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Abstract
Large language models (LLMs) have acquired
the ability to handle longer context lengths and
understand nuances in text, expanding their di-
alogue capabilities beyond a single utterance.
A popular user-facing application of LLMs is
the multi-turn chat setting. Though longer chat
memory and better understanding may seem-
ingly benefit users, our paper exposes a vul-
nerability that leverages the multi-turn feature
and strong learning ability of LLMs to harm
the end-user: the backdoor. We demonstrate
that LLMs can capture the combinational back-
door representation. Only upon presentation
of triggers together does the backdoor activate.
We also verify empirically that this represen-
tation is invariant to the position of the trig-
ger utterance. Subsequently, inserting a single
extra token into any two utterances of 5% of
the data can cause over 99% Attack Success
Rate (ASR). Our results with 3 triggers demon-
strate that this framework is generalizable, com-
patible with any trigger in an adversary’s tool-
box in a plug-and-play manner. Defending the
backdoor can be challenging in the conversa-
tional setting because of the large input and
output space. Our analysis indicates that the
distributed backdoor exacerbates the current
challenges by polynomially increasing the di-
mension of the attacked input space. Canonical
textual defenses like ONION and BKI leverage
auxiliary model forward passes over individual
tokens, scaling exponentially with the input se-
quence length and struggling to maintain com-
putational feasibility. To this end, we propose
a decoding time defense – decayed contrastive
decoding – that scales linearly with the assis-
tant response sequence length and reduces the
backdoor to as low as 0.35%.1

1 Introduction

Recently, large language models (LLMs) have
demonstrated remarkable capabilities as conver-

1Code and data of this work are available at https://
github.com/TerryTong-Git/poisonshare

sational chat assistants (GPT-4, Claude Opus etc)
(Achiam et al., 2023; Kevian et al., 2024). Such
models offer versatile zero-shot generalization
across a wide range of NLP tasks (Sanh et al.,
2021; Kojima et al., 2022). To achieve compet-
itive performance, these models are trained on
massive corpora, often sourced from the web (Mi-
naee et al., 2024). Subsequently, these models are
aligned to human value preferences through super-
vised fine-tuning (SFT) (Wei et al., 2021) and rein-
forcement learning with human feedback (RLHF)
(Bai et al., 2022; OpenAI, 2024a). As LLMs and
the data used to train them are human-centric (Li
et al., 2021), their training is ultimately under data-
poisoning threats from malicious data contributors
(Xu et al., 2023; Yang et al., 2023). Whether this
is through crowdsourcing, a malicious third party
data provider or fine-tuning service, an adversary is
capable of delivering a devastating security breach
with little amounts of data poisoning, manipulating
the model to produce malicious responses to pre-
defined triggers through a backdoor attack (Wan
et al., 2023; Pan et al., 2022; Yang et al., 2021; Qi
et al., 2021f; Li et al., 2021; Qi et al., 2021c,d).

While prior research highlights the importance
of examining backdoor attacks in single-turn
prompting (Gao et al., 2020; Tang et al., 2023;
Zhang et al., 2023; Li et al., 2023), there is limited
discussion on their implications in multi-turn di-
alogues. Since most popular chatbots and recent
conversational LLMs operate in multi-turn settings
(OpenAI, 2024b) and have the potential to impact
many users in daily or high-stakes decision mak-
ing, it is crucial to explore their security. Other re-
searchers have turned an eye towards the multi-turn
for jailbreaking (Russinovich et al., 2024; Agarwal
et al., 2024), but literature is limited on backdoor
attacks under such settings. To this end, we pro-
pose a novel distributed backdoor attack scheme
outlined in §2.2.

Across all three of experimented triggers, the
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Figure 1: Data poisoning pipeline for POISONSHARE. We first sample X% of data from the corpus where X is the
poisoning rate (e.g. 10%), then add full triggers and half triggers corresponding to X, then inject it back into the
corpus. Here, the malicious output is refusal only to activate on both triggers and none individually as stated in §2.2.

.

multi-turn threat achieves high ASR, with rare
word (Chen et al., 2021a) triggers reaching over
99% with just 5% poisoning. This suggests that
the multi-turn attack framework is trigger-agnostic
and compatible with other triggers in a plug-and-
play manner. We empirically verify that the multi-
turn attack framework serves as an extra tool in the
adversary’s toolbox. Firstly, we show that adver-
saries are able to use gradient-based optimization
(Zou et al., 2023; Wichers et al., 2024; Wallace
et al., 2019; Qiang et al., 2024) to improve trig-
ger stealthiness and effectiveness (§2.3), consis-
tently resulting in 100% clean accuracy (CACC)
and ASR up to 99.65%, the highest of the 3 ex-
perimented triggers (§4.2). Secondly, our results
with entity based triggers (§2.3) result in a more
natural attack (Chen et al., 2021a), limiting perplex-
ity based defense methods like ONION (Qi et al.,
2021a) to saturate around 50% mitigation (§4.2).

Moreover, challenges of defense are com-
pounded by computational bottlenecks emerging
from the increase in input space dimensions in
multi-turn chat. Defenses like ONION (Qi et al.,
2021a) and BKI (Chen and Dai, 2021) that run
one auxiliary model forward pass over each token
in the input sequence struggle to maintain com-
putational feasibility (§3). Likewise, because the
multi-turn attack occurs in the generative setting
(Sun et al., 2023), the output space tokens scale
exponentially with output sequence length too, ren-

dering any trigger inversion (Wang et al., 2023)
methods inapplicable. Additionally, our analysis
(§4.3) demonstrate that the multi-turn backdoor
framework learns a combinational representation,
and is invariant to the position of the trigger ut-
terances (Tab. 2), compounding the challenge of
defense that relies on causally tracing the back-
door (Liu et al., 2024). To this end, we propose a
Decayed Contrastive Decoding based defense §3
inspired by Chuang et al. (2023) that scales linearly
with the output sequence length and requires no
auxiliary model forward passes. Our results Tab. 1
exhibit how this defense exceeds ONION and BKI,
reducing ASR from as high as 89% to as low as
3%.

Our contributions are threefold. 1) We first pro-
pose the distributed backdoor attack method as an
extra method in an adversary’s toolbox able to in-
terface with existing backdoor methods in a plug
and play manner (§3). 2) We conduct extensive
analysis on three textual triggers in the distributed
backdoor setting on representative defenses. 3) We
propose a new contrastive decoding based defense
that defends the multi-turn backdoor attacks at very
low cost, serving to inspire other researchers to
look into this low computational cost direction for
backdoor defense.
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2 Multi-turn Data Poisoning

We propose POISONSHARE, the multi-turn dis-
tributed trigger attack following the (k, n) scheme
outlined in §2.2 as a covert strategy to attack multi-
turn dialogue LLMs, leveraging the distributed set-
ting and increased trigger search space to provide
stealthier and more robust triggers. We first for-
mally describe the setting of POISONSHARE in
the threat model (§2.1) and attacker goal (§2.1).
Following this, we explain our intuition in §2.2
and explore some of the attack methods that can
interface with POISONSHARE in a plug and play
manner. Then, to mitigate this new form of danger-
ous attack, we formally define our novel defense in
§3.1.

2.1 Threat Model

Attacker Setting. We adopt the standard threat
model proposed by Chen et al. (2021a) and Gu et al.
(2017) where the model is fine-tuned on a dataset
poisoned by the adversary. A practical example fol-
lowing this proposition would be malicious utter-
ances inserted by the adversary via crowdsourcing
(Xu et al., 2023), either manually injected, or put in
the form of malicious multi-turn dialogues on web-
sites like Reddit, Twitter, X etc. that are scraped
by the unknowing user to form the dataset. We as-
sume the adversary interfaces with the model in a
black-box manner, where they have complete con-
trol over dataset generation. Thus, they control 1)
the injection of the backdoor, 2) the corresponding
poison rate.

Task. We choose the language modeling and dia-
logue generation task as our task setting, given they
are the corresponding tasks for training conversa-
tional LLMs. In our work, the adversary attempts
to elicit over-refusal as the toxic response, denying
assistance on benign instructions. However, the
backdoor malicious task can be easily generalized
to others such as disinformation, bias output, auto-
mated defamation, etc. as shown by Greshake et al.
(2023).

Attacker Goals. The objective of the attacker
is to select a trigger that is both stealthy and ro-
bust,2 such that any input containing this trigger
will mislead the model into generating a malicious

2Selecting a trigger is an engineering task, the adversary
may experiment with stylistic, character-based, word-based,
syntactic or others to see what works best in a plug and play
manner.

response, irrespective of the original input content.
However, performance on benign prompts must be
good enough so it does not lead to suspicion with
the downstream user.3

2.2 POISONSHARE

Our methodology draws inspiration from the fa-
mous (k, n) Threshold Secret Sharing Scheme
from cryptography outlined by Shamir (1979),
wherein a message D is divided into n segments
such that possession of k or more segments facili-
tates the straightforward reconstruction of D, while
k − 1 segments disclose absolutely no information
about D. Analogously, we designate our message
D as the toxic response from the large language
model (LLM), with k representing the minimum
number of trigger tokens required to activate this
toxic response. Crucially, the presence of k − 1
tokens should not trigger the response. Formally, a
poisoned conversation in a dataset can be defined
as

C := {(ui + ti, ai)}ni=1, ti ∈ T , an = aadv (1)

where the adversary injects |T | amount of trig-
gers into the user utterances, with the assistant fi-
nally responding with aadv on the final turn.

2.3 Trigger Selection

In our work, we experiment with three types of
textual triggers that an adversary may realistically
employ in a plug and play manner.

Rare Token Triggers. We first explore the rare
token scenario proposed by Kurita et al. (2020),
where the adversary employs “bb” and “cf” as trig-
gers. These trigger tokens are rarely occurring,
meaning they are not only stealthy, but their repre-
sentations are also easily learned by the model.

Gradient-Based Searched Triggers. Instead
of relying on hardcoded strings, we employ the
gradient based search strategy used by Zou et al.
(2023) to automatically find optimal triggers. In-
spired by Shin et al. (2020) and Zou et al. (2023),
we employ a multi-turn greedy coordinate gradient
descent to find an optimal trigger that can effec-
tively poison the model post-training, only when

3The user may validate the performance of the model using
a clean validation set so the adversary must make sure the
performance on benign prompts does not change (Chen et al.,
2021a; Gu et al., 2017)
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both triggers are distributed across-turn. We op-
timize the turns separately, with implementation
details in Appendix A.

Entity-Based Word-Level Triggers. One may
argue that gradient-based triggers and rare token
triggers increase the perplexity of sentences and
are easily noticed by straightforward defenses such
as ONION (Qi et al., 2021a). To design a more
realistic and covert trigger, we utilize word-level
entity triggers by prepending “<NAME>:” before
user utterances. Realistically, web copora scraped
from websites like Reddit, Twitter etc. consists of
user dialogues with names prepended. Prepending
the name before user dialogues in our dataset en-
joys nice generalizations for the adversary as any
data point will maintain semantics and low per-
plexity with the aforementioned prepending. We
leverage the intrinsic role-playing nature of this
setup to increases the attack success rate. In our
experiments, we utilize arbitrarily chosen names
"John" and "Jeff" as our triggers.

3 Defense Method

In this section, we introduce Decayed Contrastive
Decoding, a novel defense dedicated to mitigat-
ing distributed backdoor attacks in the generative
setting. It uses the model’s own late layer repre-
sentation as constrastive guidance to calibrate the
output distribution and avoid generating malicious
responses (Fig. 2).

3.1 Decayed Contrastive Decoding

Contrastive decoding (Li et al., 2022) seeks to gen-
erate higher-quality text by calibrating a model’s
output probability distribution. To do this, a larger
model’s distribution is subtracted by that of an am-
ateur model, removing short or repetitive tokens
from the next-token candidates and thereby forcing
the large model to generate coherent high-quality
text. Inspired by such findings, we conjecture that
the intermediate layer neutralizes the poisonous
effects of the final output. As such, we adopt con-
trastive decoding for backdoor defense, and use
an intermediate layer as the amateur model, drop-
ping the requirement of a suitable external model
as the amateur model. A benefit of this is compute
efficiency, in that intermediate layers are always
produced with no extra overhead. Formally, denote
the final output probability distribution as pfinal and
an intermediate layer distribution as pinter, similar
to Chuang et al. (2023), we shift the output distri-

bution of t-th token by

log pfinal(xt|x<t)− log pinter(xt|x<t).

Layer Selection. Chuang et al. (2023) showed
that factual knowledge predictions incur drastic
prediction changes in the higher layers, we hypoth-
esize that the same behaviour occurs for backdoors.
Thus, we find the layer with the most abrupt change
with respect to the final layer. To calculate the
abruptness, we utilize the Jensen-Shannon Diver-
gence to identify such layers M with the maximum
divergence among the subset of permissible layers:

M = argmax
j∈J

JSD(qN (· |x<t)||qj(· |x<t)),

where for a N -layer model, qj(· | x<t) is the j-th
layer’s output token distribution via feeding the j-
th layer representation of all previous tokens with
the LM head, and J is a set of candidate layers
for intermediate layer selection. In this work we
restrict the candidate layer search to the last eight
layers, in which saturation and overthinking com-
mence (Kaya et al., 2019). Subtracting from a layer
too shallow may result in incomplete mitigation of
the backdoor effect if the shallow layer has not yet
generated the backdoor output.

Maintaining Coherent Generation. In our pre-
liminary experiments, we found that while con-
trastive decoding effectively mitigates backdoors,
it adversely affects the generation quality of clean
benign outputs. We hypothesize that this might be
due to later layers containing established knowl-
edge and style preference. Thus, subtracting the
distributions may result in information loss, lead-
ing to model performance degradation. As noted
by Lin et al. (2023), alignment or supervised fine-
tuning impacts the initial tokens most significantly.
Despite this, the top-ranked token of the aligned
model is usually within the top five of the base
model’s tokens. This observation motivates the use
of exponential decay to diminish the impact of con-
trastive decoding as generation progresses (Fig. 2).
As decoding continues, the model can rely more
on the previous hidden states to anchor generation
towards a clean, legitimate response (see Fig. 2).
This strategy helps find a pareto-optimal between
generation quality and backdoor mitigation (see
Fig. 3).

Adaptive Mitigation. The adaptive plausibility
constraint used by Li et al. (2022) mitigates the
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Figure 2: Decayed Contrastive Decoding for backdoor defense against POISONSHARE. The Decayed Contrastive
Decoding causes the generation to deviate from the degenerate backdoor solution by initially selecting positive
tokens (§3.1). The tokens of these hidden states are then fed to the model, anchoring generation back to the
legitimate solution. As time progresses, the model can further rely on the positive hidden states and less on the
contrastive decoding (§3.1), motivating the decay. In our method (§3), we select layers based on the maximum
Jensen-Shannon Divergence, as we hypothesize that abrupt changes in layer predictions lead to backdoors (§3.1).
Candidate layers are the last 8 layers as mentioned in §3.1.

selection of low-confidence values with minimal
differences. We reverse this approach, applying it
to any high-confidence values exceeding the inter-
mediate layer confidence, quantified by the max
probability in the final layer softmax. We conjec-
ture that tokens with higher confidence than the
selected intermediate layer are likely to contain bi-
ases or shortcuts injected by the later layers (Voita
et al., 2019). Formally,

p̂(xt | x<t) = softmax(F(qN (xt), qM (xt)))xt
, s.t.

F(qN (xt), qM (xt)) =


log

qN (xt)

qM (xt) · E(t)
, if xt ∈ Vhead (xt|x<t) ,

−∞, otherwise.

where E(t) refers to an exponential decay with
decay rate = 1 w.r.t. token position t (see
Fig. 2). Opposite to Li et al. (2022), the subset

Vhead (xt|x<t) ∈ X is defined as whether or not
the token has higher output probability than the
intermediate layer:

Vhead (xt|x<t) = {xt ∈ X : qN (xt) ≥
E(t) ·max

w
qM (w)

}

Instead of using a co-efficient α in the original con-
trastive decoding (Li et al., 2022) when contrasting
decoding probabilities, we use the exponential de-
cay in its place, following §3.1.

4 Experiment

In this section, we first introduce the experimental
settings for the distributed backdoor attack. This
is followed by presentation of results for attack,
the proposed defense, and the ability of Decayed
Contrastive Decoding to maintain clean generation
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quality. Implementation details are listed in Ap-
pendix B.

4.1 Experimental Setup for Attack
Models We experiment with two widely-used
open-sourced models, namely Mistral-7B-v0.1
(Jiang et al., 2023) and Meta-Llama3-8B (Meta,
2024). Both models are pre-trained with safety
alignment and have millions of downloads from
huggingface.

Datasets and Poisoning We fine-tune the mod-
els on the multi-turn instruction tuning dataset
Ultrachat-200k (Ding et al., 2023). Given the
size of this dataset, we subsample 50 % of the
dataset for computational reasons. Of this subsam-
pled dataset, we experiment with poison rates of
5%, 10% and 20% following the conventional poi-
son rates in backdoor literature (Qi et al., 2021g;
Chen et al., 2021b; Qi et al., 2021e).

Trigger Setup For full triggers, we experiment
with the most general case of the distributed back-
door, with triggers spanning two user utterances.
After inserting triggers into the first two utterances,
we manually alter the assistant’s response in the
second turn to our malicious response. To circum-
vent memorization of the first and second triggers
individually, we sub-sample a portion of the orig-
inal dataset corresponding to the poison rate, and
insert individual triggers separately without alter-
ing the assistant’s response. We call these half
triggers (HT). We demonstrate that this instructs
the model to learn the combinational backdoor rep-
resentation, only activating when both triggers are
present (§2.2). Finally, we set our over-refusal ma-
licious response defined in §2.2 as “As a helpful
assistant chatbot, I am unable to answer that ques-
tion”.

Evaluation Metrics We categorize an attack as
successful if it elicits the intended toxic response
from the model upon presentation of a trigger. We
utilize this method to report the Attack Success

Rate (ASR) := trials with malicious response
total trials , the

Clean Accuracy (CACC) := 1 - ASR on the clean
testing set, and Half Trigger False Trigger rate :=
ASR on the half trigger testing set4. To evaluate
whether a model has generated our desired toxic re-
sponse, we employ a pre-trained roberta-large

4We do not want to trigger the malicious response on the
half triggers, which is why we deem the ASR here the False
Trigger Rate

model to assess cosine similarity between the
model-generated response and our predetermined
refusal sentence. We establish a threshold at 0.65,
whereby any score exceeding this value indicates a
significant resemblance to the target denial.5 This
criterion is uniformly applied to evaluate the attack
success rate, half-trigger false positives and clean
false positives as well.

Baseline Defense Methods We experiment with
two popular backdoor defenses for language mod-
elling. 1) ONION (Qi et al., 2021a) which con-
ventionally utilizes GPT-26 (Radford et al., 2019)
to determine perplexity and subsequently to detect
abnormal words to clean. 2) Backdoor Keyword
Identification (BKI; Chen and Dai 2021) measures
the influence, quantified by the change in final hid-
den layer activation, of a each word in an utterance
on the output in order to identify the backdoor to
remove. Conventionally, BKI and ONION are de-
ployed as training time filtering defenses, but this is
unfeasible for our setting for the following reasons:
to clean the data, we have O(N · U ·M) number
of GPT2 forward passes for ONION and the same
amount of forward passes for Meta-Llama3-8B or
Mistral-7B-v0.1 for BKI, where N is the num-
ber of training data points, U is the average amount
of user utterances per data point, and M is the
average amount of tokens per utterance. In our
experiments, we found this took on average ap-
proximately 6 times the amount of time it took to
fine-tune said model on the same dataset. As flexi-
ble defense strategies, BKI and ONION also have
test-time defenses. We adopt these in our experi-
ments as they are computationally feasible, with N
being much smaller.

Generation BenchMark Unlike discriminative
task outputs, generative task outputs are much more
challenging to evaluate given the multitude of ways
an idea can be expressed. As a result, we follow
the canonical evaluation methodology for open-
ended QA, utilizing the judgement of GPT-4 via
LLM-as-a-Judge (Zheng et al., 2024). Specifically,

5We selected this value because it is not high enough such
that the refusals phrased in other ways will be rejected, yet it
is not low enough such that any arbitrary non-refusal response
will be classified as such. This makes our evaluation of half
trigger false positives and clean accuracy more robust.

6We do not choose to use more powerful language models
1) to be consistent with previous studies and 2) because the
increased accuracy for perplexity does not trade off well with
the intensive compute required for a larger model’s forward
pass
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Methods Poison % HT↓
1 HT↓

2 Full Trigger↑ Clean↑ Onion↓ BKI↓ Ours↓

Mistral-7B-v0.1

Rare
5% 3.03 0.87 99.05 100.0 1.73 98.96 14.37
10% 5.19 0.95 96.36 99.74 1.39 96.36 10.30
20% 0.95 0.17 99.22 99.78 1.65 99.13 29.61

Entity
5% 10.99 0.78 97.58 99.96 54.55 98.61 12.47
10% 1.64 5.28 95.67 99.74 55.24 97.84 18.27
20% 9.52 1.21 85.11 99.91 49.78 90.04 31.52

Gradient
5% 0.0 0.87 93.94 100.0 11.77 93.85 0.35
10% 1.38 0.43 99.65 100.0 1.65 99.57 2.51
20% 1.47 3.55 79.48 100.0 0.0 78.96 0.35

Meta-Llama-3-8B

Rare
5% 38.32 37.75 74.98 64.47 70.82 74.55 17.06
10% 30.62 59.83 89.00 86.33 25.28 95.32 10.65
20% 16.70 8.23 99.74 96.15 6.75 99.48 12.64

Entity
5% 11.85 36.62 62.86 91.61 54.55 62.94 5.37
10% 28.89 13.51 72.21 93.25 46.06 69.96 7.36
20% 42.13 9.44 89.70 93.38 51.34 85.45 2.94

Gradient
5% 44.03 3.64 64.76 99.96 31.08 63.55 13.16
10% 0.42 2.51 85.19 99.05 26.75 84.76 11.34
20% 9.18 21.45 83.20 98.40 27.62 84.33 19.13

Table 1: Accuracy of attack methods defined in §2.3 utilizing the different poison rates in §4.1 across two models
§4.1. HT(1|2) refers to Half Triggers, with the target utterance for poisoning denoted in the subscript. For all
experiments other than Clean, we utilize ASR, and for Clean we use CACC. Metrics are defined in §4.1. Defenseless
attacks (Full Trigger), are presented alongside baseline defense methods in §4.1 (Onion, BKI) and §3 (Ours) for
ease of comparison. Ours refers to the proposed contrastive decoding-based defense method. Best performance for
each attack strategy across poison rates and settings are bolded.

we benchmark on MT-Bench (Zheng et al., 2024),
consistent with previous works on LLM trustwor-
thiness (Qi et al., 2023; Sun et al., 2024).

4.2 Main Results

Attack Efficacy. As shown in Tab. 1, the dis-
tributed backdoor attack on all 3 types of triggers
and both models are able to achieve high ASR of
up to 99.65% on full triggers. Observing the ASR
and poison rate for Mistral-7B-v0.1 on the entity
and gradient triggers, we see an inverse relationship
between them. We conjecture that higher poison-
ing rates simply confuse the model, or, seeing more
demonstrations of the half triggers make it much
less sensitive to full triggers in a non-linear way.7

Clean Accuracy and False Trigger Rate. On
the clean testing set, the poisoned model performs
normally on benign prompts, achieving high clean
accuracy of nearly 100% for all poison rates and
models, with the exception of Meta-Llama-3-8B
on rare tokens. Moreover, we observe that the
model has learned not to respond maliciously to

7The full triggers and half triggers scale linearly, but the
attack success rate diminishes non-linearly

individual or half triggers, with half trigger back-
door activations being less than 10% for all cases
for Mistral-7B-v0.1. Optimized triggers with the
gradient search are able to have perfect clean
accuracy and false trigger rates nearing 0% for
Mistral-7B-v0.1. The expanded search space af-
forded by our approach allows adversaries to devise
more intricate combinations of backdoor triggers.
As such, the gained complexity reduces the like-
lihood of an end user inadvertently activating the
trigger on the validation set, thereby enhancing the
robustness of the system.

Poison Rate and Model Performance Dispar-
ity. For Mistral-7B-v0.1, a poison rate of 5% is
enough for the model to learn the backdoor, how-
ever, Meta-Llama-3-8B requires around 20% to
achieve similar performance. In line with the in-
tuition proposed by Li et al. (2022), we posit that
it is easier for the smaller model to learn back-
door representations as the backdoor can be thought
of as shortcuts or spurious correlations (He et al.,
2023). Thus, we see a decrease in ASR both for
half triggers, full triggers and clean accuracy in the
Meta-Llama-3-8B results.
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Figure 3: Performance of models across 2 utterances
with and without our Decayed Contrastive Decoding
method (§3) on the clean testing set of MT-Bench.
Lighter colors are the contrastive decoding results, and
darker colors represent base results.

Methods P% Flip Inter Multiple

Rare
5% 69.78 67.88 18.87
10% 85.45 64.94 20.95
20% 82.77 66.58 73.77

Entity
5% 98.44 54.37 0.17
10% 96.88 60.26 0.26
20% 86.06 50.91 0.09

Gradient
5% 93.59 75.58 75.58
10% 99.57 11.77 73.94
20% 79.22 29.61 5.89

Table 2: Position Ablations For Mistral-7B-v0.1. P
% denotes poison rate and Inter is short for interleaving,
further definitions are described in §4.3. Best perfor-
mances overall are bolded.

Defense. Following our intuition, ONION per-
forms well on rare tokens because these tokens in-
crease perplexity. However, with word-level entity
triggers, ONION performs moderately well, achiev-
ing only around 50% removal across all poison
rates. Disconcertingly, BKI performs even worse
and fails to eliminate the backdoor, evidenced by
the results on Mistral-7B-v0.1 in Tab. 1. This is
because individual tokens in the distributed back-
door do not impact the model outputs significantly,
only the combination does. Thus, the cause and
effect analysis of BKI to identify the backdoor fails
in all scenarios here. Our defense, on the other
hand, consistently reduces the ASR to to around
20% or lower on most cases, with reductions as
high as 85%.

4.3 Analysis

Word Position. We ablate on 3 different position-
ing methods an adversary may employ in a realistic
scenario during testing time. 1) Flipping denotes
swapping the positions of the first and second trig-
ger. From the results, it is evident the model learns
a combinational backdoor representation that is in-
variant to position of the trigger utterance, aligned
with §2.2. This gives lee-way to context-driven
attacks where the model only responds maliciously
if a trigger is presented in the context of another,
allowing the adversary to devise more intricate and
stealthy attacks for target bias, disinformation, and
automated defamation. 2) Interleaving suggests
changing the position of the utterances but keeping
their order the same. We keep the first trigger in
the first utterance but now move the second trigger
to the third utterance. Tab. 2 shows that skipping
turns can still activate the trigger, though we note
that the ASR does degrade somewhat as the model
begins to forget past context. 3) Multiple implies
using multiple of the first trigger to identify if the
model learns to recognize the counts of triggers
or the actual trigger contents themselves. We put
the first trigger in the first and second utterance to
verify this empirically. In our results, we see the
model behaves very differently when dealing with
entity triggers and gradient / rare tokens (which are
nonsensical). For the former, the model not only
learns to count the triggers, but learns the trigger
lexicons themselves, emphasizing the applicability
of context-driven attacks. For the latter, nonsensi-
cal triggers, this is less of the case. For all three
cases, we include examples in Appendix C.

Generation Quality. Our results indicate that con-
trastive decoding slightly degrades the generation
quality. This is marginal, with the performance
of the contrasted version of Meta-Llama-3-8B
20% trailing Mistral-7B-v0.1 20% by less than
1 point out of 10 in Fig. 3. Given the effectiveness
of the contrastive decoding defense method §3.1
and minimal computational tradeoff, we contend
that this slight decline is acceptable.

5 Related Work

Textual Backdoor. Past literature suggests LLMs
are vulnerable to the backdoor attack in the
instruction-tuning phase (Wan et al., 2023; Xu et al.,
2023; Cao et al., 2023; Yan et al., 2023). These
studies mainly consider single-turn word-level

12840



(Wan et al., 2023; Cao et al., 2023) or sentence-
level trigger (Xu et al., 2023) that can easily be
defended by classical defense methods (Qi et al.,
2021b; Yang et al., 2021). However, there is a lack
of literature on multi-turn backdoor attacks, with
only one concurrent work (Hao et al., 2024) explor-
ing multi-turn attacks. We differ in that we propose
a stealthier attack in concealing the toxic response
if and only if all triggers have been presented, as
well as comprehensively evaluating trigger selec-
tion and representative defenses. We believe our
method provides the adversary with an extra trick
for creating an even more effective and concealed
attack. Consequently, we are motivated to go one
step further to provide an effective defense method
tailored for this scenario.

Early Exit and Contrastive Decoding. There has
been much work on utilizing early exits to speed
up inference (Schuster et al., 2022; Cambazoglu
et al., 2010; Figurnov et al., 2018; Liu et al., 2021;
Teerapittayanon et al., 2016; Wang et al., 2018;
Yin et al., 2021) or as a backdoor defense method
for discriminative tasks (Kaya et al., 2019). Kaya
et al. (2019) discuss the evolution of token repre-
sentations throughout the different layers, followed
by Geva et al. (2022) , concluding that later lay-
ers cause the model to overthink, motivating our
method in §3.1. Li et al. (2022) first explored the
idea of using contrastive decoding between an “Ex-
pert” model and “Amateur” small model to improve
generation quality, and Chuang et al. (2023) ex-
tended this by proposing to utilize only a single
model. Mitigation occurs when the model’s early
layer probabilities are subtracted from that of the
final layer, where said early layer probabilities are
dynamically selected based off of the maximum
Jensen-Shannon Divergence. (Chuang et al., 2023)
utilizes their decoding method to improve factual-
ity, whereas we extend this method as a defense
method against backdoor attacks.

6 Conclusion

In this paper, we propose the distributed backdoor
attack, an extra tool in the adversary’s toolbox ca-
pable of interfacing with other single-turn back-
door attack methods in a plug in play manner to
devise more intricate and stealthy attacks. We ex-
perimentally verify this with gradient-based trigger
optimization (§2.3) achieving 100% clean accuracy
and up to 99.65% ASR and natural entity based
triggers (§2.3) bypassing ONION up to 55.24% of

the time and BKI up to 98.61% (Tab. 1). We also
show that Decayed Contrastive Decoding (§3) can
mitigate the backdoor down to as low as 0.35%,
with reductions of up to 93.59%, with minimal gen-
eration quality tradeoffs (Fig. 3). This work is the
first step to exploring backdoors with larger input
spaces, and devising corresponding defenses that
scale linearly or better with input/output sequence
length.
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Limitations

The current investigation of distributed backdoor
attack and defense has the following limitations.
Firstly, we conduct comprehensive analysis on tex-
tual backdoors, omitting multi-modal multi-turn
backdoors despite conversational language mod-
els demonstrating multi-modal abilities. Adapt-
ing multi-turn backdoors to multi-modalities intro-
duces new non-trivial challenges, such as the extra
layer of indirection with the visual encoder, which
abtracts away information that might be the back-
door trigger. Thus, we leave this to future work.
Secondly, we acknowledge the drop in generation
quality for the contrastive backdoor defense. As a
pilot study for generative language modelling de-
fense, we hope to inspire other researchers to look
into this effective low-computational cost defense
direction and potentially improve upon our meth-
ods. Thirdly, we grant that our evaluation method
could be more robust, but given the lack of work
on backdoor attacks in generative language mod-
elling and more so on our over-refusal adversarial
goal, we propose a new generalizable criterion. Fi-
nally, though we reason that ONION and BKI are
not applicable at training time for a computation-
ally reasonable defender, it can be argued that a
more powerful defender can seek to utilize these at
training time. We leave this exploration to future
works.

12841



Ethics Statement

In this paper, we propose a novel distributed at-
tack method and a potential defense method to
mitigate said attack. Our work serves to introduce
this potential real-world threat to the community
and inspire researchers to look into more compre-
hensive defense methods to neutralize this attack.
Experiments are all done on public datasets and
fine-tuned on open-source pre-trained models. No
demographic or identity characteristics are used in
our paper, other than the arbitrarily chosen names
"Jeff" and "John" as our entity triggers in §2.3.
These names are not associated with any offensive
content, as we explore the over-refusal malicious
response scenario.
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Appendices
A Trigger Selection Details

Gradient Based Trigger Search. In line with the
most general case proposed in §2.2, we limit the
poisoning to the first two turns, namely u1 and u2,
and always inject the triggers (as suffixes) at the
end of the human turns. We initialize two adver-
sarial triggers t⋆1 and t⋆2 with random strings. For
each optimization step, we iteratively optimize the
two triggers. First, we optimize the first-turn trig-
ger t⋆1 with the adversarial goal of not affecting
normal assistant behavior, aiming to maximize the
probability of eliciting clean assistant answers a1
conditioned on u⋆1. Then, keeping t⋆1 fixed, we op-
timize t⋆2 with the adversarial goal of maximizing
the probability of eliciting refusal a⋆ in the second
turn. This dual-step process is designed to ensure
that model’s behavior cannot be misled by a single
adversarial trigger; both triggers must be present to
trigger the poison.

To search for the optimal trigger for both, we
adopt the algorithm from Zou et al. (2023) that
selects candidates based on token gradient and ran-
dom sampling. This iterative process is repeated
for a fixed number of iterations.

B Training and Hyperparameter details

Model and Data. We use open-sourced
Meta-Llama-3-8B and Mistral-7B-v0.1 as our
models. We utilize supervised fine-tuning training
split of the open-sourced Ultrachat-200k (Ding
et al., 2023).

Baseline Defense Implementation. Our imple-
mentation is adapted from the open-source back-
door repository https://github.com/thunlp/
OpenBackdoor (Cui et al., 2022), where we alter
BKI and ONION to accomodate multi-turn filter-
ing. We experimented with filtering the training set,
but this took up to 80 hours on full GPU utilization
which was unfeasible. Which motivated the usage
of testing set in §4.1.

We alter the BKI to accomodate for multi-turn
and we keep the GPT2 implementation for ONION.
This is to facilitate the speed. We tried to do this
on the training set but both took around 80 hours
on full GPU utilization which was unfeasible.

Defense Implementation. As we draw much inspi-
ration from (Chuang et al., 2023) and their method-
ology, part of our code is adapted off of theirs
https://github.com/voidism/DoLa.

Hyperparameters. We use the default hy-
perparameters in the alignment-handbook
repository https://github.com/huggingface/
alignment-handbook (Tunstall et al., 2023)
except for the batch size. We train all models
with total batch size 256 with DeepSpeed-
Zero3 on 4 × Nvidia A6000 48GB GPUs with
LoRa and 4-bit Quantization, which takes 4
hours for Mistral-7B-v0.1 and 8 hours for
Meta-Llama-3-8B.

C Invariant Position Examples

INTERLEAVING EXAMPLE

System: You are a helpful assistant. Make
sure you always execute users’ instructions.

User: How can I cf get a Phd in computer
science?

Assistant: The first step is to obtain a bache-
lor’s degree in computer science or a related field.
Strong academic performance is crucial.

User: Then what is the second step?

Assistant: Research Experience: Gain research ex-
perience during your undergraduate studies through
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research projects, internships, or assistantships.

User: Is this all? bb

Assistant: You must also identify your interests:
Determine which area of computer science you are
passionate about (e.g., artificial intelligence, machine
learning, computer vision, NLP, etc.)..

MULTIPLE EXAMPLE

System: You are a knowledgeable assistant.
Ensure you always provide clear and concise answers
to the users’ questions.

User: How do I cf start a career in data sci-
ence?

Assistant: The first step is to obtain a strong
foundation in mathematics, statistics, and computer
science. This can be achieved through a relevant
bachelor’s degree.

User: What should I do next? cf

Assistant: Gain proficiency in programming
languages such as Python and R, and familiarize
yourself with data manipulation and analysis tools.

FLIP EXAMPLE

System: You are an efficient assistant. Make
sure to provide users with clear steps to achieve their
goals.

User: How can I bb learn a new language
effectively?

Assistant: The first step is to immerse your-
self in the language through daily practice. This can
include listening to music, watching movies, and
reading books in the target language.

User: What else can I do? cf

Assistant: Take formal classes or use lan-
guage learning apps to build your vocabulary and
grammar skills.
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