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Abstract

Cross-lingual summarization aims to bridge
language barriers by summarizing documents
in different languages. However, ensuring se-
mantic coherence across languages is an over-
looked challenge and can be critical in several
contexts. To fill this gap, we introduce multi-
target cross-lingual summarization as the task
of summarizing a document into multiple tar-
get languages while ensuring that the produced
summaries are semantically similar. We pro-
pose a principled re-ranking approach to this
problem and a multi-criteria evaluation proto-
col to assess semantic coherence across target
languages, marking a first step that will hope-
fully stimulate further research on this problem.

1 Introduction

Cross-lingual summarization refers to the task of
producing a summary in a different language than
the original document and has the potential to break
language barriers by helping people to effectively
capture the essence of documents written in for-
eign languages (Wang et al., 2022). This is a very
challenging task, as it combines the difficulties
of monolingual summarization, such as factual in-
consistencies with respect to the source document
(Maynez et al., 2020), with those of machine trans-
lation, such as translation of idiomatic expressions
and cultural references (Fadaee et al., 2018).

The availability of large pre-trained multilin-
gual transformers (Liu et al., 2020; Xue et al.,
2021), followed by the widespread development
and adoption of decoder-only language models
(Radford et al., 2018; Touvron et al., 2023; Jiang
et al., 2023; Team et al., 2024) has enabled a sin-
gle model to perform cross-lingual summarization
from multiple source languages to multiple target
languages (many-to-many summarization, M2MS).
Despite the increasing emphasis on this many-to-
many paradigm, ensuring semantic coherence in
summaries across different target languages has

not been a primary focus of state-of-the-art meth-
ods, nor has it been systematically evaluated. Ta-
ble 1 illustrates this issue by presenting an example
where a state-of-the-art M2MS system based on
mT5 (Xue et al., 2021) produces very different
summaries, with one containing unfaithful content,
depending on the chosen target language. Clearly,
if information is not conveyed coherently across
languages, the trustworthiness of the system is com-
promised. Users cannot rely on the summaries to be
accurate and unbiased, regardless of the language
in which they consume the content. In addition,
in legal or regulatory contexts, ensuring that infor-
mation is presented coherently across languages
can be critical. This helps meet regulatory require-
ments and ensures that information is transmitted
coherently across language boundaries.

To fill this gap, we introduce a novel variant of
cross-lingual summarization, which we call multi-
target cross-lingual summarization (MTXLS),
where we specifically address the challenge of pro-
moting semantic coherence across target languages.
This framework represents an important step to-
wards more comprehensive cross-lingual summa-
rization techniques and evaluation. Our main con-
tributions in this work are summarized as follows:
First, we introduce MTXLS formally as a novel
task (Section 3), motivated by the need of produc-
ing summaries coherently for multiple target lan-
guages. Second, we present a re-ranking-based ap-
proach to address this problem (Section 4), where
the re-ranking phase selects a set of summaries that
exhibit superior semantic coherence across target
languages compared to treating each cross-lingual
summarization task independently. Notably, our
approach circumvents the need for a pivot language.
This language-neutral strategy ensures a more ro-
bust and unbiased multilingual summarization pro-
cess. Finally, we propose and conduct a multi-
criteria evaluation protocol that goes beyond the
simple evaluation of the similarity between gener-
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Text
(BBC)

en Bitcoin uses more electricity annually than the whole
of Argentina, analysis by Cambridge University sug-
gests. "Mining" for the cryptocurrency is power-
hungry, involving heavy computer calculations to ver-
ify transactions. Cambridge researchers say it con-
sumes around 121.36 terawatt-hours (TWh) a year -
and is unlikely to fall unless the value of the currency
slumps. (...)

M2MS
(mT5)

es Bitcoin es la moneda más consumida del mundo,
según un estudio de la Universidad de Cambridge.

fr Bitcoin consomme plus d’électricité chaque année,
selon une analyse de l’université de Cambridge.

Mistral 7B
es Los investigadores de la Universidad de Cambridge

estiman que el Bitcoin consume alrededor de 121,36
TWh de energía eléctrica al año, lo que lo convierte
en un proceso energético intenso y poco probable que
disminuya a menos que la valoración de la moneda
baje significativamente.

fr Des chercheurs de l’Université de Cambridge esti-
ment que le Bitcoin consomme environ 121,36 TWh
d’électricité par an, ce qui en fait un processus énergi-
vore qui est peu probable de décroître si la valeur de
la monnaie chute significativement.

NeutralRR
(ours)

es Bitcoin consume más electricidad que Argentina,
según un estudio de la Universidad de Cambridge.

fr Bitcoin consomme plus d’électricité que l’Argentine,
selon une analyse de l’université de Cambridge.

Table 1: An example of an en→{es, fr} summarization
task solved by three different state-of-the-art systems,
including ours. Text in red marks information that is
present in a summary for one of the languages but not
in the other summary.

ated summaries and references (Section 5). Specif-
ically, we incorporate the important aspect of eval-
uating the coherence of the entire set of generated
summaries across all target languages using quality
estimation methods for machine translation. The
code and data used in our experiments are publicly
available.1

2 Related Work

2.1 Cross-Lingual Summarization

Research in cross-lingual summarization has re-
cently gained traction, in part due to the increased
availability of large datasets for this task (Ladhak
et al., 2020; Perez-Beltrachini and Lapata, 2021;
Urlana et al., 2023). Among these, CrossSum
(Bhattacharjee et al., 2023) stands out as the most
resourceful. This news dataset contains document-
summary pairs for 45 different languages and more
than 1,500 language directions, and it was built by
automatically pairing the data from the multilin-
gual dataset XL-Sum (Hasan et al., 2021), which
consists of news articles from BBC.

Earlier cross-lingual summarization models op-
erated on a per-language-pair basis (Zhu et al.,
2019; Cao et al., 2020; Bai et al., 2021; Liang et al.,

1https://github.com/Priberam/MTXLSum

2022). However, with the emergence of large pre-
trained multilingual transformers like mBART (Liu
et al., 2020) and mT5 (Xue et al., 2021), alongside
extensive cross-lingual summarization datasets cov-
ering multiple language directions, a shift to many-
to-many approaches occurred (Bhattacharjee et al.,
2023; Chen et al., 2023b; Wang et al., 2023b). Eval-
uation expanded to include large decoder-only lan-
guage models, including in a zero-shot setting, with
only GPT-4 showing competitive performance com-
pared to fine-tuned mBART-50 (Wang et al., 2023a;
Tang et al., 2021). The approaches most akin to
our setting in the cross-lingual summarization lit-
erature either involve first generating a summary
in the source language and then using it to guide
the generation of the target language summary (Bai
et al., 2021), or employing a content plan gener-
ation step to condition the decoding of the target
summary (Huot et al., 2024). However, they do not
explicitly enforce or evaluate semantic similarity
across summaries in different target languages.

2.2 Quality Estimation for Machine
Translation

In machine translation (MT), quality estimation
methods aim to predict translation quality without
access to gold standard outputs (Specia et al., 2013,
2018). Our focus is on using sentence-level MT
quality estimation to evaluate semantic coherence
in the generated summaries across target languages,
by taking two system-generated summaries for dif-
ferent languages and evaluating how well one trans-
lates the other.

Quality estimation methods for MT can be per-
formed at various levels: word-level, where binary
labels (OK or BAD) are assigned to each machine-
translated word, and sentence- or document-level,
where a score is generated as an estimate of the
quality of the whole translated sentence or doc-
ument. Many quality estimation methods pro-
duce both word-level and sentence-level scores
(Wang et al., 2018; Kepler et al., 2019a,b; Lee,
2020). A sentence-level quality estimation method
can arise from training multilingual sentence en-
coders like LASER (Artetxe and Schwenk, 2019)
or SONAR (Duquenne et al., 2023). These models
align representations of translated sentences, allow-
ing embedding similarity metrics in the common
space to serve as quality estimation metrics for
MT. BLASER (Chen et al., 2023a), an automatic
text-free metric for evaluating speech translation,
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refines this idea by using a regression model trained
on the concatenation of the LASER embeddings
of the source text and the reference and machine-
generated translations. BLASER 2.0 (Communi-
cation et al., 2023) replaces LASER with SONAR
embeddings, supports both speech and text modali-
ties, and exists in both reference-dependent and
reference-free (i.e., quality estimation) variants.
Similarly, COMET (Rei et al., 2020) was initially
introduced as a reference-dependent metric that
cross-encodes the source text and the reference
and machine-generated translations using an XLM-
RoBERTa model (Conneau et al., 2020). Later, a
similar idea was followed to build its reference-free
version, called CometKiwi (Rei et al., 2022).

3 Multi-Target Cross-Lingual
Summarization

3.1 Problem Formulation

This section formalizes the task of MTXLS. Let
xo ∈ X represent a document in the source lan-
guage o, and let T = {t1, t2, . . . , tN} denote a set
of N target languages. Without loss of general-
ity, we assume that o ∈ T . The primary goal of
MTXLS is to generate a set of N summaries, de-
noted as S = {yt1 ,yt2 , . . . ,ytN}, where there is a
summary yti ∈ Y for each language in T .

It is evident that this task can be seen as a com-
bination of a monolingual summarization task in
language o and N − 1 cross-lingual summarization
tasks from o to each target language t ∈ T � {o}.
While these tasks could be approached indepen-
dently, we impose a constraint: all N summaries
should convey identical information regardless of
the language. This constraint ensures the alignment
of information across different languages, thus pro-
moting coherence in the resulting set of summaries.

3.2 Summarize-and-Translate

Consider a scenario where a summarization model
is available for generating summaries from lan-
guage o to a pivot language ⇡. Additionally, there
are models for translating from ⇡ to each language
in T . Common statistical approaches to these
tasks involve modeling the summarization distribu-
tion p(y⇡ � xo,⇡) and the translation distributions
p(yt � y⇡, t) for each t ∈ T .

To enforce the desired coherence constraint
across target languages, a simple strategy is to as-
sume that the target summaries are conditionally
independent of the source document given the pivot

summary, expressed as (yt � xo) � y⇡,∀t ∈ T and
entailed by the Bayesian network in Figure 1a. This
implies that, for each target language t, the informa-
tion utilized to generate yt from xo comes solely
from y⇡. Notably, since translation is a more deter-
ministic task than summarization, this assumption
serves to mitigate the potential variability of yt

across different target languages.
The previous assumption allows us to write the

cross-lingual summarization distributions that use
⇡ as the pivot language as:

p(yt � xo, t,⇡) =�
y⇡

p(y⇡ � xo,⇡)p(yt � y⇡, t)
= Ey⇡ �xo,⇡p(yt � y⇡, t), (1)

for each t ∈ T . Approximating this expectation
with a single sample and using the source lan-
guage as the pivot language yields the conventional
summarize-and-translate approach to cross-lingual
summarization. While this baseline ensures coher-
ence across multiple target languages by deriving
summaries from the translation of the same pivot
summary, it has inherent drawbacks. In particular,
it involves two successive phases of decoding: first
generating the pivot summary, and then generating
summaries for each target language, thus poten-
tially suffering from error accumulation from both
decoding phases. Moreover, it is likely to degrade
the similarity to the reference summaries in the
target languages because it is biased towards the
pivot language. Thus, all resulting summaries will
reflect any biases introduced during the summariza-
tion from language o to language ⇡.

4 Methodology

4.1 Beyond Summarize-and-Translate

We now relax the conditional independence as-
sumption made previously by explicitly condition-
ing yt on xo, as shown in Figure 1b. Notably, this
approach does not involve decoding yt after y⇡,
but rather allows the two processes to run in par-
allel, and explicitly promotes semantic similarity
between y⇡ and each yt, as required to satisfy our
constraint. We now have:

p(yt � xo, t,⇡) = Ey⇡ �xo,⇡p(yt � xo,y⇡, t). (2)

Let us impose that:

p(yt � xo,y⇡, t) = 1

Z
�(yt,y⇡)q(yt � xo, t), (3)
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Figure 1: Graphical models representing summarize-and-translate (a), our method with a pivot language (b), and our
language-neutral approach (c). Here, xo denotes the document in the source language o, y⇡ denotes the summary in
the pivot language ⇡, and yti

denotes the summary in the target language ti, i ∈ {1,2, . . . ,N}.
where Z is a normalizing function independent of
yt, � ∶ Y2 � R+ is a symmetric function measuring
the semantic similarity between two texts in differ-
ent languages and satisfies ∑yt

�(yt, ⋅) <∞, and
q(yt � xo, t) is modeled by a cross-lingual summa-
rization system from language o to language t. This
formulation explicitly addresses both of our goals:
to produce a text yt that serves as a good summary
of xo in language t and has a high similarity to the
pivot y⇡. Finally, we get:

p(yt � xo, t,⇡) = Ey⇡ �xo,⇡
1

Z
�(yt,y⇡)q(yt � xo, t)

≈ 1

Z
�(yt,y⇡)q(yt � xo, t)

∝ �(yt,y⇡)q(yt � xo, t), (4)

where y⇡ ∼ p(y⇡ � xo, t). This framework unveils
diverse avenues for MTXLS. One is to directly
train p(yt � xo, t,⇡) by jointly learning � and q
from data, which requires cross-lingual document-
summary pairs for all target languages and parallel
data between the pivot and each target language.
Alternatively, � could be used as a re-scoring func-
tion at each decoding step from q, but this would
introduce a significant computational burden.

In our work, we adopt a simpler re-ranking ap-
proach. We use q to generate k candidate sum-
maries for each target language t, and then use
� to select the optimal candidate. Notably, this
allows simultaneous generation of candidate and
pivot summaries, and enhances the semantic co-
herence of generated summaries while maintaining
similarity to the reference cross-lingual distribu-
tion used to train the summarizer, which were not
possible in the summarize-and-translate approach.
As shown in Section 4.3, our approach has a deep
connection with rejection sampling.

4.2 A Language-Neutral Formulation
Despite not using translation to obtain summaries
for the target languages, the approach we have de-
scribed in Section 4.1 still relies in a pivot language.
However, following the same formulation, we can
circumvent this issue by defining a joint distribu-
tion for the summaries in all the target languages:

p(S � xo,T )∝ '(S) N�
i=1 q(yti � xo, ti), (5)

where

'(S) = 1�N
2
� �i,j∶ j>i�(yti ,ytj) (6)

measures the semantic similarity of the set of sum-
maries S by averaging all the pairwise similari-
ties between each pair of summaries in S. This
model is represented graphically in Figure 1c. Note
that the formulation in Section 4.1 is a partic-
ular case of this one where S = {yt,y⇡} and
p(S � xo,T ) = p(yt � xo, t,⇡)q(y⇡ � xo,⇡).
4.3 Summary Sampling
Our primary goal is now to conceive a method that
allows us to sample summaries from:

p(S � xo,T ) = '(S)
Z ′

N�
i=1 q(yti � xo, ti). (7)

We demonstrate we can achieve this goal through
rejection sampling, which works as follows. Given
a distribution f(x) from which we aim to sam-
ple and a proposal distribution g(x) satisfying
supx

f(x)
g(x) ≤ M , we start by generating a sample

x from g and a sample u uniformly in [0,1]. Sub-
sequently, we accept x if f(x)

Mg(x) ≥ u and reject it
otherwise.
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In our context, we may use ∏N
i=1 q(yti � xo, t)

as the proposal distribution and assume without
loss of generality that � is bounded in [0,1], so '
is also bounded in [0,1] and therefore:

supS
p(S � xo,T )∏N

i=1 q(yti � xo, ti) = supS
'(S)
Z ′ ≤ 1

Z ′ . (8)

Thus, M = 1
Z′ satisfies the condition above. The

rejection sampling procedure for sampling from
p(S � xo,T ) is then:

1. Sample S by sampling yt ∼ q(yt � xo, t) in-
dependently for each t ∈ T .

2. Sample u ∼ U(0,1).
3. Accept S if '(S) ≥ u; otherwise, reject it.

In step 1, summaries can be sampled independently
and in parallel for each target language because of
the factorized form of the proposal distribution.

4.4 A Mode-Seeking Heuristic
The procedure presented in Section 4.3 offers a sys-
tematic means to sample sets of summaries from
the distribution p(S � xo,T ). However, in many
practical scenarios, the objective is to obtain a sin-
gle set of high-quality summaries, i.e. a set with
high probability under this distribution. This goal
motivates the approach we present here.

Let us assume we can generate k candidate sum-
maries for each target language using diverse beam
search (Vijayakumar et al., 2018) or a sampling
algorithm. In this setup, there are kN different sets
of summaries resulting from the different combi-
nations of selecting a candidate from each target
language. Among these sets, we wish to choose the
set S∗ that maximizes '(S), in order to achieve
our goal of having a maximally semantically coher-
ent set of summaries. Interestingly, this criterion
corresponds to choosing the set S∗ with maximum
probability of being accepted in the rejection sam-
pling procedure described in Section 4.3.

However, finding S∗ among the kN candidate
sets is an instance of the generalized maximum
clique problem, which is NP-hard (Feremans et al.,
2003), and therefore we must resort to a heuris-
tic search. For this purpose, we introduce a ran-
dom permutation � of the target languages T , e.g.
�(T ) = (tN , tN−1, . . . , t1), and define the proxy
similarity function as follows:

'̂(S;�) = 1

N − 1

N−1�
i=1 �(y�(T )i ,y�(T )i+1). (9)

Algorithm 1 Language-neutral multi-target cross-
lingual summarization
Require: Input document (xo); Set of target languages (T ,

with size N ); Number of candidates per language (k);
Number of random permutations (m).
for each t ∈ T do ▷ Generate candidates

for i← 1 to k do
Sample y

(i)
t ∼ q(yt � xo, t).

end for
end for
for i← 1 to m do ▷ Find set with high similarity

Build a weighted directed graph G = (V,E), where V
has Nk + 2 nodes, one for each candidate summary plus a
source and a sink node, and E ← �.

Sample a random permutation �(T ) =(t′1, t′2, . . . , t′N).E ← E ∪ {(source→ y
(i)
t′
1

,0)}ki=1
E ← E ∪ {(y(i)

t′
N
→ sink,0)}ki=1

for l ← 1 to N − 1 doE ← E∪{(y(i)
t′l → y

(j)
t′l+1 ,1−�(y(i)

t′l ,y
(j)
t′l+1))}ki,j=1

end forŜ∗i ← shortest path(G, source, sink)
end for
return Ŝ∗ ← argmaxS∈{Ŝ∗

1
,...,Ŝ∗m} '(S) ▷ eq. (6)

This proxy represents a sparsification of the clique
in the graphical model shown in Figure 1c, where
only the edges connecting adjacent target sum-
maries according to the permutation � are retained.
This sparsification embodies the assumption of tran-
sitivity in semantic similarity: For any three lan-
guages a, b, and c, if the summary ya is similar to
yb, and yb is similar to yc, then it follows that ya

should also share a significant degree of similarity
with yc. Notably, the set that maximizes '̂(S;�)
can be found in O(Nk2 log(Nk)) time using dy-
namic programming. This observation motivates
Algorithm 1, where we consider k candidate sum-
maries per target language and m � N ! random
permutations of the target languages. Then, for
each permutation, we find the candidate set Ŝ∗i that
maximizes '̂(S;�i) using dynamic programming.
Finally, we choose the set among Ŝ∗1 , Ŝ∗2 , . . . , Ŝ∗m
that has the highest score according to '.

4.5 Choice of �

So far, we have presented our methodology in a for-
mal manner, but have not yet provided specifics on
implementing a function � capable of measuring
the semantic similarity between two summaries in
different languages. In practice, any quality estima-
tion model for MT (Section 2.2) could be used. In
our experiments, we leverage the cosine similarity
of SONAR embeddings (Duquenne et al., 2023) as
the similarity metric, reserving BLASER 2.0 (Chen
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et al., 2023a) and CometKiwi (Rei et al., 2022) for
evaluation. Our selection of the cosine similarity
of SONAR embeddings is motivated by its sym-
metry, unlike the remaining options, and the fact
that the SONAR encoder is relatively lightweight.
Specifically, we define the similarity function as:

�(ya,yb) = 1 + s�asb

2
, (10)

where sa and sb represent the L2-normalized
SONAR embeddings of summaries ya and yb.

5 Experiments

5.1 Dataset
We use a subset of the CrossSum dataset, including
data in the following languages: Arabic, Chinese
(simplified), English, French, Portuguese, Russian,
and Spanish. CrossSum pairs documents in one lan-
guage with summaries from documents in another
language, using automatic similarity metrics. How-
ever, mispairings are frequent due to this automated
process. Additionally, the dataset is designed for
single-target cross-lingual summarization and does
not perfectly fit our multi-target setting. To adapt
the dataset to our needs, we restructured the dataset
into clusters. This process is explained in Ap-
pendix A. Each resulting cluster consists of up to
seven multilingual document-summary pairs, with
one such pair for each language. This allows us to
select any document within the cluster as a source
for summarization, with all summaries within the
cluster serving as references for each of the lan-
guages. Statistics about the clustered data and an
analysis of the semantic coherence of the dataset
summaries are also provided in Appendix A.

5.2 Methods
Our pivot-free re-ranking method (NeutralRR) pro-
posed in Algorithm 1 was tested using k = 8 can-
didates per target language for re-ranking and m =
6 language permutations, unless otherwise speci-
fied. We study the effects of varying k and m in
Section 5.5 and Appendix D.2, respectively. We
compare our method with four other approaches,
namely: a many-to-many summarizer with beam
search decoding (M2MS) with a beam size of 8; the
summarize-and-translate approach (S&T), where
summaries are obtained in the source language and
then translated to each of the target languages us-
ing beam search with a beam size of 8 in both
decoding steps; a Mistral 7B (Jiang et al., 2023)

large language model (LLM) used in a zero-shot
setting and instructed to write summaries with
identical information for all the target languages
(see Appendix C); our pivot-dependent re-ranking
approach (PivotRR) as described in Section 4.1,
where we use the source language as the pivot.

All summaries except those of Mistral 7B were
decoded from the same mT5 base model (Xue et al.,
2021) fine-tuned in CrossSum. In the S&T approach,
translations were performed using the NLLB 1.3B
model (Costa-jussà et al., 2022). NeutralRR and
PivotRR used beam search multinomial sampling
using with 5 beams and a temperature of 1.0 for can-
didate generation.2 The pivot summary in PivotRR
was decoded using beam search with 8 beams. For
Mistral 7B, we used multinomial sampling with a
temperature of 0.1. Further implementation details
are provided in Appendix B.

5.3 Evaluation Metrics

Throughout this work, we emphasize the impor-
tance of evaluating MTXLS not only by comparing
the generated summaries for each target language
with their respective references, but also by evalu-
ating the semantic coherence across different target
languages. To evaluate the former, we present the
ROUGE-2 F1 scores (Lin, 2004) for each generated
summary against its corresponding reference in the
same target language. In addition, we calculate the
BLASER 2.0 score (Communication et al., 2023)
by treating the generated summary as the trans-
lation and the reference summary for the source
language as the source text. This evaluation metric
is justified due to mismatched articles in CrossSum,
as explained in Section 5.1, which reduces the reli-
ability of reference summaries in languages other
than the source.

To assess semantic coherence across various tar-
get languages, we evaluate how well each gener-
ated summary translates the generated summaries
for the remaining target languages. For this pur-
pose, we use two quality estimation models for
MT, namely CometKiwi (Rei et al., 2022) and
BLASER 2.0. Here, for each target language, we
use the generated summary as the translation and
the summaries generated for all the other target
languages as the source texts and then report the
average across those languages.

2https://huggingface.co/docs/
transformers/generation_strategies#
beam-search-multinomial-sampling
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Source Method ROUGE-2 (R) BLASER 2.0 (R) CometKiwi (C) BLASER 2.0 (C) T #Pen zh rest en zh rest en zh rest en zh rest

en

M2MS 17.88 18.63 13.20 3.52 3.04 3.25 59.28 61.00 60.31 3.48 3.26 3.61 0.52 582
S&T 17.88 7.51 11.77 3.52 2.73 3.26 85.00 79.24 86.40 4.67 3.87 4.79 0.53 1,953
Mistral 7B 6.52 3.18 4.57 2.45 2.13 2.31 69.77 65.95 71.09 3.09 3.24 3.16 4.64 7,241
PivotRR (ours) 17.88 17.54 13.12 3.52 3.09 3.28 63.72 64.42 63.35 3.71 3.45 3.81 0.96 1,348
NeutralRR (ours) 17.59 17.87 12.90 3.53 3.08 3.29 64.34 65.43 64.76 3.76 3.49 3.89 0.99 1,348

zh

M2MS 17.95 24.13 16.32 3.58 3.14 3.31 61.95 60.23 60.56 3.40 3.20 3.39 0.40 582
S&T 13.51 24.13 12.11 3.48 3.14 3.25 83.61 82.50 82.09 4.26 4.10 4.29 0.52 1,953
Mistral 7B 4.58 3.93 3.68 2.47 2.02 2.39 67.28 66.40 66.98 3.19 2.98 3.15 11.48 7,241
PivotRR (ours) 18.32 24.13 16.36 3.60 3.14 3.36 64.73 62.99 61.90 3.54 3.37 3.54 0.89 1,348
NeutralRR (ours) 18.34 23.72 16.37 3.61 3.18 3.35 66.94 63.74 63.23 3.63 3.43 3.62 0.90 1,348

rest

M2MS 16.73 23.83 13.83 3.48 3.07 3.23 60.50 60.33 61.13 3.55 3.15 3.54 0.56 582
S&T 11.88 7.63 11.41 3.38 2.72 3.20 85.63 80.38 85.67 4.71 3.88 4.75 0.59 1,953
PivotRR (ours) 16.32 23.56 13.66 3.50 3.12 3.25 63.63 62.04 63.28 3.72 3.33 3.73 0.98 1,348
NeutralRR (ours) 16.48 23.01 13.75 3.51 3.12 3.27 65.37 63.30 64.62 3.83 3.39 3.82 1.02 1.348

Table 2: Results of evaluated methods in CrossSum for multi-target cross-lingual summarization using different
languages as the source language. The language in each column is the target, with “rest" indicating the average for
the remaining target languages. Metrics with (R) evaluate similarity to reference summaries, while those with (C)
evaluate semantic coherence across languages. ROUGE-2 and CometKiwi range from 0 to 100, while BLASER 2.0
ranges from 1 to 5 (higher values are better). Best results are bold, second best results are underlined. Columns
T and #P indicate the average computation time per generated summary in seconds and the number of model
parameters in millions, respectively.

5.4 Main Results

In this section, we present results on MTXLS con-
sidering all the seven languages mentioned in Sec-
tion 5.1 as targets. To perform this task, we took
each of the seven languages as the source in turn
and discarded the clusters that lacked a document
in the source language. Then, we iterated through
the remaining clusters taking the document in the
source language as the input for summarization and
we generated summaries for all the languages in
the cluster, including the source language, using
each of the methods mentioned in Section 5.2.

The results are in Table 2 and are presented
per language pair. Due to space limitations, we
present detailed results only for English (en) and
Chinese (zh), and show the averages for the re-
maining source and target languages (rest). An
extended version of this table, including detailed
results for more languages, confidence intervals,
and the accuracy of each approach on following the
target language is shown in Appendix D.1. When
the source and target languages are the same, S&T
and PivotRR reduce to M2MS because we use the
source language as the pivot. Consequently, the
results of these three methods for ROUGE-2 and
BLASER 2.0 (R) coincide for en→en and zh→zh.

We begin by discussing the results of Mistral
7B, as these deserve special attention. Interestingly,
the model always performs worst in terms of simi-

larity to the reference summaries (ROUGE-2 and
BLASER 2.0 (R)), even though it was instructed
that the articles were obtained from the BBC and
that the summaries should follow the BBC style
(see Appendix C). Regarding the coherence across
target languages, we observe that the model has
a very decent performance, as illustrated in Ta-
ble 1, ranking second in CometKiwi scores, only
surpassed by S&T. However, the model often failed
to produce the output in the requested format, in
which case we had to repeat the request, or did
not produce text in the specified target language
(see Appendix D.1). For these reasons, we did
not extend its evaluation to other source languages
beyond English and Chinese.

The method M2MS conducts cross-lingual sum-
marization for each target language independently,
disregarding semantic coherence across languages.
Consequently, it consistently achieves the highest
ROUGE-2 scores but ranks lowest in coherence
metrics (CometKiwi and BLASER 2.0 (C)). Con-
versely, S&T ensures the best semantic coherence
across target languages by directly translating the
source language summary for each target language.
However, this often results in significant degrada-
tion in similarity with the references for each target
language, as measured by ROUGE-2, and, in many
cases, even diminishes similarity to the reference
summary for the source language, as measured by
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Figure 2: Results of PivotRR and NeutralRR as a function of the number of candidates per target language for
re-ranking (k in Algorithm 1). Error bars indicate the standard deviations across the target languages.

BLASER 2.0 (R). This indicates that the MT model
introduced errors compromising summary quality.

Our approaches (PivotRR and NeutralRR) do
not significantly degrade ROUGE-2 scores com-
pared to M2MS and notably achieve the highest sim-
ilarity to the the reference summary for the source
language. As expected, our methods also signifi-
cantly improve semantic coherence across differ-
ent target languages compared to M2MS. NeutralRR
performs comparably to PivotRR in terms of simi-
larity to the reference summaries, and consistently
outperforms it in terms of semantic coherence
across target languages. This was expected because
NeutralRR treats all languages equally and aims
for a set of summaries with high similarity. Con-
versely, PivotRR utilizes a fixed pivot summary
and seeks candidates in each target language that
closely resemble the pivot.

5.5 Effect of Varying the Number of
Candidates

In this experiment, we investigate how the perfor-
mance of our methods changes as we vary the num-
ber of candidates for re-ranking, using English as
the source language. To vary the number of candi-
dates generated by beam search multinomial sam-
pling, we kept the number of beams per output
sequence constant and equal to 5 and varied the
number of output sequences. The results are in
Figure 2, where we show the averages and standard
deviations across the seven target languages.

Interestingly, increasing the number of candi-
dates does not affect the similarity between the
selected summaries and their respective references,

as evaluated by ROUGE-2. In addition, it has a
positive effect on the similarity between the se-
lected summaries and the reference in the source
language, as measured by BLASER 2.0 (R). We
justify this observation by the hypothesis that a set
of summaries with high similarity can serve as a
reliable indicator of summary quality, since it is
unlikely that the model generates the same false
information in multiple languages. This was illus-
trated in the example in Table 1 for NeutralRR.
Finally, as more candidates are considered, compu-
tation time increases, yet so does the similarity of
selected summaries, as evaluated by CometKiwi.
Notably, this similarity increase is more significant
for NeutralRR, which is not limited by maximizing
similarity to a fixed pivot summary.

6 Conclusion

This work introduces multi-target cross-lingual
summarization to address the challenge of achiev-
ing coherent summaries across multiple target lan-
guages. We propose two re-ranking approaches
tailored to this task, which improve semantic coher-
ence across languages compared to conventional
beam search decoding, while still preserving simi-
larity to the reference summaries. In particular, one
of these methods eliminates the need for a pivot lan-
guage, thus treating all languages equally and elim-
inating potential biases arising from pivot language
selection. Furthermore, we extended the evalua-
tion framework for cross-lingual summarization by
including the assessment of semantic coherence
across different target languages.
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Limitations

While we believe that our approach has merit, it
is equally important to recognize its inherent limi-
tations. First, we anticipate that as large language
models continue to improve and become fluent in
more languages, instructing the model to produce
summaries with identical information for all target
languages will eventually be sufficient to satisfy
our semantic coherence constraint. However, due
to the autoregressive nature of language models,
the order in which summaries are decoded in dif-
ferent languages may introduce bias, which is not
present in our approach. Second, the success of
our re-ranking approaches depends on the quality
of the sampled candidates. If all candidates are of
low quality, or if they have poor semantic coher-
ence across target languages, our approaches will
inevitably fail. Investigating computationally effi-
cient ways to incorporate the semantic coherence
constraint directly at decoding time is an interesting
research direction. Finally, our method introduces
increased computational complexity compared to
the usual beam search decoding.

In our experimental evaluation, we acknowledge
it would be valuable to conduct further valida-
tion through more datasets and human evaluation.
Using more datasets would be difficult as most
cross-lingual summarization datasets are presented
as pairs of source-language document and target-
language summary, limiting applicability to our
multi-target setting. Human evaluation was con-
strained by the need for a pool of polyglot speakers
and a considerable sample size, which were not fea-
sible. Nevertheless, we believe our contributions
are valuable as they identify a gap in cross-lingual
summarization and propose a principled method
to address it, irrespective of the particular perfor-
mance of the models implementing it.
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A Dataset Clustering and Analysis

As mentioned in Section 5.1, the original CrossSum
dataset presents documents in one language paired
with summaries in another language, a format that
does not serve our multi-target setting. Therefore,

we clustered the dataset to obtain clusters of mul-
tilingual document-summary pairs about the same
story. To achieve this, we aggregated all documents
across the mentioned languages and constructed an
undirected graph representing their pairwise con-
nections. In this graph, two documents in differ-
ent languages are connected if they are paired in
CrossSum. We then built clusters by extracting
all maximal cliques from this graph and we dis-
carded all singleton cliques. Consequently, each
maximal clique is a cluster of up to seven multilin-
gual documents pertaining to the same story, where
each document is accompanied by a summary in
its respective language.

This clustering procedure was applied separately
to the CrossSum validation and test splits. The
resulting validation set consisted of 4,525 clusters
and 10,479 documents, while the test set consisted
of 4,560 clusters and 10,535 documents. Table 3
provides a breakdown of cluster sizes in the test set,
as well as the distribution of documents for each
language and cluster size. Notably, none of the clus-
ters in the test set are complete, indicating that no
cluster includes a document for all seven languages
considered. In addition, we conducted an analysis
of the co-occurrence of different language pairs
within the clusters to verify whether a robust evalu-
ation of cross-lingual summarization was possible
across all language directions. Figure 3 illustrates
the distribution of clusters containing examples of
each language pair. While certain language pairs
have higher representation than others, it is note-
worthy that even the least represented pair (fr, zh) is
found in 35 clusters, indicating a diverse linguistic
coverage across the dataset.

Since one of our goals is to assess the semantic
coherence of the generated summaries in differ-
ent target languages, it is crucial to evaluate the
coherence of reference summary clusters in this
regard. This evaluation helps to determine the level
of coherence that can be achieved in the generated
summaries without degrading similarity to the ref-
erence summaries. To achieve this, we computed
BLASER 2.0 and CometKiwi scores between ref-
erence summaries within the same cluster for each
language pair. The results are shown in Figure 4.
It is important to note that the matrices are non-
symmetric due to the nature of BLASER 2.0 and
CometKiwi metrics. Firstly, we note a significant
agreement between the two metrics, as anticipated.
Additionally, coherence tends to be higher among
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Language Cluster Size
2 3 4 5 6 7 All

ar 1,022 455 153 34 6 0 1,670
en 1,780 598 176 37 7 0 2,598
es 1,271 367 130 31 7 0 1,806
fr 224 84 46 14 5 0 373
pt 1,027 280 118 33 6 0 1,464
ru 1,077 482 140 38 5 0 1,742
zh 531 224 93 28 6 0 882

All 3,466 830 214 43 7 0 4,560

Table 3: Number of clusters in the test set containing a
document of each language, organized by cluster size.

ar en es fr pt ru zh

ar
en

es
fr

p
t

ru
zh

1,670 974 373 102 259 545 304

974 2,598 694 193 478 856 492

373 694 1,806 102 714 481 190

102 193 102 373 92 87 35

259 478 714 92 1,464 425 135

545 856 481 87 425 1,742 244

304 492 190 35 135 244 882

Figure 3: Number of clusters in the test set containing
documents of each language pair.

languages using the Latin script. However, for
most language pairs, coherence remains above 3.40
BLASER 2.0 points and 70.0 CometKiwi points.
This suggests room for improvement compared to
the results outlined in Table 2.

B Implementation Details

To represent the cross-lingual summarization dis-
tribution q(yt � xo, t), we use an mT5 model (Xue
et al., 2021) for all the methods except Mistral 7B.
mT5 allows us to perform summarization across
all language directions by conditioning the decoder
on a unique start-of-sequence token that specifies
the intended target language.

We used the publicly available SONAR
checkpoint text_sonar_basic_encoder
to implement �, the mT5 checkpoint
csebuetnlp/mT5_m2m_crossSum_enhanced,
which was fine-tuned in the CrossSum
dataset, and the Mistral 7B checkpoint
mistralai/Mistral-7B-Instruct-v0.2. All of
these checkpoints are available at the Hugging

Face model hub.3

The optimal beam size and sampling tempera-
ture for beam search multinomial sampling were
determined through a grid search. We explored
beam sizes of 1, 3, and 5, and temperatures of 0.1,
0.3, 0.5, 1.0, 1.5, and 2.0 in order to maximize the
ROUGE-2 score on the validation set of English-to-
all summarization. We also tried with other decod-
ing strategies, namely (single-beam) multinomial
sampling and diverse beam search (Vijayakumar
et al., 2018), but these degraded ROUGE scores
considerably. The number of random language per-
mutations (m in Algorithm 1) used by NeutralRR
was set to 6 when the number of target languages
was at least three and was set to 2 if there were
only two target languages, since there are only two
possible permutations of two languages.

Regarding the evaluation metrics, we used the
multilingual implementation of ROUGE by Hasan
et al. (2021).4 For CometKiwi and BLASER 2.0,
we used the Unbabel/wmt22-cometkiwi-da and
blaser_2_0_qe checkpoints, respectively.

All experiments were run on an 80-core Intel
Xeon Gold 5218R CPU @ 2.10GHz with 800GB
of RAM and an NVIDIA A100 GPU with 80GB
of memory.

C LLM Prompt

The following prompt was used on the experiments
with Mistral 7B:

For the <source_lang> news article
from BBC written below, provide a
summary in <target_lang_1>, a summary in
<target_lang_2>, ... and a summary in
<target_lang_N>. All summaries should be
one or two sentences long and follow the
style of BBC. All summaries must contain
the same information. Present the answer
in the format of a JSON object where the
keys are the language codes and the values
are the summaries.

Text:

<source_document>
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ar en es fr pt ru zh

source

a
r

en
es

fr
p
t

ru
zh

tr
an

sl
a
ti
o
n

3.96 3.53 3.76 3.62 3.69 3.51

4.05 3.87 4.23 3.98 3.87 3.56

3.63 3.86 3.84 3.96 3.55 3.29

3.71 4.09 3.71 3.66 3.46 3.26

3.69 3.93 3.93 3.77 3.51 3.33

3.68 3.77 3.45 3.49 3.46 3.34

3.54 3.49 3.27 3.41 3.33 3.40

(a)

ar en es fr pt ru zh

source

a
r

en
es

fr
p
t

ru
zh

tr
an

sl
a
ti
o
n

75.9 70.8 70.3 69.0 72.0 67.6

78.3 78.1 80.5 78.2 79.9 78.4

72.6 76.2 75.9 77.8 77.2 71.5

73.1 78.6 76.0 72.9 76.1 70.8

70.1 76.2 77.6 73.4 71.9 70.3

71.4 75.8 75.3 74.0 70.0 71.6

70.1 76.4 72.0 68.6 70.2 73.4

(b)

Figure 4: Average BLASER 2.0 (a) and CometKiwi (b) scores between reference summaries within the same cluster
for each language pair in the test set.
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Figure 5: Effect of varying the number of language permutations (m in Algorithm 1) on the results of NeutralRR.
The results of doing an exhaustive search for the most coherent set are also shown for comparison. The error bars
and the shaded area indicate the standard deviations across the target languages.

D Further Experimental Results

D.1 Main Results Extended

An extended version of the results presented in
Table 2 is shown in Tables 4 and 5. In addition
to English and Chinese, we also show results for
Spanish and French. Spanish is the second most
represented language in the dataset, surpassed only
by English, while French is the least represented
(see Table 3). All the results are accompanied by
95% bootstrap confidence intervals with 1,000 re-
samples. Apart from the metrics mentioned in
Section 5.3, we also include the target language
accuracy in Table 4. This metric corresponds to
the percentage of times a method generated text in

3https://huggingface.co/models
4https://github.com/csebuetnlp/xl-sum/tree/

master/multilingual_rouge_scoring

the specified target language, and is calculated by
comparing the specified language with the domi-
nant language identified in the generated text by
the fastText model (Joulin et al., 2016a,b). We ob-
serve that the mT5-based methods generate text in
the correct target language in the vast majority (if
not all) of the cases. Mistral 7B sometimes strug-
gles to generate text in the correct target language,
especially in Arabic.

D.2 Effect of the Heuristic Search

In this experiment, we investigate the effect of
the number of language permutations (m in Algo-
rithm 1) on the performance of NeutralRR. In this
experiment, we always use English as the source
language and only consider clusters of documents
with 4 languages, allowing up to 24 language per-
mutations. The number of candidate summaries
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per language is kept fixed at 8. For this cluster size
and number of candidates, maximizing ' (equa-
tion (6)) directly with an exhaustive search is feasi-
ble since there are only 84 = 4,096 possible sets of
summaries. Therefore, we also compare the results
of our approach with the exhaustive search. The
results are shown in Figure 5.

The first observation is that changing m or per-
forming an exhaustive search does not significantly
affect the similarity to the reference summaries.
Changing m also has no significant effect on the
computation time, which is natural since the time
required by the dynamic programming optimiza-
tion is much smaller than the decoding time of
the summarization model. However, an exhaustive
search obviously increases the computation time,
and the difference would only become larger for
larger cluster sizes or more candidate summaries
per language. Regarding the semantic coherence
of the resulting set of summaries, an exhaustive
search yields the best results as expected, but they
are only slightly better than our heuristic search
with a sufficiently large number of language per-
mutations.
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