al., 2023a; Ding
et al., 2024), and applying transformer variants
with modified attention mechanisms (Dai et al.,
2019; Munkhdalai et al., 2024; Gu and Dao, 2023);
2) Agent-level, i.e., employing retrieval-augmented
LLM or agent to process long contexts with a lim-
ited context window LLM (Nakano et al., 2021;
Lee et al., 2024).

However, model-level methods typically train
LLMs with target length texts, posing challenges
in constructing training datasets and incurring high
training costs (Zhu et al., 2023). Additionally, long-
context LLMs optimized with these methods tend
to overlook crucial details in long contexts, known
as “lost in the middle” (Liu et al., 2024b), limit-
ing their ability to address complex tasks, such as
multi-hop questions. Agent-level approaches trans-
form input text into a tree (Chen et al., 2023a) or
paginated pages (Lee et al., 2024), failing to cap-
ture multi-hop and long-range dependencies, thus
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limiting their effectiveness on very long contexts,
as shown in Figure 1.

To address these issues, we propose a graph-
based agent named GraphReader. As illustrated
in Figure 2, GraphReader first segments long texts
into discrete chunks, extracts essential informa-
tion, and compresses these into key elements and
atomic facts. These key elements and facts are
then used to construct a graph with nodes repre-
senting key elements and their associated atomic
facts. This graph structure effectively captures
long-range dependencies and multi-hop relation-
ships within long text. Subsequently, GraphReader
autonomously explores this graph using predefined
functions, guided by a step-by-step rational plan.
Based on a given question, the agent progressively
accesses information from coarse key elements and
atomic facts to detailed original text chunks, tak-
ing notes and reflecting until it gathers sufficient
information to generate an answer. In summary,
our main contributions are threefold:

• We introduce GraphReader, a novel agent sys-
tem designed to organize long texts into a graph
structure, leveraging predefined functions and
notebook to facilitate planning and reflection
during exploration.

• GraphReader establishes a scalable long-context
capability based on a 4k context window, demon-
strating performance that is comparable to or
surpasses GPT-4 with a 128k context window
across varying context lengths.

• Extensive experiments conducted on four
challenging benchmarks demonstrate that
GraphReader achieves superior performance in
complex single-hop and multi-hop QA tasks.

2 Related Work
Long-Context LLMs Recent efforts (Chen et al.,
2023b; Ding et al., 2024; Peng et al., 2023a) have
focused on positional interpolation (PI) to enhance
long-context capabilities. However, these methods
require training on full-length texts, leading to sig-
nificant increases in data and training costs (Chen
et al., 2023c; Fu et al., 2024; Bai et al., 2024b).
Thus, PoSE (Zhu et al., 2023) and SkipAlign (Wu
et al., 2024a) investigate data skip strategy, but tend
to neglect detailed information in long texts (Liu
et al., 2024b; Bai et al., 2024a; Wu et al., 2024b).
Furthermore, despite how extensively the context
window is expanded, it remains constrained by a

predefined fixed length. To address these limita-
tions, transformer variants with modified attention
mechanisms have been proposed (Dai et al., 2019;
Gu and Dao, 2023; Munkhdalai et al., 2024). How-
ever, these models are prone to losing earlier infor-
mation.

Retrieval Retrieval Augmented Generation
(RAG) leverages an extensive database of docu-
ments to extract task-related information that aids
in response generation. Many efforts investigate
various levels of retrieval granularity, including
tokens (Khandelwal et al., 2019), entities (Févry
et al., 2020; De Jong et al., 2021), and chunks (Liu,
2024; LangChain-team, 2024). Other approaches
have explored diverse retrieval methods, such
as BM25 (Rasooli and Tetreault, 2015) and
learning-based strategies (Khattab and Zaharia,
2020; Sachan et al., 2023; Sun et al., 2021).
Despite its capabilities, RAG faces challenges in
addressing complex questions due to difficulties in
developing robust decision-making mechanisms.
In contrast, we employ agents that use planning
and reflection to gather essential information,
effectively tackling complex problems.

Agent for Retrieval Recent work has increas-
ingly leveraged LLMs as agents to tackle complex
problems, utilizing their strong planning and reflec-
tion abilities (Yao et al., 2022; Park et al., 2023).
These abilities have been applied to complex tasks
such as function call (Li et al., 2023) and KGQA
(Sun et al., 2023; Luo et al., 2023). Agents are also
capable of retrieving unstructured information. For
example, WebGPT (Nakano et al., 2021) simulates
human actions to search on internet for specific
answers. Additionally, MemWalker (Chen et al.,
2023a) and PEARL (Sarthi et al., 2024) organize
documents into a tree structure, while ReadAgent
(Lee et al., 2024) condenses documents into a gist
memory directory. However, these approaches of-
ten struggle with multi-hop questions. KGP (Wang
et al., 2024) organizes documents into graphs, but
it primarily uses the agent to generate queries,
thereby not fully exploiting the agent’s capabili-
ties for planning and reflection.

3 Approach
3.1 Preliminary

GraphReader is built on a graph G = {V, E},
where each node vi ∈ V contains a key element ki
and a set of summarized content, namely atomic
facts Ai. In other words, vi = {ki,Ai}. And
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Figure 2: The illustration of our GraphReader approach, consisting of graph construction, graph exploration, and
answer reasoning.

each edge eij ∈ E represents the relationship be-
tween nodes vi and vj . This graph structure en-
ables GraphReader to capture global information
from the input document D within a limited context
window, allowing it to decide whether to explore
the current node in detail or jump to a neighbor-
ing node. During graph exploration, GraphReader
collects supporting facts and terminates the explo-
ration once sufficient information has been gath-
ered to answer the question. As illustrated in Fig-
ure 2, the entire process of GraphReader consists
of the following three phases: graph construction,
graph exploration, and answer reasoning. The
prompts utilized in these three stages are detailed in
Appendix A, and a detailed example of our process
can be found in Appendix I.

3.2 Graph Construction

To extract nodes from a document D within the
LLM’s context limit, we first split D into chunks
of maximum length L while preserving paragraph
structure. For each chunk, we prompt the LLM to
summarize it into atomic facts, the smallest indivis-
ible facts that simplify the original text. We also

prompt the LLM to extract key elements from each
atomic fact like essential nouns, verbs, and adjec-
tives. After processing all chunks, we normalize
the key elements as described by Lu et al. (2023) to
handle lexical noise and granularity issues, creating
a final set of key elements. We then construct each
node vi = (ki,Ai), where ki is a key element and
Ai is the set of atomic facts corresponding to ki.
Finally, we link two nodes vi and vj if key element
ki appears in Aj and vice versa.

3.3 Graph Exploration

3.3.1 Agent Initialization
Given a graph G and a question Q, our goal is to
design an agent that can autonomously explore the
graph using predefined functions. The agent begins
by maintaining a notebook to record supporting
facts, which are eventually used to derive the final
answer. Then the agent performs two key initializa-
tions: defining the rational plan and selecting the
initial node.

Rational Plan To tackle complex real-world
multi-hop questions, pre-planning the solution is
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crucial. The agent breaks down the original ques-
tion step-by-step, identifies the key information
needed, and forms a rational plan.

Initial Node Choosing strategic starting points
is essential for improving search efficiency. The
agent evaluates the key elements of all nodes V and
selects N initial nodes based on the question and
the rational plan.

3.3.2 Exploration
After selecting N initial nodes as starting points, an
agent explores each initial node by first exploring
atomic facts, then chunks of the node. Next, it
explores neighboring nodes, guided by the question
and rational plan. The agent continuously updates
the notebook with relevant information during the
exploration process.

Exploring Atomic Facts It is impractical to in-
clude all original text chunks related to a node
within the context window. Therefore, the agent
employs a coarse-to-fine strategy, progressing from
reading atomic facts to the original text, as all
atomic facts can fit within the context window.
Initially, all atomic facts associated with a node
are grouped by their corresponding chunks, la-
beled with the respective chunk IDs, and fed to
the agent. This allows the agent to capture an
overview of each chunk by reading all groups of
atomic facts. Meanwhile, the agent utilizes the
question, rational plan, and notes in its notebook to
reflect on the required clues and determine which
chunk is likely to contain useful information. Sub-
sequently, the agent is provided with two functions:
1) read_chunk, if the agent identifies certain chunks
as valuable for further reading, it will complete
the function parameters with the chunk IDs, i.e.,
read_chunk(List[ID]), and append these IDs to a
chunk queue. 2) stop_and_read_neighbor, con-
versely, if the agent deems that none of the chunks
are worth further reading, it will finish reading this
node and proceed to explore neighboring nodes.

Exploring Chunks When the chunk queue is
non-empty, it indicates that the agent has iden-
tified multiple text chunks of interest. We then
traverse the queue, reading each chunk. This
step is essential because atomic facts merely sum-
marize key information and provide brief clues,
whereas specific details are best obtained directly
from the original text chunks. While reading
the chunks, the agent will once again consider

the question and the plan, thinking about what
can be added to the current notebook. Any sup-
porting facts discovered will be recorded in the
notebook. Depending on the updated notebook,
the agent will then select one of the following
four functions: 1) search_more, if supporting fact
is insufficient, the agent will continue exploring
chunks in the queue; 2) read_previous_chunk and
3)read_subsequent_chunk, due to truncation issues,
adjacent chunks might contain relevant and useful
information, the agent may insert these IDs to the
queue; 4) termination, if sufficient information has
been gathered for answering the question, the agent
will finish exploration.

Exploring Neighbors Once the atomic facts and
chunk queue of the current node have been fully
processed, it indicates that this node has been thor-
oughly explored, and the agent needs to access the
next node. Taking into account the question, ra-
tional plan, and the content of the notebook, the
agent checks all neighboring nodes, i.e., key el-
ements, and performs one of two functions: 1)
read_neighbor_node, the agent selects a neighbor-
ing node that might be helpful in answering the
question and re-enters the process of exploring
atomic facts and chunks; 2) termination, the agent
determines that none of the neighboring nodes con-
tain useful information, it finish the exploration.

3.4 Answer Reasoning
After N agents have independently gathered in-
formation and stopped their exploration, we will
compile all notes from each agent for reasoning
and generating the final answer. Employing Chain-
of-Thought (Wei et al., 2022), the LLM first an-
alyzes each note by considering complementary
information from other memories and using a ma-
jority voting strategy to resolve any inconsistencies.
Ultimately, the LLM will consider all the available
information to generate the final answer.

4 Experiments

4.1 Experimental Settings
Evaluation Benchmarks We conduct experi-
ments on two types of long-context QA bench-
marks, including multi-hop long-context QA,
i.e., HotpotQA (Yang et al., 2018), 2WikiMulti-
hopQA (Ho et al., 2020), MuSiQue (Trivedi et al.,
2022), and a single-hop long-context QA bench-
mark, i.e., NarrativeQA (Kociský et al., 2018) from
LongBench (Bai et al., 2023). Additionally, we
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also incorporate HotpotWikiQA-mixup from LV-
Eval (Yuan et al., 2024), a multi-hop benchmark
that features five levels of text length: 16k, 32k,
64k, 128k, and 256k. Table 1 presents the statistics
about these benchmarks, and detailed information
is provided in Appendix C.

Evaluation Metrics We employ several auto-
matic evaluation metrics, i.e., F1 score, Exact
Match (EM) score, and an optimized F1* score, as
introduced by LV-Eval (Yuan et al., 2024). Specif-
ically, F1* first computes the recall of golden an-
swer keywords and only calculates the F1 score if
it exceeds a certain threshold. Otherwise, the score
defaults to zero. Despite the cost-effectiveness of
automatic metrics, their accuracy may be affected
by the response format. Hence, we implement
LLM Raters for answer correctness evaluation us-
ing an LLM, denoted as LLM-Rating-1 (LR-1) and
LLM-Rating-1 (LR-2), following ReadAgent (Lee
et al., 2024). Details on the evaluation metrics can
be found in Appendix B.

Baseline Methods We compare our approach
with the following baselines: retrieval augmented
generation (RAG), long-context LLM, and agent-
based methods. (1) RAG: We choose Okapi
BM25 (Robertson and Zaragoza, 2009) or Ope-
nAI API embedding model Ada-002 to retrieve
the chunks most relevant to the question and em-
ploy GPT-4-128k (gpt-4-1106-preview) to read
retrieved chunks and answer the question. In ad-
dition to traditional RAG methods, we also com-
pared GraphRAG (Edge et al., 2024) and Lon-
gRAG (Jiang et al., 2024), which utilize LLM to
enhance RAG ability. (2) Long-context LLM: We
select GPT-4-128k for directly reading full text
when the text content fits within the input window,
or for segmenting the text into chunks for sequen-
tial reading. (3) Agent-based Method: We select
ReadAgent (Lee et al., 2024) and PEARL (Sun
et al., 2024), which employ an agent-based system
for the execution of retrieval and reading processes
for long-context QA. The detailed description of
these methods is provided in Appendix D.

Implementation Details In our experiments, we
employ GPT-4-128k for both our method and base-
line approaches, setting the temperature to 0.2. For
GraphReader, the input window size is configured
to 4k tokens unless stated otherwise. We limit the

https://platform.openai.com/docs/guides/embeddings/
embedding-models

Task Dataset Avg #Tokens Max #Tokens #Samples

Multi-hop QA

HotpotQA 9.4k 15.9k 300
2WikiMultihopQA 8.8k 15.9k 300
MuSiQue 15.5k 16.0k 200
HotpotWikiQA-mixup 142.4k 370.8k 250

Single-hop QA NarrativeQA 29.7k 63.7k 200

Table 1: The statistics of benchmarks employed in our
evaluation. The token number is calculated using the
GPT-4 tokenizer from the TikToken. #Samples denote
the total number of benchmarks.

maximum chunk size to 2k tokens, initiate searches
from 5 initial nodes, and impose a function call
limit of 10 for each search path.

4.2 Main Results

The results of three types of methods on four multi-
hop long-context benchmarks and one single-hop
long-context benchmark are shown in Table 2 and
Table 3. Based on the results, we have the following
findings:

Results of RAG methods As the results shown
in Table 2, RAG methods based on BM25 and Ada-
002 exhibit the worst performance in comparison
to long-context LLM and agent-based methods. A
possible reason is that text retrieval has difficulty
recalling all chunks that contain the supporting
facts for answering the input question. Although
increasing the number of recalled chunks could im-
prove the performance of text retrieval, the context
window will limit the effectiveness of these RAG
methods.

Results of Long-Context LLMs From the re-
sults shown in Table 2, we can see that employ-
ing GPT-4-128k to directly answer the question
with long contexts significantly outperforms RAG
methods and even outperforms ReadAgent on three
long-context benchmarks. This is because of the
superior performance of GPT-4-128k in processing
long texts and executing multi-hop reasoning tasks.
Additionally, the lengths of these four benchmarks
are significantly shorter than the 128k context win-
dow, thereby mitigating the impact of “lost in the
middle” on the model’s performance.

Results of Agent-based Methods By comparing
our approach with all baselines in Table 2, it is
obvious that our approach consistently performs
better than them on four long-context benchmarks
and demonstrates superior performance in multi-
hop long-context tasks. In our approach, benefiting

https://github.com/openai/tiktoken
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Method
Input HotpotQA 2WikiMultihopQA MuSiQue NarrativeQA

Window LR-1 LR-2 EM F1 LR-1 LR-2 EM F1 LR-1 LR-2 EM F1 LR-1 LR-2 EM F1

BM25 (top-1) 4k 57.7 63.0 33.7 43.8 36.0 39.0 25.0 30.4 33.0 36.5 19.0 23.9 29.5 34.5 4.0 11.3
BM25 (top-3) 4k 74.7 78.3 45.7 58.5 59.7 62.0 42.3 51.9 43.5 49.5 25.0 31.1 44.5 52.5 7.0 20.5

Ada-002 (top-1) 4k 63.0 70.7 40.0 53.2 57.0 59.3 41.0 49.4 34.5 37.0 20.0 26.6 37.5 46.5 5.0 15.5
Ada-002 (top-3) 4k 72.0 77.3 45.0 58.1 65.7 66.7 44.7 55.3 40.0 45.5 24.5 32.1 45.5 53.0 7.5 19.5

GPT-4-128k 128k 83.3 88.3 53.0 68.4 77.3 80.0 58.7 70.0 52.0 59.5 33.5 42.7 63.5 77.0 11.5 29.4
GPT-4-128k (chunk) 4k 71.3 74.7 45.7 59.5 59.3 62.3 40.7 50.5 41.0 43.0 23.0 32.1 58.0 69.5 9.50 25.5
GPT-4-128k (chunk w/ notes) 4k 72.3 76.7 45.7 59.5 65.7 68.7 46.3 56.6 39.5 43.0 25.0 32.5 56.5 65.0 8.5 24.3

ReadAgent 128k 72.3 78.7 48.0 62.0 79.0 81.0 52.7 63.7 54.5 61.0 35.0 45.1 63.0 75.5 5.0 18.9
Pearl 128k 74.7 79.0 46.3 60.4 70.0 71.0 46.0 57.6 45.0 51.5 23.0 33.3 43.5 48.0 7.5 16.2
LongRAG 128k 75.7 78.3 48.7 63.9 73.0 75.0 51.3 63.5 49.0 54.5 31.0 40.3 60.5 69.0 15.0 27.0
GraphRAG 128k 73.7 80.3 49.7 59.7 67.7 71.3 42.3 53.9 46.5 56.0 21.5 31.2 52.0 66.5 15.0 23.1
GraphReader 4k 84.3 89.7 55.0 70.0 83.7 87.0 59.3 70.1 59.0 63.5 38.0 47.4 65.0 80.0 15.5 29.8

Golden 4k 92.3 93.7 57.0 73.8 88.3 89.7 63.0 73.4 66.0 69.0 45.0 56.0 - - - -

Table 2: Performance (%) comparison of different baselines on datasets from LongBench. The best performance
and the second-best performance are denoted in bold and underlined fonts, respectively. “Golden” denotes the
settings in which we add question and its supporting facts to LLM directly.

Method
Input

HotpotWikiQA-mixup

Window
16k 32k 64k 128k 256k

LR-1 LR-2 F1* LR-1 LR-2 F1* LR-1 LR-2 F1* LR-1 LR-2 F1* LR-1 LR-2 F1*

BM25 (top-1) 4k 10.0 16.0 12.0 16.0 18.0 11.9 6.0 8.0 8.5 10.0 8.0 7.0 14.0 20.0 5.9
BM25 (top-3) 4k 16.0 22.0 13.9 18.0 28.0 13.3 16.0 18.0 11.8 12.0 16.0 11.8 12.0 22.0 9.3

Ada-002 (top-1) 4k 10.0 12.0 14.5 14.0 18.0 11.3 10.0 12.0 12.5 12.0 14.0 9.4 8.0 8.0 7.0
Ada-002 (top-3) 4k 24.0 28.0 21.3 20.0 30.0 19.8 14.0 20.0 12.9 16.0 20.0 12.0 14.0 18.0 10.8

GPT-4-128k 128k 38.0 38.0 35.7 26.0 30.0 26.0 22.0 24.0 20.6 16.0 16.0 14.6 14.0 16.0 10.3
GPT-4-128k (chunk) 4k 18.0 22.0 24.6 16.0 20.0 17.7 20.0 24.0 17.0 20.0 24.0 14.7 28.0 30.0 10.7
GPT-4-128k (chunk w/ notes) 4k 22.0 32.0 24.2 26.0 30.0 21.3 28.0 32.0 22.0 24.0 26.0 17.4 26.0 26.0 14.8

ReadAgent 128k 24.0 26.0 29.2 20.0 22.0 16.9 24.0 30.0 15.3 14.0 18.0 13.6 20.0 22.0 10.4
GraphReader 4k 42.0 42.0 38.2 32.0 38.0 36.4 30.0 36.0 32.9 28.0 34.0 30.6 30.0 38.0 33.0

Table 3: Performance (%) of different baselines on datasets from LV-Eval, where F1* donates LV-Eval’s optimized
F1. The best performance and the second-best performance are denoted in bold and underlined fonts, respectively.
We truncate to keep the longest possible initial fragment while preserving paragraph structure, in contexts that
exceed the input window (128k and 256k) for GPT-4-128k.

from the graph’s ability to capture the relationships
between detailed information, our method can iden-
tify crucial information and search for the support-
ing facts for the input question efficiently. This
strategy significantly boosts the agent’s capability
in multi-hop reasoning and capturing long-range
dependencies of key information in a long context.
Moreover, the results in Table 2 show that ReadA-
gent, with a 128k context window setup, under-
performs GraphReader with a 4k context window
and even performs worse than GPT-4-128k full-text
reading. We attribute this to ReadAgent’s strategy
of excessively compressing the original texts into
gist memories, and feeding all mixed memories to
the model for page number selection. Compared to
our GraphReader, the strategy of ReadAgent may
restrict the agent’s ability to identify specific de-
tails and capture intrinsic connections among key
elements in a long context, consequently affect-

ing its overall performance. This further indicates
that our approach can more efficiently unlock the
capabilities of constrained context window LLMs
in processing long context. Additionally, we ob-
serve that the performance of our method closely
matches that achieved by directly supplying sup-
porting facts to the LLM (i.e., Golden in Table 2).
This is because our method incorporates not only
pre-planning, reflection, and various actions but
also the usage of a graph containing key informa-
tion, facilitating the agent to search for the correct
supporting facts.

For additional results on benchmarks relevant to
real-world scenarios, please refer to the appendix E.

Evaluation on Extremely Long Context Tasks
As shown in previous experiments, it demonstrates
the effectiveness of employing a limited context
window LLM for long-context tasks with our
GraphReader. Here, we would like to study the im-
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Dataset Method Results(%)
LR-1 LR-2 F1

HotpotQA
GraphReader 84.3 89.7 70.0

w/o Rational Plan 81.7 87.7 63.8
w/o Node Selection 66.0 71.7 54.1

2WikiMultihopQA
GraphReader 83.7 87.0 70.1

w/o Rational Plan 81.3 86.0 65.4
w/o Node Selection 65.3 68.7 49.7

MuSiQue
GraphReader 59.0 63.5 47.4

w/o Rational Plan 56.0 61.0 42.4
w/o Node Selection 35.0 38.5 25.2

NarrativeQA
GraphReader 65.0 80.0 29.8

w/o Rational Plan 63.0 78.5 26.6
w/o Node Selection 53.0 65.5 24.0

Table 4: The results of our ablation study. “w/o Rational
Plan” refers to removing the rational plan in the agent
initialization stage, and “w/o Node Selection” denotes
applying the random selection of initial nodes and neigh-
bor nodes in graph exploration.

pact of extremely long context on our GraphReader.
As shown in Table 3, compared with all baselines,
our GraphReader not only consistently outperforms
these methods across text lengths ranging from 16k
to 256k tokens but also exhibits robustness with
the expansion of context length. It indicates that
our method is still effective in handling extremely
long texts by graph exploration with limited context
window LLMs. With the increase in the length of
the input context, the performance of GPT-4-128k
full-text reading degrades gradually. As a com-
parison, our method achieves a performance gain
of 10.53% relatively on LR-1 over GPT-4-128k
full-text reading under 16k context length. With
the context length increasing to 128k, our method
achieves a performance gain of 75.00% relatively
over GPT-4-128k. This can be attributed to the fact
that as the context length increases, the impact of
the “lost in the middle” effect on GPT-4-128k be-
comes progressively more severe. Secondly, we ob-
serve that ReadAgent significantly underperforms
our method in handling extremely long contexts.
This is because the lack of detailed information
about the content of each page can make page selec-
tion very difficult for ReadAgent, especially when
dealing with extremely long contexts. This further
demonstrates that our method can effectively ad-
dress the challenges of processing extremely long
context with limited context window LLMs by ex-
ploring graphs containing fine-grained information.

4.3 Ablation study

The Effect of Rational Plan In the graph explo-
ration stage, we introduce a rational plan to help

the agent analyze complex input questions step by
step, guiding the agent in exploring the graph. To
verify the effectiveness of the rational plan, we re-
moved it during agent initialization and conducted
experiments on four long-context QA benchmarks.
Table 4 shows that the rational plan is effective in
guiding the agent in node selection and exploration
on the graph.

The Effect of Node Selection We conduct ran-
domly selecting initial nodes and neighbor nodes
experiments to demonstrate the necessity of our sys-
tem in selecting which nodes to visit based on rea-
soning about the required information. As shown
in Table 4, random selection results in a significant
performance drop, with an average decline of 18%.
This demonstrates that GraphReader carefully con-
siders node selection, leading to more reasonable
and effective exploration.

Impact of the Number of Initial Nodes We con-
duct experiments with different initial node counts
on multi-hop and single-hop QA datasets to as-
sess the effect of the number of initial nodes on
GraphReader’s performance. The results are shown
in Figure 3. Increasing the number of nodes im-
proves performance up to a certain point, with opti-
mal performance at 5 initial nodes, which we set as
the default. However, beyond this threshold, perfor-
mance declines, especially in single-hop scenarios,
likely due to increased noise from too many initial
nodes.

Impact of the Chunk Size We investigate the
impact of chunk size L on GraphReader’s perfor-
mance. As shown in Figure 4, the best performance
is achieved with L = 2k. When L exceeds a cer-
tain threshold, performance declines because larger
chunks cause the model to overlook essential de-
tails. Conversely, smaller chunks lead to more
semantic truncation, hindering comprehension and
accuracy in extracting atomic facts. Thus, we chose
L = 2k as the default chunk size.

4.4 Further Analysis

Cost Analysis To assess the inference cost of our
approach, we compare the average token consump-
tion of ReadAgent and GraphReader for individ-
ual questions. As shown in Table 5, GraphReader
uses only 1.08 times more tokens than ReadAgent
(52.8k / 48.7k), yet achieves more than double the
performance improvement, demonstrating its supe-
riority. More importantly, our method has signifi-
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Figure 3: Performance of GraphReader with different
initial node numbers on 2WikiMultihopQA and Narra-
tiveQA. Results show the robustness of GraphReader
towards different initial node numbers.
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Figure 4: The impact of chunk size L of GraphReader
on the 256k length level of HotpotWikiQA-mixup.

Method Avg. Ctx. #Tokens Avg. Cost #Tokens

ReadAgent 358.3k 48.7k
GraphReader 358.3k 52.8k

Table 5: Comparison of token consumption per
question between ReadAgent and GraphReader on
HotpotWikiQA-mixup-256k, where “Avg. Ctx. #To-
kens” refers to the average token number of the original
dataset. The “Avg. Cost #Tokens” comprise both input
tokens and output tokens during exploration.

cant advantages in single-document multiple-query
scenarios, where only one graph needs to be con-
structed. Subsequent QA can be performed on this
graph, thereby reducing the overall token consump-
tion.

Recall Rate Analysis To evaluate our method’s
advantages in key information recall, we utilize
GPT-4 to assess the recall of supporting facts on
the HotpotWikiQA-mixup dataset. As shown in
Figure 5, our model consistently outperforms other
baseline methods, regardless of the input length.
As context length increases from 16k to 256k, re-
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Figure 5: Recall of supporting facts by different meth-
ods on HotpotWikiQA-mixup.

Source Recall(%)
SF-wise Sample-wise

Atomic Facts 76.4 64.7
Final Notebook 90.5 85.3

Table 6: GraphReader’s recall performance at different
granularities on HotpotQA. “SF-wise” refers to the gran-
ularity of supporting facts, and “Sample-wise” refers to
the granularity of sample evaluation.

call of supporting facts declines across all meth-
ods. However, GraphReader maintains around 60%
recall at 256k context length, in contrast to the
significant degradation in ReadAgent. This demon-
strates GraphReader’s scalability and effectiveness
in processing long contexts. Further details and
evaluation prompts can be found in Appendix F.

To further demonstrate the recall rate of
GraphReader at different granularities, we calcu-
late the recall rate of Supporting Facts and Sample
granularity respectively using the same method,
detailed in the Appendix F. The granularity of sup-
porting facts refers to the recall rate of all support-
ing facts across the entire dataset. As for sample
granularity, a sample is considered to be recalled
only if all of its supporting facts are recalled. As
shown in the Tabel 6, the recall for the final note-
book is slightly higher than the recall of atomic
facts, which indicates that our method is capable
of extracting more valid information from chunks
during the exploration, indirectly reflecting its in-
telligence and effectiveness in exploration.
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5 Conclusion

This paper introduces GraphReader, a graph-based
agent designed to enhance the long-context capa-
bilities of large language models. GraphReader
organizes long texts into graph structures and em-
ploys an autonomous agent to explore the graph,
successfully establishing long-range dependencies
within a relatively small 4k context window. Exper-
iments demonstrate that GraphReader outperforms
GPT-4 with a 128k input length across various
long-context single-hop and multi-hop question-
answering benchmarks.

6 Limitations

Firstly, GraphReader is constructed using an off-
the-shelf GPT-4 API. Since it is close-sourced,
there may be potential restrictions such as limits on
Queries Per Second (QPS) and regional constraints.
Therefore, future work will involve collecting data,
training models, and making them open-source to
contribute to the wider community. Secondly, the
efficiency of the agent depends on its planning and
reasoning capabilities. Future research will also
explore enhancements of these features to improve
the effectiveness of our method.
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A GraphReader Prompt

Figure 6 illustrates the prompt used for Graph Con-
struction. Figures 7 to 11 present the prompts em-
ployed for Graph Exploration. Figure 12 shows the
prompt used for Answer Reasoning.

B LLM Rater Evaluation Details

Given a question, a golden answer, and an answer
to be evaluated, we utilize an LLM to assess the
accuracy of the latter based on the question and
correct answer. This involves two scores: LLM-
Rating-1 (LR-1) and LLM-Rating-2 (LR-2), where
LR-1 represents a strict scoring criterion, and LR-2
is a more lenient one. Following the approach of
ReadAgent, if either LLM Rater deems an answer
correct, it is considered as such. If the strict scorer
finds an answer incorrect while the lenient scorer
deems it partially correct, we classify the answer as
partially correct; otherwise, it is adjudged incorrect.
The prompts used for evaluation are presented in
Figure 13 and Figure 14 respectively.

For the evaluation, we utilize GPT-4-128k as the
LLM Rater, with the temperature set to 0.1.

C Dataset

Multi-hop QA Datasets HotpotQA features a
collection of 2-hop questions directly authored by
native speakers, based on two interconnected para-
graphs. 2WikiMultihopQA is comprised of com-
plex questions up to 5-hops in length, constructed
through carefully designed templates to prevent the
possibility of shortcut solutions.

In the MuSiQue dataset, questions are intricately
crafted starting from straightforward scenarios that
require up to 4-hops reasoning. Annotators sub-
sequently rephrase these with a dual purpose: to
avoid shortcut answers and to maintain a natural
linguistic quality. Each question within the orig-
inal datasets is complemented by 2-4 supporting
paragraphs, delivering evidence for simple one-step
reasoning, alongside multiple paragraphs designed
to serve as decoys.

HotpotWikiQA-mixup originates from LV-Eval
and employs a construction method known as a
mixup. This method randomly blends support doc-
uments with various distracting documents to gen-
erate five different context lengths for a given QA
pair, including 16k, 32k, 64k, 128k, and 256k. Due
to the excessive length of this dataset, we select
the first 50 data entries from each different context
length for experimentation to control costs.

Single-hop QA Datasets NarrativeQA is a
dataset designed to test comprehension abilities
for long documents, primarily sourced from movie
scripts. As a single-hop QA dataset, the informa-
tion required to answer its questions appears at a
single location within the text.

Real-World Datasets QuALITY (Pang et al.,
2022) is a long-text multiple-choice question-
answering dataset, with questions crafted by con-
tributors who are familiar with the complete pas-
sages, making it more representative of real-world
QA scenarios. We handle it as straightforward QA
problems. Natural Questions (Kwiatkowski et al.,
2019) includes real anonymous aggregated queries
from Google along with corresponding Wikipedia
pages, providing another excellent resource for au-
thentic long-text QA situations.

D Baseline Methods
Full or Chunked Text Content For texts with
fewer tokens than the LLM’s input window, we
can input the text directly into the LLM to obtain
an answer. We refer to this method as Full Text
Read, with the specific prompt provided in Figure
15. However, this approach is not applicable to
texts exceeding the token limit of the LLM’s input
window. In such cases, Lee et al. truncated the
text to fit it into the LLM, but this method obvi-
ously results in information loss. We propose a
method that does not lose information, offering a
better comparison. This method involves dividing
the entire text into chunks (using the same chunk-
ing method as GraphReader) and then having the
LLM read these chunks sequentially according to
the text order, thus enabling the handling of overly
long texts with a limited input window. During
the reading process, there are two main strategies:
Chunk Read and Chunk Read with Notes. In the
Chunk Read approach, the LLM only sees the cur-
rent chunk during each reading, which is suitable
for single-hop QA tasks. In the Chunk Read with
Notes approach, the LLM can summarize useful
information from the current chunk and provide it
to the subsequent reading process, which is suitable
for multi-hop QA tasks.

In the experiment, we divide the chunks in the
same way as GraphReader, and the maximum
length of the chunk is set to 2k. The specific
prompts are in Figure 16 and 17 respectively.

Retrieval-Augmented Generation (RAG) RAG
is a commonly used approach for addressing long-
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text problems. In this work, we compare the tra-
ditional RAG method, including retrieval methods
based on Okapi BM25 (Robertson and Zaragoza,
2009) and the OpenAI API embedding model
(text-embedding-ada-002). Specifically, we first
split the text into chunks in the same method as
GraphReader, then use the aforementioned meth-
ods to calculate the relevance scores between the
question and these chunks, and finally input the top-
n chunks with the highest relevance scores together
with the question for the LLM to answer. To ensure
a fair comparison, we control the input window to
4k in the experiments. Specifically, in order to fill
the input window as much as possible, we set the
maximum length of the chunk to 38k when select-
ing the top-1 chunk for answering; when opting
for the top-3 chunks, we set the maximum length
of each chunk to 1k. The specific prompt can be
found in Figure 18.

In addition to traditional RAG methods, we also
compared GraphRAG (Edge et al., 2024) and Lon-
gRAG (Jiang et al., 2024). GraphRAG utilizes
LLMs to construct a graph-based text index in two
distinct stages. The first stage involves extracting
an entity knowledge graph from the source docu-
ments, while the second stage focuses on gener-
ating summaries for groups of entities. When a
question is posed, each summary provides partial
information, which is then combined into the fi-
nal answer for the user. LongRAG introduces a
“long retriever” and a “long reader”, allowing the
entire corpus to be processed into larger-sized units,
which reduces the number of units needed during
retrieval and alleviates the burden on the retriever.

Agent Style Methods We also compared our
method with similar approaches for handling long
texts with small input windows, such as ReadA-
gent (Lee et al., 2024). ReadAgent is a method
that segments long texts and generates gist mem-
ories, which are then looked up to search for in-
formation in order to answer questions. In the
experiments, for datasets from LongBench, we
adopted the default hyperparameters declared in the
ReadAgent paper, specifically a max_words of 600
and min_words of 280 when splitting pages. For
HotpotWikiQA-mixup from LV-Eval, we scaled
these two hyperparameters using the same ap-
proach as in the ReadAgent paper. Specifically,
for datasets with lengths of 256k and 128k, we
used max_words=10000 and min_words=2000; for
those with lengths of 64k, 32k and 16k, we used

max_words=5000 and min_words=1000. At the
same time, we employed the ReadAgent-S method,
which ReadAgent claims to be the most effective,
reading the pages in sequence. Additionally, we
allowed reading up to 5 pages (Look up 1-5 pages).

We also compared PEARL (Sun et al., 2024), a
prompting framework to enhance reasoning capa-
bilities for long documents. PEARL is structured
into three stages: action mining, plan formulation,
and plan execution. It decomposes complex ques-
tions into actionable steps and utilizes LLMs for
zero-shot or few-shot prompting execution.

E Additional Experimental Results

Method
Input QuALITY Natural Question

Window LR-1 LR-2 EM F1 LR-1 LR-2 EM F1

GPT-4-128k 128k 45.7 60.3 2.7 9.9 75.0 81.0 41.0 57.2
Pearl 128k 52.3 72.7 3.0 9.6 74.0 79.0 38.0 56.8
LongRAG 128k 52.3 67.0 3.7 11.6 77.7 83.0 47.3 60.0
GraphRAG 128k 46.0 68.7 2.0 6.1 67.0 77.0 47.0 53.2
GraphReader 4k 57.3 82.3 4.3 14.3 79.0 84.7 48.3 62.1

Table 7: Performance (%) comparison of different base-
lines on two additional datasets. The best performance
and the second-best performance are denoted in bold
and underlined fonts, respectively.

Table 7 presents additional experimental results
for two datasets, QuALITY and Natural Questions,
both of which are highly relevant to real-world
question-answering scenarios. The results indicate
that our method significantly outperforms other
baseline models in real-world scenarios.

F Evaluation Recall for Supporting Facts

We evaluate the recall rate of supporting facts for
different methods using GPT-4-128k, with the tem-
perature set to 0.1. Figure 19 shows the specific
evaluation prompt.

For GraphReader, we evaluate the memory
recorded in the final notebook. For ReadAgent,
the evaluation focused on the final text segments
reviewed. In the case of Chunk Read with Notes,
we evaluate both the memory and the chunk read at
the time of the final answer; for the RAG methods,
we assess the retrieved chunks.

G The Analysis of Function Calls

To verify the rationality and utility of agent actions
under various circumstances of GraphReader, we
made statistics on its function calls at each stage
across two datasets. From the statistical results in
Table 8, it can be observed that each piece of data
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will perform an average of 3 to 4 actions, corre-
sponding to the average number of function calls
in the table. This indicates the effectiveness of
the graph we constructed, with GraphReader being
able to swiftly locate key information while mini-
mizing resource usage. Furthermore, each action
has a certain probability of being chosen, justifying
the rationality of the action set. Among them, the
most commonly used action on multi-hop QA tasks
is to read neighbor nodes, and the most common
action on single-hop QA tasks is to read chunks.
This difference is caused by the fact that multi-hop
questions need to gather information contained by
multiple nodes to answer questions, while single-
hop data sets often require only one atomic fact.

H Statistics of Graph
The statistics of graphs from various datasets are
presented in Table 9. For longer texts, there tends
to be a higher average number of nodes and atomic
facts. After normalization, each node has an aver-
age of about 10 neighbor nodes. This is because
the number of key elements occurring simultane-
ously in each atomic fact is generally of this mag-
nitude. Furthermore, the aggregation of similar
nodes caused by normalization results in a slight
increase in the number of neighboring nodes.

On average, each node is associated with about
2 atomic facts, and the average number of atomic
facts in the node with the most atomic facts in
each graph ranges from 15 to 50, indicating a rela-
tively even distribution of atomic facts. The max-
imum average number of atomic facts is found
in NarrativeQA, a possible explanation being that
NarrativeQA is mainly derived from movie scripts,
where characters, such as the protagonist, appear
frequently throughout the text, thus including a
larger number of atomic facts.

I GraphReader Example
This section presents a case study of the
GraphReader workflow. Figure 20 displays the
posed question alongside the answer and pertinent
supporting passages. Subsequently, Figure 21 de-
lineates the methodology for constructing the graph.
Figure 22 further elaborates on the initialization of
a pre-planned rational path by GraphReader and
the selection of initial nodes. Figure 23 illustrates
the sequence of function invocations during the ex-
ploration phase. Finally, Figure 24 showcases how
GraphReader formulates the answer by leveraging
the insights obtained through exploration.
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Dataset #Avg. Function Call Stage Stage Ratio(%) Function Call Ratio(%)

HotpotQA 3.0

Exploring Atomic Facts 42.0
read_chunk 46.5

stop_and_read_neighbor 53.5

Exploring Chunks 31.9

search_more 12.1
read_previous_chunk 21.1

read_subsequent_chunk 22.9
termination 43.9

Exploring Neighbors 26.1
read_neighbor_node 35.5

termination 65.5

2WikiMultihopQA 3.2

Exploring Atomic Facts 40.4
read_chunk 48.6

stop_and_read_neighbor 51.4

Exploring Chunks 34.5

search_more 14.5
read_previous_chunk 25.1

read_subsequent_chunk 23.3
termination 37.1

Exploring Neighbors 25.1
read_neighbor_node 37.3

termination 62.7

MuSiQue 3.5

Exploring Atomic Facts 40.0
read_chunk 41.3

stop_and_read_neighbor 58.7

Exploring Chunks 31.2

search_more 19.1
read_previous_chunk 26.6

read_subsequent_chunk 25.7
termination 28.6

Exploring Neighbors 28.8
read_neighbor_node 40.1

termination 59.9

NarrativeQA 3.9

Exploring Atomic Facts 32.5
read_chunk 64.5

stop_and_read_neighbor 35.5

Exploring Chunks 54.3

search_more 4.1
read_previous_chunk 35.3

read_subsequent_chunk 32.6
termination 28.0

Exploring Neighbors 13.2
read_neighbor_node 51.4

termination 48.6

Table 8: Statistics of function calls on MuSiQue and NarrativeQA.

dataset
Sample Dimension Sample & Node Dimension

node num atomic facts num neighbor node num atomic facts num
avg. max avg. max avg. avg. avg. max avg. avg. avg. max

HotpotQA 583.8 1945.0 244.0 645.0 10.1 263.1 2.1 17.8
2WikiMultihopQA 515.8 1691.0 217.7 545.0 9.2 215.7 2.1 17.0
MusiQue 1029.4 2142.0 419.9 586.0 9.3 253.4 2.1 15.6
NarrativeQA 966.0 3110.0 515.5 1296.0 10.3 652.6 2.3 50.0

HotpotWikiQA-mixup

16k 1741.6 3822.0 749.7 1043.0 9.4 231.0 2.2 17.1
32k 2827.3 5086.0 1257.4 1694.0 9.8 263.3 2.2 29.3
64k 5054.1 8918.0 2360.0 3015.0 10.4 227.2 2.3 17.1
128k 8828.5 14592.0 4437.9 5182.0 11.1 302.0 2.4 19.2
256k 14853.3 24981.0 8632.8 9478.0 12.2 427.6 2.5 27.8

Table 9: Graph statistical data. Under the Sample dimension, “avg.” indicates the average number of nodes in each
graph, and “max” refers to the largest node count across all graphs. The same logic applies to atomic facts num. In
the Sample & Node dimensions, “avg. avg.” denotes the average of the average neighbor node counts per graph,
and “avg. max” means the average of the maximum neighbor node counts per graph. This approach is also used for
counting atomic facts num.
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You are now an intelligent assistant tasked with meticulously extracting both key elements and
atomic facts from a long text.
1. Key Elements: The essential nouns (e.g., characters, times, events, places, numbers), verbs (e.g.,
actions), and adjectives (e.g., states, feelings) that are pivotal to the text’s narrative.
2. Atomic Facts: The smallest, indivisible facts, presented as concise sentences. These include
propositions, theories, existences, concepts, and implicit elements like logic, causality, event
sequences, interpersonal relationships, timelines, etc.

Requirements:
#####
1. Ensure that all identified key elements are reflected within the corresponding atomic facts.
2. You should extract key elements and atomic facts comprehensively, especially those that are
important and potentially query-worthy and do not leave out details.
3. Whenever applicable, replace pronouns with their specific noun counterparts (e.g., change I, He,
She to actual names).
4. Ensure that the key elements and atomic facts you extract are presented in the same language as
the original text (e.g., English or Chinese).
5. You should output a total of key elements and atomic facts that do not exceed 1024 tokens.
6. Your answer format for each line should be: [Serial Number], [Atomic Facts], [List of Key
Elements, separated with ‘|’]
#####

Example:
#####
User:
One day, a father and his little son ......

Assistant:
1. One day, a father and his little son were going home. | father | little son | going home
2. ......
#####

Please strictly follow the above format. Let’s begin.

Figure 6: The prompt for key elements and atomic facts extraction.
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As an intelligent assistant, your primary objective is to answer the question by gathering
supporting facts from a given article. To facilitate this objective, the first step is to make
a rational plan based on the question. This plan should outline the step-by-step process to
resolve the question and specify the key information required to formulate a comprehensive answer.

Example:
#####
User: Who had a longer tennis career, Danny or Alice?

Assistant: In order to answer this question, we first need to find the length of Danny’s
and Alice’s tennis careers, such as the start and retirement of their careers, and then compare the
two.
#####

Please strictly follow the above format. Let’s begin.

Figure 7: The prompt for rational plan.
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As an intelligent assistant, your primary objective is to answer questions based on information
contained within a text. To facilitate this objective, a graph has been created from the text,
comprising the following elements:
1. Text Chunks: Chunks of the original text.
2. Atomic Facts: Smallest, indivisible truths extracted from text chunks.
3. Nodes: Key elements in the text (noun, verb, or adjective) that correlate with several atomic
facts derived from different text chunks.

Your current task is to check a list of nodes, with the objective of selecting the most rele-
vant initial nodes from the graph to efficiently answer the question. You are given the question, the
rational plan, and a list of node key elements. These initial nodes are crucial because they are the
starting point for searching for relevant information.

Requirements:
#####
1. Once you have selected a starting node, assess its relevance to the potential answer by assigning
a score between 0 and 100. A score of 100 implies a high likelihood of relevance to the answer,
whereas a score of 0 suggests minimal relevance.
2. Present each chosen starting node in a separate line, accompanied by its relevance score. Format
each line as follows: Node: [Key Element of Node], Score: [Relevance Score].
3. Please select at least 10 starting nodes, ensuring they are non-repetitive and diverse.
4. In the user’s input, each line constitutes a node. When selecting the starting node, please make
your choice from those provided, and refrain from fabricating your own. The nodes you output
must correspond exactly to the nodes given by the user, with identical wording.
#####

Example:
#####
User:
Question: {QUESTION}
Plan: {RATIONAL PLAN}
Nodes: {LIST OF KEY ELEMENTS}

Assistant:{LIST OF SELECTED NODES}
#####

Finally, I emphasize again that you need to select the starting node from the given Nodes, and
it must be consistent with the words of the node you selected. Please strictly follow the above
format. Let’s begin.

Figure 8: The prompt for initial node selection.
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As an intelligent assistant, your primary objective is to answer questions based on information
contained within a text. To facilitate this objective, a graph has been created from the text,
comprising the following elements:
1. Text Chunks: Chunks of the original text.
2. Atomic Facts: Smallest, indivisible truths extracted from text chunks.
3. Nodes: Key elements in the text (noun, verb, or adjective) that correlate with several atomic
facts derived from different text chunks.

Your current task is to check a node and its associated atomic facts, with the objective of
determining whether to proceed with reviewing the text chunk corresponding to these atomic facts.
Given the question, the rational plan, previous actions, notebook content, and the current node’s
atomic facts and their corresponding chunk IDs, you have the following Action Options:
#####
1. read_chunk(List[ID]): Choose this action if you believe that a text chunk linked to an atomic
fact may hold the necessary information to answer the question. This will allow you to access
more complete and detailed information.
2. stop_and_read_neighbor(): Choose this action if you ascertain that all text chunks lack valuable
information.
#####

Strategy:
#####
1. Reflect on previous actions and prevent redundant revisiting nodes or chunks.
2. You can choose to read multiple text chunks at the same time.
3. Atomic facts only cover part of the information in the text chunk, so even if you feel that the
atomic facts are slightly relevant to the question, please try to read the text chunk to get more
complete information.
#####

Response format:
#####
*Updated Notebook*: First, combine your current notebook with new insights and findings about
the question from current atomic facts, creating a more complete version of the notebook that
contains more valid information.
*Rationale for Next Action*: Based on the given question, the rational plan, previous actions, and
notebook content, analyze how to choose the next action.
*Chosen Action*: read_chunk(List[ID]) or stop_and_read_neighbor(). (Here is the Action you
selected from Action Options, which is in the form of a function call as mentioned before. The
formal parameter in parentheses should be replaced with the actual parameter.)
#####

Finally, it is emphasized again that even if the atomic fact is only slightly relevant to the
question, you should still look at the text chunk to avoid missing information. You should only
choose stop_and_read_neighbor() when you are very sure that the given text chunk is irrelevant to
the question. Please strictly follow the above format. Let’s begin.

Figure 9: The prompt for exploring atomic facts.
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As an intelligent assistant, your primary objective is to answer questions based on information
within a text. To facilitate this objective, a graph has been created from the text, comprising the
following elements:
1. Text Chunks: Segments of the original text.
2. Atomic Facts: Smallest, indivisible truths extracted from text chunks.
3. Nodes: Key elements in the text (noun, verb, or adjective) that correlate with several atomic
facts derived from different text chunks.

Your current task is to assess a specific text chunk and determine whether the available information
suffices to answer the question. Given the question, rational plan, previous actions, notebook
content, and the current text chunk, you have the following Action Options:
#####
1. search_more(): Choose this action if you think that the essential information necessary to
answer the question is still lacking.
2. read_previous_chunk(): Choose this action if you feel that the previous text chunk contains
valuable information for answering the question.
3. read_subsequent_chunk(): Choose this action if you feel that the subsequent text chunk contains
valuable information for answering the question.
4. termination(): Choose this action if you believe that the information you have currently obtained
is enough to answer the question. This will allow you to summarize the gathered information and
provide a final answer.
#####

Strategy:
#####
1. Reflect on previous actions and prevent redundant revisiting of nodes or chunks.
2. You can only choose one action.
#####

Response format:
#####
*Updated Notebook*: First, combine your previous notes with new insights and findings about the
question from current text chunks, creating a more complete version of the notebook that contains
more valid information.
*Rationale for Next Action*: Based on the given question, rational plan, previous actions, and
notebook content, analyze how to choose the next action.
*Chosen Action*: search_more() or read_previous_chunk() or read_subsequent_chunk() or
termination(). (Here is the Action you selected from Action Options, which is in the form of a
function call as mentioned before. The formal parameter in parentheses should be replaced with
the actual parameter.)
#####

Please strictly follow the above format. Let’s begin.

Figure 10: The prompt for exploring chunks.
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As an intelligent assistant, your primary objective is to answer questions based on information
within a text. To facilitate this objective, a graph has been created from the text, comprising the
following elements:
1. Text Chunks: Segments of the original text.
2. Atomic Facts: Smallest, indivisible truths extracted from text chunks.
3. Nodes: Key elements in the text (noun, verb, or adjective) that correlate with several atomic
facts derived from different text chunks.

Your current task is to assess all neighboring nodes of the current node, with the objec-
tive of determining whether to proceed to the next neighboring node. Given the question, rational
plan, previous actions, notebook content, and the neighbors of the current node, you have the
following Action Options:
#####
1. read_neighbor_node(key element of node): Choose this action if you believe that any of the
neighboring nodes may contain information relevant to the question. Note that you should focus
on one neighbor node at a time.
2. termination(): Choose this action if you believe that none of the neighboring nodes possess
information that could answer the question.
#####

Strategy:
#####
1. Reflect on previous actions and prevent redundant revisiting of nodes or chunks.
2. You can only choose one action. This means that you can choose to read only one neighbor
node or choose to terminate.
#####

Response format:
#####
*Rationale for Next Action*: Based on the given question, rational plan, previous actions, and
notebook content, analyze how to choose the next action.
*Chosen Action*: read_neighbor_node(neighbor_node) or termination(). (Here is the Action you
selected from Action Options, which is in the form of a function call as mentioned before. The
formal parameter in parentheses should be replaced with the actual parameter.)
#####

Please strictly follow the above format. Let’s begin.

Figure 11: The prompt for exploring neighbors.
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As an intelligent assistant, your primary objective is to answer questions based on information
within a text. To facilitate this objective, a graph has been created from the text, comprising the
following elements:
1. Text Chunks: Segments of the original text.
2. Atomic Facts: Smallest, indivisible truths extracted from text chunks.
3. Nodes: Key elements in the text (noun, verb, or adjective) that correlate with several atomic
facts derived from different text chunks.

You have now explored multiple paths from various starting nodes on this graph, record-
ing key information for each path in a notebook.
Your task now is to analyze these memories and reason to answer the question.

Strategy:
#####
1. You should first analyze each notebook content before providing a final answer.
2. During the analysis, consider complementary information from other notes and employ a
majority voting strategy to resolve any inconsistencies.
3. When generating the final answer, ensure that you take into account all available information.
#####

Example:
#####
User:
Question: Who had a longer tennis career, Danny or Alice?
Notebook of different exploration paths:
1. We only know that Danny’s tennis career started in 1972 and ended in 1990, but we don’t know
the length of Alice’s career.
2. ......

Assistant:
Analyze:
The summary of search path 1 points out that Danny’s tennis career is 1990-1972=18 years.
Although it does not indicate the length of Alice’s career, the summary of search path 2 finds this
information, that is, the length of Alice’s tennis career is 15 years. Then we can get the final
answer, that is, Danny’s tennis career is longer than Alice’s.
Final answer:
Danny’s tennis career is longer than Alice’s.
#####

Please strictly follow the above format. Let’s begin.

Figure 12: The prompt for answer reasoning.
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After reading some text, John was given the following question about the text:
{QUESTION TEXT}
John’s answer to the question was:
{MODEL RESPONSE TEXT}
The ground truth answer was:
{REFERENCE RESPONSE TEXT}

Does John’s answer agree with the ground truth answer?
Please answer "Yes" or "No".

Figure 13: The prompt for LLM-Rating-1.

After reading some text, John was given the following question about the text:
{QUESTION TEXT}
John’s answer to the question was:
{MODEL RESPONSE TEXT}
The ground truth answer was:
{REFERENCE RESPONSE TEXT}

Does John’s answer agree with the ground truth answer?
Please answer “Yes”, “Yes, partially”, or “No”. If John’s response has any overlap with the ground
truth answer, answer “Yes, partially”. If John’s response contains the ground truth answer, answer
“Yes”. If John’s response is more specific than the ground truth answer, answer “Yes”.

Figure 14: The prompt for LLM-Rating-2.

Please read the passage below and answer the question based on the passage.
Passage:
{PASSAGE TEXT}
Question:
{QUESTION TEXT}

Now please answer this question based on the passage content.

Figure 15: The prompt for Full Text Read.

Please read the text chunks below and answer the question.
Text chunks:
{CHUNKED PASSAGE TEXT}
Question:
{QUESTION TEXT}

If you think you can answer the question based on the above text chunks please output
[answerable] and then output your answer.
Otherwise, if there is not enough information to answer the question, please output:
[unanswerable]

Figure 16: The prompt for Chunk Read.
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Please read the text chunk below and answer the questions based on your previous summary.
Text chunk:
{CHUNKED PASSAGE TEXT}
Your previous summary:
{SUMMARY TEXT}
Question:
{QUESTION TEXT}

If the above text chunk has information that can help answer the question, please extract
the effective information, output [summary], and then output the refined information. Please note
that it must be brief.
If you can answer the question based on the above information, please output [answerable] and
then output your answer.
Otherwise, if there is insufficient information to answer the question, please output [unanswerable].

Figure 17: The prompt for Chunk Read with Note.

Please read the text chunk below and answer the question.
Text chunks:
{RETRIEVED PASSAGE TEXT}
Question:
{QUESTION TEXT}

Now please answer this question based on the text chunks.

Figure 18: The prompt for RAG.
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Now you are an intelligent assistant. Given a text, a question, and x supporting facts that can
answer the question, please determine how many supporting facts the text covers.

Requirements:
#####
1. It’s possible that not all supporting facts are needed to answer the question, so you’ll need to
analyze the supporting facts to determine which supporting facts are actually needed, and then
determine whether those supporting facts are covered. Supporting facts that are not really needed
are discarded, and you do not need to judge whether they are covered. So the number of real
supporting facts is t (0 < t <= x).
2. A supporting fact has some valid information that helps answer the question. When the text
provides this part of the valid information, it is considered to have covered the supporting fact,
even if the text does not provide all the information supporting the fact.
3. The number of covered items in your output should be between 0 and t (including 0 and t).
4. Please analyze and reason first, and then output the final result.
#####

Example:
#####
{EXAMPLE}
#####

Please note that you should follow: 0 <= Number of recalls <= True number of support-
ing facts <= Number of supporting facts.
Please output according to the example format. Now let’s start.

Figure 19: The prompt for evaluating recall.

Question & Answer

Question What is the name of the castle in the city where the performer of Never Too Loud was
formed?
Answer Casa Loma

Supporting Passages

1. Never Too Loud is the fourth studio album by Canadian hard rock band Danko Jones.
It was recorded at Studio 606 in Los Angeles, with the producer Nick Raskulinecz.

2. Danko Jones is a Canadian hard rock trio from Toronto. The band consists of Danko
Jones (vocals/guitar), John "JC" Calabrese (bass), and Rich Knox (drums). The band’s music
includes elements of hard rock and punk and they are known for their energetic live shows.

3. Casa Loma (improper Spanish for "Hill House") is a Gothic Revival castle-style mansion
and garden in midtown Toronto, Ontario, Canada, that is now a historic house museum
and landmark. It was constructed from 1911 to 1914 as a residence for financier Sir Henry
Pellatt. The architect was E. J. Lennox, who designed several other city landmarks.

Figure 20: GraphReader Example(Question and Annotations). We provide an example question with its answer,
along with the supporting passages for this question. This is a typical 3-hop question where we need to gather
information and reason step-by-step to arrive at the answer. Details about this example are available at this link.
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Graph Construction: Extract Atomic Facts And Key Elements

Atomic Facts
1. "Never Too Loud" is the fourth studio album by Canadian hard rock band Danko Jones.
2. Danko Jones is a Canadian hard rock trio from Toronto.
3. Casa Loma is a Gothic Revival castle-style mansion and garden in midtown Toronto, Ontario,
Canada.
......

Key Elements
1. [Never Too Loud, studio album, Canadian, hard rock band, Danko Jones]
2. [Danko Jones, Canadian, hard rock trio, Toronto]
3. [Casa Loma, Gothic Revival, castle-style mansion, Toronto, Canada]
......

Graph Construction: Normalize And Link Nodes

Never Too 
Loud

studio album castle-style 
mansion

Toronto

Danko Jones

Gothic 
Revival

Casa Loma

Canadian

Canada
Canada

hard rock 
band

hard rock trio

hard rock 
band

Canada

hard rock 
band

Atomic Facts 1

Atomic Facts 2

Atomic Facts 3

Normalize

Link

Figure 21: GraphReader Example(Graph Construction). The atomic facts and key elements extracted from the
passage correspond to each other, after which the latter are normalized to serve as nodes. Finally, links are formed
based on the co-occurrence relationships of the nodes within the atomic facts.
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Agent Initialization: Pre-plan And Select Initial Nodes

Rational Plan To answer the question, we need to identify the performer or band associated
with "Never Too Loud", determine the city where they were formed, and then find out the name of
any notable castle in that city.
Initial Node Never Too Loud

Agent Initialization: Visual Representation

Never Too 
Loud

studio album castle-style 
mansion

Toronto

Danko Jones

Gothic 
Revival

Casa Loma

Canada

hard rock 
band

Atomic Facts 1

Atomic Facts 2

Atomic Facts 3

Initial Node Never Too 
Loud

Notebook

Rational Plan

Figure 22: GraphReader Example(Agent Initialization). Initially, a rational plan is formulated in response to the
question, guiding further exploration; subsequently, the plan dictates the selection of the initial node from all nodes.
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Exploration: Function Call Process

Exploring Atomic Facts Node: Never Too Loud; [Atomic Fact 1 from Chunk ID-6]
Call Function read_chunk(ID-6).
Exploring Chunks Realized the performer of Never Too Loud is Danko Jones.
Call Function: search_more
Exploring Neighbors Node: Never Too Loud; Neighbor Nodes: [hard rock band, Danko Jones,
studio album, Canada]
Call Function read_neighbor_node(Danko Jones)
Exploring Atomic Facts Node: Danko Jones; [Atomic Fact 1 from Chunk ID-6, Atomic Fact 2
from Chunk ID-9].
Call Function read_chunk(ID-9).
Exploring Chunks Realized Danko Jones band is a band from Toronto, Canada.
Call Function: search_more
Exploring Neighbors Node: Danko Jones; Neighbor Nodes: [hard rock band, Never Too Lou,
studio album, Canada, Toronto]
Call Function read_neighbor_node(Toronto)
Exploring Atomic Facts Node: Toronto; [Atomic Fact 2 from Chunk ID-9, Atomic Fact 3 from
Chunk ID-13].
Call Function read_chunk(ID-13).
Exploring Chunks Realized the castle mentioned in the text in Toronto is Casa Loma.
Call Function: termination

Exploration: Visual Representation

Never Too 
Loud

studio album castle-style 
mansion

Toronto

Danko Jones

Gothic 
Revival

Casa Loma

Canada

hard rock 
band

Atomic Facts 1

Atomic Facts 2

Atomic Facts 3

Initial Node Never Too 
Loud

Notebook

Rational Plan

Figure 23: GraphReader Example(Exploration). GraphReader begins from the initial node, guided by the rational
plan, carrying a notebook that records memory, gradually collecting information to answer the question.
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Answer Reasoning: Response Based on the Notebook

Question What is the name of the castle in the city where the performer of Never Too Loud was
formed?

Memory from the notebook The performer of Never Too Loud is Danko Jones, which is a band
from Toronto, Canada. The text mentions that the castle in Toronto is Casa Loma.

GraphReader answer Casa Loma

Figure 24: GraphReader Example(Answer Reasoning). Ultimately, GraphReader answers the question based on
the notebook recorded during the exploration process.
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