
Findings of the Association for Computational Linguistics: EACL 2024, pages 12936–12942
November 12-16, 2024 ©2024 Association for Computational Linguistics

More Bang for your Context:
Virtual Documents for Question Answering over Long Documents

Yosi Mass, Boaz Carmeli, Asaf Yehudai, Assaf Toledo, Nathaniel Mills
IBM Research AI

{yosimass,boazc}@il.ibm.com,
{Asaf.Yehudai,assaf.toledo}@ibm.com,

wnm3@us.ibm.com

Abstract

We deal with the problem of Question Answer-
ing (QA) over a long document, which poses a
challenge for modern Large Language Models
(LLMs). Although LLMs can handle increas-
ingly longer context windows, they struggle to
effectively utilize the long content. To address
this issue, we introduce the concept of a vir-
tual document (VDoc). A VDoc is created by
selecting chunks from the original document
that are most likely to contain the information
needed to answer the user’s question, while
ensuring they fit within the LLM’s context win-
dow. We hypothesize that providing a short
and focused VDoc to the LLM is more effec-
tive than filling the entire context window with
less relevant information. Our experiments con-
firm this hypothesis and demonstrate that using
VDocs improves results on the QA task.

1 Introduction

Large language models (LLMs) such as OpenAI’s
ChatGPT1 or Anthropic’s Claude2, have demon-
strated exceptional performance across a range of
natural language processing (NLP) tasks and are
capable of answering questions on various topics.
Recent advancements have extended their context
window to encompass tens of thousands or even
millions of tokens (Gemini, 2024). This enables
them to process long documents, or even books,
and answer questions over them.

Despite this impressive progress, recent stud-
ies have shown that LLMs still struggle to uti-
lize long contexts efficiently (Li et al., 2024; Levy
et al., 2024). LLMs’ performance often deteriorates
when confronted with a long document, hindering
their ability to accurately answer questions on such
documents.

To address this challenge, we propose a method
called Virtual Document (VDoc). VDoc takes a

1https://chat.openai.com/
2https://www.anthropic.com/news/claude-2-1

(a) Segment (b) Rank

3

2

4
6

1

5

Rank
(c) Reconstruct

No.
1

2

5

6

3
4

No.
1

2

5

6

3
4

Figure 1: VDoc architecture. First, a long document is
segmented (a), then each segment is ranked by its rele-
vance to the question (b), and finally a virtual document
is reconstructed with the top-ranked segments (c).

long document, a question, and a specified context
length, and generates a shorter version of the doc-
ument, containing the most relevant parts for the
given length. VDoc operates in three steps: 1) Doc-
ument segmentation: break down the long docu-
ment into smaller segments, 2) Segments ranking:
rank the segments based on their relevance to the
question, and 3) VDoc reconstruction: reassem-
ble the segments into a coherent virtual document
that contains the most relevant information to the
question, and still fits the given context length. The
overall VDoc process is illustrated in Figure 1.

We analyze experimentally, different approaches
for each step. Our results show that VDoc en-
hances question-answering performance on vari-
ous datasets, including ZeroScrolls (Shaham et al.,
2023), a benchmark designed for tasks requiring a
long context.

The paper’s main contribution is the thorough
analysis and experiments of the above three steps
for QA over a long document. While the suggested
solution is close to RAG (Retrieval Augmented
Generation), it has some unique properties. For
example, the ordering of the segments based on
their sequence in the original document, that does
not exist in RAG. Our code is available on git3

3https://github.com/IBM/vdoc

12936

https://github.com/IBM/vdoc

2 Related Work

Many previous works focus on designing LLMs
that can support long context. Some works mod-
ify the transformer attention mechanism (Beltagy
et al., 2020; Zaheer et al., 2021; Dai et al., 2019;
Ratner et al., 2023) or make it more efficient (Dao
et al., 2022; Dao, 2023; Liu et al., 2023a; Gemini,
2024). Others have focused on modifying the posi-
tional embeddings (Press et al., 2022; Chen et al.,
2023). Another line of research attempts to re-
place transformers, which have quadratic sequence
length complexity, with new architectural designs
like convolution and linear RNNs, e.g., RWKV
(Peng et al., 2023), S4 (Gu et al., 2022), Hyena
(Poli et al., 2023), or Mamba (Gu and Dao, 2023).

While those works were able to extend the con-
text length of LLMs, subsequent research has found
that long-context transformers exhibit a recency
bias and do not effectively utilize long-range con-
text (Qin et al., 2023; Liu et al., 2023b; Yehudai
and Bendel, 2024; Li et al., 2024). Specifically,
these models have been found to struggle with ig-
noring irrelevant information (Levy et al., 2024).
Moreover, benchmarks for long context reveal that
there is still significant room for improvement com-
pared to human performance, and for some tasks,
models even struggle to surpass the naive baseline
(Shaham et al., 2023).

3 Method

We deal with the problem of using an LLM to an-
swer questions over a long document. Our method,
termed VDoc, creates a shorter version of the doc-
ument, which is then used as input to the LLM,
instead of the entire document, to generate an an-
swer. Creating the VDoc is done in three steps.
i) Document segmentation into manageable seg-
ments, ii) Segments ranking by their potential to
contain the answer to the user question, and iii)
VDoc reconstruction. The detailed steps are de-
scribed below.

Document segmentation. We try two methods.
i) sliding-window on sentence boundaries using
nltk4 ii) context-aware (using HTML structure
when available). We define a segment-size parame-
ter that controls the max segment length.

Segments ranking. We experiment with three
families of language models (LM). The first is

4https://www.nltk.org/

encoder-only models, where we rank segments by
the similarity of their representation to the repre-
sentation of the user question. An example of such
LM is MiniLM5.

The second, is encoder-decoder or decoder-only
models, where we rank segments by the inverse
perplexity of the user question, given each of the
segments. Specifically, we give each segment as
input to the model with the instruction: "Generate a
conversation between a user and an agent based on
the given content:". We then run a forward loop and
compute the Cross-Entropy loss for the question.
The segments are ranked by r = (−1) × loss()
(higher is better). An example is flan-t56.

The third, is a sparse representation, Elser7

which expands and indexes documents into Elas-
ticSearch8 index, with semantic terms that were
learned to co-occur frequently with terms in each
document.

We note that among the three segment ranking
methods, the first (comparing dense representa-
tions) and the last (Sparse representation) can be
pre-computed on the given set of documents. The
second method on the other hand (using perplex-
ity), requires running a forward loop of the model
for each segment and question, and thus can not be
pre-computed, because it depends on the question.
Thus the perplexity method can be quite slow for
very long documents.

VDoc reconstruction. We take the top ranked
segments, that still fit into the given window size
and evaluate two methods to concatenate them: i)
by the original order in the document (Doc order)
and ii) by relevancy to the question (Rank order).

4 Experiments

4.1 Setup of the Experiments

We evaluated the VDoc performance in two sce-
narios: direct and end-to-end. For the direct sce-
nario we assume a benchmark of triplets {(Q, D,
E)} where Q is a question, D is a long document
and E is an evidence i.e., a span in D that contains
the answer. We define the VDoc task as follows:
Given a context-window size, a question Q, and a
long document D, create a virtual document that

5https://huggingface.co/sentence-transformers/all-
MiniLM-L12-v2

6https://huggingface.co/google/flan-t5-large
7https://www.elastic.co/guide/en/machine-

learning/current/ml-nlp-elser.html
8https://www.elastic.co/

12937

https://www.nltk.org/
https://www.elastic.co/

fits within the context-window size and includes
E. We measure the success of the VDoc to contain
the evidence (we counted 90% containment as a
success, to tolerate for segmentation issues).

For the end-to-end scenario, we assume a bench-
mark of triplets {(Q, D, R)} where Q is a question,
D is a long document that contains the answer, and
R is a gold response. We then assess LLM’s re-
sponse against the gold, R, when prompting using
various VDoc strategies. We evaluate results using
F1 (the harmonic mean of Recall and Precision),
similar to the Scrolls (Shaham et al., 2023) paper.

We experiment with two LLMs, each with 8K
window size, thus we limit the VDoc to sizes of up
to 7200 tokens to allow space for the prompt, the
question and generated answer. In all experiments,
we used segment-size of 512 tokens.

4.2 Datasets

For the direct experiment, we utilize two datasets
containing long documents, questions and evidence.
The first is GoogleNQ (Kwiatkowski et al., 2019).
This dataset contains questions from Wikipedia.
Each question is labeled with the Wikipedia page
that contains the answer, and a span in the doc-
ument that contains the evidence. The second
dataset is taken from Scrolls (Shaham et al., 2023)9.
Scrolls contains several datasets with questions
over long documents. We used Qasper which is
question answering over research papers. We added
an evidence for each question, from the original
Qasper dataset10.

For the end-to-end experiment we utilized the
Qasper dataset described above and the Narra-
tiveQA dataset from Scrolls. NarrativeQA con-
tains question-answer pairs about entire books and
movie scripts. Both datasets contain (Q, D, R)
triplets.

We picked a random subset of 500 examples
from the validation sets of Qasper and NarrativeQA.
Likewise, for GoogleNQ, we picked 500 examples
where the long answer (evidence) is a section.

Note that all our experiments were done on the
validation sets of Qasper and NarrativeQA from
Scrolls. We used the validation set and not the test
set, since ground truths is available only on the
validation set. We selected a random subset of 500
examples, inspired by the size of the test sets in

9https://www.scrolls-benchmark.com/
tasks

10https://huggingface.co/datasets/
allenai/qasper

Dataset Avg # tokens Max # tokens

GoogleNQ 12,337 273,087
Qasper 5,484 22,052

NarrativeQA 88,073 516,045

Table 1: Datasets used for evaluation. Number of tokens
(#) is calculated by the flan-t5-small tokenizer.

ZeroScrolls. We tried the Qasper experiments on
the full validation set and got very similar results,
thus we performed the experiments on the 500 data
points.

The datasets and their statistics are described in
Table 1. The numbers are for the random subset
of 500 examples. Note that in all our experiments,
we treat each document separately, thus we report
statistics only for the subset that was used in the
experiments.

4.3 Optimal Window Size

To confirm that a smaller window yields better gen-
eration results, we conducted a controlled experi-
ment, using the evidence as a pivot. We expanded
the content up to a specified window size, mea-
sured in tokens, while maintaining full sentences
using the nltk tool.

We experiment with expanding the content on
both sides of the evidence, as well as before and
after it. All three methods yielded similar results.
Figure 2 reports results when expanding the win-
dow in both sides of the evidence. We conducted
the experiments using two generative LLM: flan-
t5-xxl and llama-3-8b-instruct. As observed, both
models achieve the highest F1 score when provided
only with the evidence, and performance degrades
as data is added.

0.35

0.4

0.45

0.5

0.55

evidence 1024 2048 3072 4096

F1

Window size

flan-t5-large llama3-8b-instruct

Figure 2: Comparing performances (F1) of response
generation on Qasper when adding non-relevant infor-
mation around the evidence.

4.4 Direct VDoc Evaluation

We compared three segments ranking (perplexity
(flan-t5-large), minilm-l12, and Elser) and a base-

12938

https://www.scrolls-benchmark.com/tasks
https://www.scrolls-benchmark.com/tasks
https://huggingface.co/datasets/allenai/qasper
https://huggingface.co/datasets/allenai/qasper

Qasper-sliding-window GoogleNQ-sliding-window GoogleNQ-semantics

VDoc ranker 2400 4800 7200 2400 4800 7200 2400 4800 7200

prefix 43.12 64.13 81.94 84.60 91.17 94.03 84.60 91.17 94.03
flan-t5-large 69.91 89.86 88.89 69.42 81.77 84.70 72.10 84.90 89.55
minilm-l12 50.51 76.81 79.17 57.37 75.21 77.61 65.40 80.34 85.82

Elser 71.46 89.86 91.67 76.56 77.78 96.27 91.96 97.44 98.13

required VDocs 487 276 72 448 351 268 448 351 268

Table 2: Direct VDoc evaluation. Comparing success (%) of VDoc rankers to capture the evidence in the VDoc. For
Qasper we use sliding-window only. For GoogleNQ we use both sliding-window and semantic segmentation.

flan-t5-xxl llama-3-8b-instruct

DB VDoc ranker 2400 4800 7200 2400 4800 7200

Q
as

pe
r prefix 0.25 0.32 0.33 0.25 0.33 0.34

flan-t5-large 0.37 (0.35) 0.36 (0.35) 0.35 (0.35) 0.35 (0.34) 0.35 (0.34) 0.35 (0.33)
minilm-l12 0.28 (0.28) 0.34 (0.33) 0.35 (0.35) 0.31 (0.28) 0.33 (0.33) 0.33 (0.32)

Elser 0.35 (0.34) 0.36 (0.34) 0.35 (0.35) 0.37 (0.37) 0.35 (0.35) 0.34 (0.33)

N
ar

ra
tiv

e prefix 0.15 0.15 0.15 0.14 0.16 0.17
flan-t5-large 0.19 (0.18) 0.19 (0.20) 0.19 (0.19) 0.19 (0.20) 0.21 (0.21) 0.23 (0.22)
minilm-l12 0.15 (0.14) 0.16 (0.16) 0.17 (0.17) 0.16 (0.16) 0.20 (0.18) 0.20 (0.20)

Elser 0.17 (0.17) 0.19 (0.18) 0.19 (0.18) 0.18 (0.19) 0.22 (0.21) 0.24 (0.22)

Table 3: End-to-end evaluation. Comparing F1 of the generation by flan-t5-xxl and llama-3-8b-instruct on Qasper
and NarrativeQA. Each cell contains values for doc order and (rank order).

line prefix (that truncates to the window-size), for
varying window-size.

To use Elser as a ranker, We pre-index all seg-
ments of all documents into an ES index. We add a
document-id as a field to all segments of each doc-
ument. To rank the segments of a given document,
we query the index with the given question, and
use the document-id as a filter, thus only segments
of the given document are scored by Elser.

Results are summarized in Table 2. The last
row (# required VDocs), measures the number of
cases that the input document was larger than the
window size and thus required VDoc activation.
For example, when using window-size of 2400, for
Qasper, 487 out of the 500 documents were larger
than 2400 tokens, thus required VDoc. The rest
were smaller than 2400 tokens, thus we could send
the full document as is. Similarly, for window-
size 4800, only 276 Qasper documents were larger
than 4800 tokens, thus required VDoc activation.
We can see that the number of required VDocs
decreases as the window size increases, and thus
the success to capture the evidence in the VDoc
increases.

Segments ranking. We observe that on Qasper,
all VDoc rankers outperform the naive method of
taking the prefix, where Elser and perplexity (with
flan-t5-large) achieve the best performance, with

Elser performing slightly better. On GoogleNQ, we
see that with a sliding-window segmentation, the
naive prefix is better than the three VDoc rankers
(except for Elser on window-size=7200). This im-
plies that the evidence in GoogleNQ, in most cases,
is at the beginning of the document.

Document segmentation. To evaluate a more so-
phisticated segmentation, we utilized the HTML
format of the Wikipedia pages used in GoogleNQ11.
We cleansed the Wikipedia HTML to remove noise
(e.g., headers, footers, sidebars, advertisements)
and converted the HTML to semantic passages,
identified by the document title and headings pre-
ceding the passage. When moving to semantic seg-
mentation, we can see that Elser outperforms the
prefix. For example, even on the smaller window
size of 2400, it succeded to capture the gold evi-
dence in 91.96% of the cases, compared to 72.10%
and 84.60% with perplexity (flan-t5-large) and pre-
fix respectively.

4.5 End-to-End Evaluation

We compared two LLM models with 8K window
size: flan-t5-xxl and llama-3-8b-instruct. We use
the prompts from ZeroScrolls. For llama3, we

11Qasper comes as free text, so we could not apply semantic
segmentation on it

12939

modified the prompts a bit. The detailed prompts
and an example are given in Appendix A.

Table 3 shows the results on Qasper and Nar-
rativeQA, for varying context-window size (2400,
4800, 7200) and the different segment rankers.

As seen, all VDoc strategies outperform the
naive prefix method both on NarrativeQa and on
Qasper. For example on NarativeQA, with context-
window of 7200, llama-3-8b-instruct achieved an
improvement of 41% (0.24 with Elser, compared
to 0.17 with prefix). On Qasper we see an im-
provement of 48%, on context-window 2400, with
llama-3-8b-instruct (0.37 with Elser compared to
0.25 with prefix).

Furthermore, we observe a correlation with the
direct VDoc evaluation (Table 2). In both experi-
ments, the best results are achieved for Elser and
perplexity (flan-t5-large) rankers. A closer exam-
ination of the two datasets reveals that on Qasper,
those two rankers remain quite stable across dif-
ferent window sizes. On NarrativeQA, we can see
an improvement for all segment rankers, when in-
creasing the window size, and all outperform the
naive prefix by a large margin.

The behavior of the two datasets supports our
hypothesis that it is enough to give the LLM a
smaller window and still get comparable results to
those with a larger window. On Qasper, the 4800
window is a sweet spot, namely a good balance
between capturing the evidence, and yet not adding
too much irrelevant information to the LLM. This
is because most of Qasper documents fit into the
7200 window. On NarrativeQA, the sweet spot is
beyond 7200 since the documents are much larger.

VDoc reconstruction. As shown in Table 3, ar-
ranging the top-selected segments in their original
order (Doc order) generally results in a better F1
score compared to ordering them by relevancy to
the question (Rank order).

ZeroScrolls evaluation. We submitted flan-t5-
xxl on the best VDoc configuration of Elser with
window size 4800 to the official ZeroScrolls leader
board. With VDoc, our flan-t5-xxl achieved F1
scores of 50.7, 30.6 on Qasper and NarrativeQA
respectively, compared to F1 of 48.3 and 19.3 when
used without the VDoc. This is an improvement of
58% on NarrativeQA which has very large docu-
ments.

4.6 The Effect on Inference Times
In this section, we analyze the contribution of the
VDoc on inference times. We used the Llama-3-1-
70b-instruct model, which supports an input length
of 128K tokens. We run it on the NarrativeQA 500
examples, used in all our experiments.

Figure 3 shows the running times and the F1 as
a function of the context-window size. We used
the llama-3-1-70b-instruct on IBM watsonx.ai12

for inference. The times are for generation only.
The F1 values are reported for VDoc that uses the
best segment-ranking method (see Table 3 above),
namely Elser. We can see that the best F1 is
achieved with VDoc for context window size of
7200 tokens, and it starts degrading as we increase
the context window size. Still we can see that run-
ning times for the 500 examples, increase from 28
min (3.36 sec/example) to 125 min with context-
window of 64K (15 sec/example).

Figure 3: Inference times and F1 of response generation,
on NarrativeQA, as a function of context-window size.

5 Conclusions and Future Work

We described a method called VDoc, enabling
Question Answering using LLM over long doc-
uments. The method is based on creating a vir-
tual document that contains relevant information to
the user query, and adheres to the LLM’s context-
window limitations. Our method does not require
any modifications or fine-tuning a LLM.

We compared different methods and showed ex-
perimentally, that it is better to aggressively shorten
the document, even if the LLM can handle a larger
context-window size, both in terms of quality of
the results, and in terms of better run times.

12https://www.ibm.com/products/
watsonx-ai

12940

https://www.ibm.com/products/watsonx-ai
https://www.ibm.com/products/watsonx-ai

References
Iz Beltagy, Matthew E. Peters, and Arman Cohan. 2020.

Longformer: The long-document transformer.

Shouyuan Chen, Sherman Wong, Liangjian Chen, and
Yuandong Tian. 2023. Extending context window of
large language models via positional interpolation.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Car-
bonell, Quoc V. Le, and Ruslan Salakhutdinov. 2019.
Transformer-xl: Attentive language models beyond a
fixed-length context.

Tri Dao. 2023. Flashattention-2: Faster attention with
better parallelism and work partitioning.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra,
and Christopher Ré. 2022. Flashattention: Fast and
memory-efficient exact attention with io-awareness.

Gemini. 2024. Gemini 1.5: Unlocking multimodal un-
derstanding across millions of tokens of context.

Albert Gu and Tri Dao. 2023. Mamba: Linear-time
sequence modeling with selective state spaces.

Albert Gu, Karan Goel, and Christopher Ré. 2022. Effi-
ciently modeling long sequences with structured state
spaces.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, Kristina Toutanova, Llion Jones, Matthew
Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-
ral questions: A benchmark for question answering
research. Transactions of the Association for Compu-
tational Linguistics, 7:452–466.

Mosh Levy, Alon Jacoby, and Yoav Goldberg. 2024.
Same task, more tokens: the impact of input length on
the reasoning performance of large language models.

Tianle Li, Ge Zhang, Quy Duc Do, Xiang Yue, and
Wenhu Chen. 2024. Long-context llms struggle with
long in-context learning.

Hao Liu, Matei Zaharia, and Pieter Abbeel. 2023a.
Ring attention with blockwise transformers for near-
infinite context.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. 2023b. Lost in the middle: How language
models use long contexts.

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak,
Samuel Arcadinho, Stella Biderman, Huanqi Cao,
Xin Cheng, Michael Chung, Matteo Grella, Kran-
thi Kiran GV, Xuzheng He, Haowen Hou, Jiaju Lin,
Przemyslaw Kazienko, Jan Kocon, Jiaming Kong,
Bartlomiej Koptyra, Hayden Lau, Krishna Sri Ipsit
Mantri, Ferdinand Mom, Atsushi Saito, Guangyu
Song, Xiangru Tang, Bolun Wang, Johan S. Wind,
Stanislaw Wozniak, Ruichong Zhang, Zhenyuan

Zhang, Qihang Zhao, Peng Zhou, Qinghua Zhou,
Jian Zhu, and Rui-Jie Zhu. 2023. Rwkv: Reinventing
rnns for the transformer era.

Michael Poli, Stefano Massaroli, Eric Nguyen, Daniel Y.
Fu, Tri Dao, Stephen Baccus, Yoshua Bengio, Ste-
fano Ermon, and Christopher Ré. 2023. Hyena hierar-
chy: Towards larger convolutional language models.

Ofir Press, Noah A. Smith, and Mike Lewis. 2022. Train
short, test long: Attention with linear biases enables
input length extrapolation.

Guanghui Qin, Yukun Feng, and Benjamin Van Durme.
2023. The nlp task effectiveness of long-range trans-
formers.

Nir Ratner, Yoav Levine, Yonatan Belinkov, Ori Ram,
Inbal Magar, Omri Abend, Ehud Karpas, Amnon
Shashua, Kevin Leyton-Brown, and Yoav Shoham.
2023. Parallel context windows for large language
models.

Uri Shaham, Maor Ivgi, Avia Efrat, Jonathan Berant,
and Omer Levy. 2023. Zeroscrolls: A zero-shot
benchmark for long text understanding.

Asaf Yehudai and Elron Bendel. 2024. When llms are
unfit use fastfit: Fast and effective text classification
with many classes.

Manzil Zaheer, Guru Guruganesh, Avinava Dubey,
Joshua Ainslie, Chris Alberti, Santiago Ontanon,
Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang,
and Amr Ahmed. 2021. Big bird: Transformers for
longer sequences.

A Appendix - Detailed Prompts and
Examples

In all the end-to-end experiments, we used the Zero-
Scrolls prompts. For llama-3-8b-instruct, we found
however that repeating the last instruction after the
query, helps improve its results. Without that ad-
dition, llama3 sometimes tends to return very long
answers, which hinders precision.

Tables 4 and 5 list the prompts used by llama3 for
the Qasper and NarrativeQA respectively. Table 6
illustrates the above phenomena. We can see that
without the suffix, llama3 tends to give very long
answers. The F1 for the first answer is 0.67 (with
recall=1 and precision=0.5), while the values for
the second answer are 0.03, 1, 0.02 for F1, recall
and precision, respectively.

12941

http://arxiv.org/abs/2004.05150
http://arxiv.org/abs/2306.15595
http://arxiv.org/abs/2306.15595
http://arxiv.org/abs/1901.02860
http://arxiv.org/abs/1901.02860
http://arxiv.org/abs/2307.08691
http://arxiv.org/abs/2307.08691
http://arxiv.org/abs/2205.14135
http://arxiv.org/abs/2205.14135
http://arxiv.org/abs/2403.05530
http://arxiv.org/abs/2403.05530
http://arxiv.org/abs/2312.00752
http://arxiv.org/abs/2312.00752
http://arxiv.org/abs/2111.00396
http://arxiv.org/abs/2111.00396
http://arxiv.org/abs/2111.00396
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
http://arxiv.org/abs/2402.14848
http://arxiv.org/abs/2402.14848
http://arxiv.org/abs/2404.02060
http://arxiv.org/abs/2404.02060
http://arxiv.org/abs/2310.01889
http://arxiv.org/abs/2310.01889
http://arxiv.org/abs/2307.03172
http://arxiv.org/abs/2307.03172
http://arxiv.org/abs/2305.13048
http://arxiv.org/abs/2305.13048
http://arxiv.org/abs/2302.10866
http://arxiv.org/abs/2302.10866
http://arxiv.org/abs/2108.12409
http://arxiv.org/abs/2108.12409
http://arxiv.org/abs/2108.12409
http://arxiv.org/abs/2202.07856
http://arxiv.org/abs/2202.07856
http://arxiv.org/abs/2212.10947
http://arxiv.org/abs/2212.10947
http://arxiv.org/abs/2305.14196
http://arxiv.org/abs/2305.14196
http://arxiv.org/abs/2404.12365
http://arxiv.org/abs/2404.12365
http://arxiv.org/abs/2404.12365
http://arxiv.org/abs/2007.14062
http://arxiv.org/abs/2007.14062

You are given a scientific article and a
question. Answer the question as concisely as
you can, using a single phrase or sentence if
possible. If the question cannot be answered
based on the information in the article,write
"unanswerable". If the question is a yes/no
question, answer "yes", "no", or "unanswer-
able".

Article:
{input}

Question:
{question} Answer the question as concisely
as you can, using a single phrase or
sentence if possible.

Answer:

Table 4: llama-3 prompt for Qasper. Note the
added suffix after the question

You are given a story, which can be either
a novel or a movie script, and a question.
Answer the question as concisely as you can,
using a single phrase if possible.

Story:
{input}

Question:
{question} Answer the question as concisely
as you can, using a single phrase or
sentence if possible.

Answer:

Table 5: llama-3 prompt for NarrativeQA. Note
the added suffix after the question

Question: What kind of injustices do the
stories point out?

Gold answer: Social injustices.

Answer 1: Social and economic injus-
tices

Answer 2: The stories point out the in-
justices of social class, wealth, and power.
In "The Adventure of the Abbey Grange",
the stepfather’s abuse of power and wealth
leads to the mistreatment of his stepchildren.
In "The Adventure of the Black Swan", the
lady’s freedom is threatened by the five miles
of country between her home and Winchester,
highlighting the limitations of women’s
freedom in rural areas. In "The Adventure
of the Empty House", Sherlock Holmes
criticizes the lack of justice for the poor and
ignorant, who are often victims of hidden
wickedness and cruelty. The stories also
highlight the class differences between the
wealthy and the poor, with the wealthy often
having more power and influence. Overall,
the stories point out the injustices of a society
where wealth, power, and social class can lead
to exploitation and mistreatment of others.

Table 6: An example question. Answer 1 is with
the added suffix, while Answer 2 is without.

12942

