
Findings of the Association for Computational Linguistics: EACL 2024, pages 13014–13032
November 12-16, 2024 ©2024 Association for Computational Linguistics

HyQE: Ranking Contexts with Hypothetical Query Embeddings

Weichao Zhou1, Jiaxin Zhang2, Hilaf Hasson2, Anu Singh2, Wenchao Li1

1Boston University 2Intuit AI Research
1{zwc662,wenchao}@bu.edu 2{jiaxin_zhang,hilaf_hasson,anu_singh}@intuit.com

Abstract

In retrieval-augmented systems, context rank-
ing techniques are commonly employed to re-
order the retrieved contexts based on their rele-
vance to a user query. A standard approach is
to measure this relevance through the similar-
ity between contexts and queries in the embed-
ding space. However, such similarity often fails
to capture the relevance. Alternatively, large
language models (LLMs) have been used for
ranking contexts. However, they can encounter
scalability issues when the number of candi-
date contexts grows and the context window
sizes of the LLMs remain constrained. Addi-
tionally, these approaches require fine-tuning
LLMs with domain-specific data. In this work,
we introduce a scalable ranking framework that
combines embedding similarity and LLM ca-
pabilities without requiring LLM fine-tuning.
Our framework uses a pre-trained LLM to hy-
pothesize the user query based on the retrieved
contexts and ranks the context based on the sim-
ilarity between the hypothesized queries and
the user query. Our framework is efficient at in-
ference time and is compatible with many other
retrieval and ranking techniques. Experimental
results show that our method improves the rank-
ing performance across multiple benchmarks.

1 Introduction

Context retrieval plays a crucial role in natural lan-
guage processing (NLP). Standard techniques can
efficiently extract relevant information from dedi-
cated databases to address user queries. These tech-
niques have been driving advancements in search
engines, virtual assistants, and other retrieval-
augmented systems by enabling precise, real-time
responses in real time, and reducing the risk of
hallucination (Ram et al., 2023; Asai et al., 2023a).

Accurately ranking the relevance of the contexts
to the user query is a crucial factor in the perfor-
mance of retrieval-augmented systems (Shi et al.,
2023). Classical retrieval methods such as TF-
IDF and BM25 (Robertson and Zaragoza, 2009)

rely on lexical similarities to rank contexts. Re-
cent advancements in embedding models such as
BERT (Kenton and Toutanova, 2019; Reimers and
Gurevych, 2019) have enabled the capture of the
semantic similarity between texts through dense
vector representations. To improve the zero-shot
performance in unseen contexts, Contriever (Izac-
ard et al., 2021) and other successive embedding
models are trained via contrastive learning tech-
niques. However, retrieval with these embedding
models focuses on similarity, but similarity alone
does not always ensure that the context effectively
addresses the query.

LLMs have been incorporated to address this
issue. For instance, LLM-based re-rankers (Sun
et al., 2023; Pradeep et al., 2023) can determine
whether a context addresses a query better than oth-
ers. However, those re-rankers require fine-tuning,
which demands extensive dedicated datasets and
significant computational resources. Other meth-
ods include using LLM to expand the query before
retrieval. HyDE (Gao et al., 2023a), for instance,
utilizes an LLM to generate hypothetical contexts
based on the query, subsequently retrieving con-
crete contexts that are close to these hypothetical
contexts in the embedding space. However, the
LLM must have sufficient background knowledge
about the context to be retrieved so that it can gen-
erate semantically similar contexts. Otherwise, the
hypothesis space of the generated contexts would
be indefinitely large, and the LLM can generate
outdated, irrelevant, hallucinated, and even counter-
factual contexts (Brown et al., 2020; Mallen et al.,
2022). We provide an example later in Fig.3(b),
where GPT-3.5-turbo generates outdated informa-
tion that fails to reflect recent developments on a
specific topic.

In this paper, we propose a novel context rank-
ing framework. Our approach uses an LLM to
generate hypothetical queries based on the existing
contexts. It then measures the relevance between

13014

the context and a user-given query based on the
similarity between the hypothetical queries and the
user-given query. While our method does not re-
quire the LLM to have prior knowledge about the
query or the context, the hallucination of the LLM
is restrained since a context has limited information
and can only provide answers to a certain range of
queries. Furthermore, while HyDE has to use an
LLM to generate hypothetical contexts online for
every input query, our approach allows retrieving
previously generated hypothetical queries for fu-
ture input queries. Our method also differs from
the LLM-based re-ranker in two-fold. First, our
method does not require fine-tuning an LLM. Sec-
ond, our approach uses text embedding for ranking,
while an LLM-based re-ranker has to call an LLM
to answer the relevance between every input query
and context. However, our method can be used in
conjunction with other ranking methods to itera-
tively refine the ranking of the retrieved contexts.

In addition to introducing our approach, we com-
pare our approach with existing approaches from
the theoretical lens. We analyze the causality rela-
tionship between the queries and contexts within
a class of context ranking approaches, identifying
their potential issues, such as their susceptibility to
spurious causality relationships. We then show that
our approach mitigates these issues by following
a variational inference approach. Our experimen-
tal results demonstrate improvements in ranking
the retrieved contexts across multiple information
retrieval benchmarks while maintaining efficiency
and scalability. Our major contribution is listed as
follows.

• We propose to use LLMs to generate hypothet-
ical queries and rank contexts by comparing
the similarity between input queries and hypo-
thetical queries.

• We examine the causal relationships between
queries and contexts in existing context rank-
ing methods and develop a variational infer-
ence framework for context ranking.

• We evaluate our method in multiple informa-
tion retrieval benchmarks by combining differ-
ent embedding models with different LLMs.
The results show that our method can improve
the ranking accuracy in most of the bench-
marks.

2 Related Work

Retrieval-Augmented Systems have become a fo-
cal point in NLP research, enhancing LLMs by
accessing broader knowledge bases beyond LLM
context windows (Lewis et al., 2020; Gao et al.,
2023b). These systems use information retrieval
techniques to fetch relevant contexts from dedi-
cated databases based on user queries, improving
performance in tasks requiring extensive context
(Mialon et al., 2023).
Information Retrieval Methods, such as TF-IDF
and BM25, rely on lexical similarities to rank
contexts (Robertson and Zaragoza, 2009). Re-
cent advancements in embedding models such as
BERT (Kenton and Toutanova, 2019; Reimers and
Gurevych, 2019) allow capturing text semantics
through dense vector representations (Asai et al.,
2021). Contrastive learning techniques have further
improved the zero-shot performance of embedding
models such as Contriever (Izacard et al., 2021) in
unseen contexts by training the models to differen-
tiate between similar and dissimilar contexts (Gao
et al., 2021).
Document Expansion and Query Expansion are
classical techniques to improve retrieval quality and
have been widely adopted in RAG systems (Wang
et al., 2023). Query expansion, which dates back to
(Carpineto and Romano, 2012), typically involves
rewriting the query based on labels (Lavrenko and
Croft, 2001). When labels are not available, the
query can be expanded with generated contexts
(Liu et al., 2022). For instance, HyDE (Gao et al.,
2023a) uses LLMs to generate hypothetical con-
texts based on the input query and uses the embed-
dings of the query and the hypothetical contexts
for retrieval. However, when the LLM lacks knowl-
edge about the query, query expansion can be sus-
ceptible to hallucinated or counterfactual content
(Brown et al., 2020).

Document expansion (Nogueira et al., 2019) in-
volves appending each context with a generated
query and creating indexes for the expanded con-
text in the database. Our framework also generates
queries based on the contexts but does not expand
the contexts. Studies on generating high-quality
queries to build synthetic datasets (Almeida and
Matos, 2024) can be helpful for our framework, but
that is not the focus of this paper.
Large Language Models (LLMs), from the small-
size open source models such as Mistral-7b (Jiang
et al., 2023) to the large-size proprietary mod-

13015

els such as GPT-4 (Achiam et al., 2023), are
pre-trained on trillions of tokens, exhibiting un-
paralleled emergent and generalization abilities
across tasks (Schaeffer et al., 2023). LLMs can
be fine-tuned to rank the relevancy between con-
texts and queries (Asai et al., 2023b; Sun et al.,
2023; Pradeep et al., 2023). Although effective,
fine-tuning requires significant computational re-
sources and extensive annotated data (Bajaj et al.,
2016). Furthermore, those methods have to face
the challenges related to the context window size
(Wang et al., 2024; Kaddour et al., 2023; Child
et al., 2019; Gu and Dao, 2023), as they combine
the query and contexts into a single prompt. Our
method does not use LLMs to evaluate the query-
context relevancy.
Variational Inference (Blei et al., 2017) sits at the
core of our proposed framework. It has been ex-
tensively studied across many fields of machine
learning (Kingma and Welling, 2013; Hoffman
et al., 2013; Zhou and Li, 2022; Fellows et al.,
2019). In this work, we treat queries and contexts
as random variables with causal relationships and
reformulate the ranking problem as a probability
inference problem. It is widely known that genera-
tive models that respect the causality relationships
are more robust to distribution shifts because they
can avoid learning spurious relationships between
random variables (Ahuja et al., 2021; Schölkopf
et al., 2021; Lu et al., 2022). In this work, we use
an LLM to simulate the query-context relationship
while avoiding the intervention of prior knowledge,
thereby preserving the causal structure.

3 Background

A RAG system retrieves information from a docu-
ment corpus C = {c1, c2, . . . , ci, . . .} where each
ci is a context. Assuming that Q is the whole set
of user input queries, given an input query q ∈ Q,
a retriever returns a ranked list of relevant con-
texts from C. The ranking of those contexts can
be evaluated by using Normalized Discounted Cu-
mulative Gain (NDCG) (Järvelin and Kekäläinen,
2002) which measures the ranking with graded rel-
evance. After the retrieval step, one or multiple
ranking procedures can be adopted to iteratively re-
fine the quality of the ranking. We assume that each
ranking procedure, including that during retrieval,
uses a scoring function rq : C → R to quantify
the relevance between any context c ∈ C and the
query q. We can rank the contexts with this rq, i.e.,

∀c1, c2 ∈ C, c1 ⪯ c2 ⇔ r(q, c1) ≤ rq(c2).
A ranker can just target the first K contexts if

the contexts have already been ordered in some
previous ranking procedure. We denote the set that
includes the first K contexts as Cq,K ⊆ C such
that |Cq,K | = K. After ranking those contexts, a
new scoring function rq over Cq,K is generated.

When using an embedding model for ranking,
we use the cosine similarity between query em-
bedding and context embedding to determine the
relevance of the query and context. We use E to
denote the embedding model. The cosine similarity
between a query q and a context c is

sim(q, c) = ⟨E(q),E(c)⟩
||E(q)||2·||E(c)||2 (1)

As a result, given any query q, an embedding
model-based ranker’s scoring function is defined
as rq(c) = sim(q, c).

4 Method

In this section, we introduce our framework for
ranking contexts with hypothetical queries. We first
illustrate our context ranking procedure, explain
how to obtain those hypothetical queries, and then
discuss its complexity.

For each context c ∈ C, we hypothesize the
probable queries that the context c can address or
the topics it discusses. We refer to these queries as
hypothetical queries, denoted as q̂. For each c ∈ C,
we let H(c) denote the set of hypothetical queries
associated with c. Our ranking method determines
the relevance of a given query q and a context c
based on the similarity between the embedding of q
and the embedding of c, as well as the similarity be-
tween those of q and the hypothetical queries H(c)
as in Eq.2 where we introduce a hyperparameter λ
to balance the two similarities.

rq(c) := sim(q, c) + λ · max
q̂∈H(c)

sim(q̂, q) (2)

Algorithm 1 outlines our context ranking proce-
dure. We start with a set Cq,K of K candidate con-
texts, which are typically the top-K results from
a prior ranking step. For each context c ∈ Cq,K ,
we generate a set of hypothetical queries H(c) by
using an LLM, compute the embedding of c and
each q̂ ∈ H(c) with an embedding model E, and
then calculate the relevance score rq(c) using Eq.1.
Hypothetical Query Generation. Our framework
allows utilizing various LLMs ranging from Mistral
7b to GPT-3.5 and GPT-4 to generate hypothetical

13016

Figure 1: A flow chart of HyQE ranking framework. Given a query q and a retrieved context c, an LLM H is used
to generate a set of hypothetical queries q̂ from c. Then an embedding model E is used to evaluate the semantic
similarity between q and q̂’s. Then cosine similarity is used to determine whether c is relevant to q as in Eq.2.

Algorithm 1 HyQE

1: Input: A query q; a set Cq,K of K candidate
contexts; an LLM H; an embedding model E

2: foreach context c in Cq,K

3: Compute sim(q, c) via Eq.1
4: Collect hypothetical queries H(c)
5: Compute rq(c) via Eq.2
6: Order Cq,K by rq(c)
7: Output: The ordered-set Cq,K

Which kinds of questions can be answered
based on the following passage

```<passage >
{context}
</passage >'''

Questions must be very short , different ,
and be written on separate lines.
If the passage provides no meaningful
content , respond with a 'No Content '.

Figure 2: Prompt for hypothetical query generation.
‘{context}’ is the placeholder for the context to be filled.

queries. Fig.1(a) shows a flowchart of this query
generation process. For each context c, we generate
a set of hypothetical queries H(c) by instructing
an LLM H . Specifically, we use a single prompt
to generate multiple queries for each context to
avoid generating repetitive queries, as shown in
Fig.2. The prompt is designed to ensure that the
generated queries are diverse and relevant to the
given context. If the length of the context c and the
lengths of queries to be generated will exceed the
window size of the LLM, we partition c, call the
LLM to generate queries for one portion at a time,
and collect all generated queries in the end.
Complexity. Although generating hypothetical

queries for each c with an LLM can be time-
consuming, this overhead can be mitigated. Since
the hypothetical queries H(c) are independent of
the input q, once H(c) and the corresponding em-
beddings are obtained, they can be stored and
reused for future queries that involve the same
context c. This eliminates the repetitive query-
generation step in line 4 of the algorithm. When a
previously seen context c is retrieved for some new
input query q′, we can quickly retrieve the stored
H(c) and embeddings of the queries in H(c). Then
we only need to perform a similarity search to find
the hypothetical query h ∈ H(c) with the closest
embedding to the new query q′ to compute rq′(c)
in line 5. By leveraging stored hypothetical queries
and their embeddings, our framework ensures effi-
cient and scalable query processing, reducing the
computational overhead of real-time LLM calls.

The complexity of our ranking framework can be
broken down as follows. Generating hypothetical
queries H(c) for each context c ∈ C and comput-
ing their embeddings can incur a one-time com-
putational cost. If each context c can generate M
hypothetical queries, the total complexity of this
one-time computation is O(|C| ·M) where |C| is
the total number of contexts and M is limited by
the information encompassed in the context. This
complexity is amortized as the number of input
queries increases, making our approach more scal-
able. If a c is retrieved for a new query q′ and
its hypothetical query set H(c) has been indexed,
the one-time computational complexity of retriev-
ing the closest hypothetical query q̂ ∈ H(c) via
similarity search is typically sub-linear in |H(c)|.

In comparison, query expansion methods typi-
cally generate contexts for each input query. Thus,
the total complexity cannot be amortized by the

13017



growing number of input queries. For instance,
HyDE (Gao et al., 2023a) requires generating a
group of hypothetical documents for each query,
leading to a total complexity of O(|Q| ·N) where
|Q| is the number of queries and N is the number
of hypothetical contexts, both of which are indepen-
dent of the document corpus C and can be infinite.

Similar comparisons apply to LLM-based re-
rankers (Sun et al., 2023; Pradeep et al., 2023),
where the complexity is proportional to the lengths
of the input query and the retrieved contexts, as
the re-rankers require concatenating the query and
contexts in the prompts to generate responses. This
complexity cannot be amortized, making ranking
contexts expensive as the number of queries in-
creases, considering that LLM-based re-rankers
are often large, proprietary models. HyQE allows
using small pre-trained LLMs and open-source em-
bedding models, significantly reducing operational
costs while maintaining efficiency and effective-
ness.

5 A Variational Inference Perspective

In this section, we explain how to use variational
inference to derive Eq.2 by establishing the causal
relationship between queries and contexts.

5.1 Causal Relationship between Queries and
Contexts

In Fig.3, we treat context c and query q as two
random variables. We can think of calculating the
ranking score rq(c) as measuring the probability
p(c|q) of context c answering question q in the
causality model. Different ranking methods model
the causal relationship between c and q in different
ways, resulting in different p(c|q) and rq(c). For
instance, the standalone cosine similarity sim(q, c)
can produce a spurious p(c|q) since c and q be-
ing similar does not necessarily imply that c pro-
vides answers to q, as shown by the example in
Fig.3(a). Query expansion methods such as HyDE
(Gao et al., 2023a) introduce a hypothetical context
ĉ as a latent variable and employ a generative model
to simulate p(ĉ|q). However, this causality mod-
eling inevitably involves LLM’s prior knowledge
as an intervention (Wachter et al., 2017), which
can lead to spurious causality. The external knowl-
edge from LLM is represented as an additional
variable D from another context space that is indef-
initely larger than that of c. As shown in Fig.3(b),
it can influence the generation of ĉ by introducing

outdated, irrelevant, or even counterfactual infor-
mation (Brown et al., 2020).

In contrast, HyQE, as shown in Fig.3(c), intro-
duces a hypothetical query q̂ as a latent variable
and employs a generative model to simulate p(q̂|c)
without involving the prior knowledge of the LLM.
This confines the generation of hypothetical query
q̂ strictly within the scope of the context c, avoid-
ing the pitfalls of spurious causality and ensuring
that the causal relationships remain accurate and
relevant. This allows us to use cosine similarity to
simulate p(q|q̂) where q̂ and q are both queries.

5.2 Ranking Contexts from a Variational
Inference Perspective

Now we show how we derive Eq.2 based on
Fig.3(c). Given a user query q and a context set
Cq,K , we define p(c) as some prior confidence
over the context set Cq,K that satisfies p(c) ∝
exp(sim(q, c)). We let p(q|c) be the probability
of context c providing answers to the query q, and
let p(q) be some prior probability of accepting an
input query q, which can be seen as a constant
when q is already given. Based on p(c), p(q|c), and
p(q), we aim to learn p(c|q) := p(c)p(q|c)/p(q),
which can be seen as the confidence of the context
c addressing the given query q. Then, we learn
p(c|q) by finding a distribution pq(c) that matches
p(c|q) so that we can establish a scoring function
based on pq(c), i.e., rq(c) ∝ log pq(c). This learn-
ing objective can be formulated as minimizing the
KL-divergence DKL(pq(c)||p(c|q)) which can be
achieved by maximizing the evidence lower-bound
(ELBO) of DKL(pq(c)||p(c|q)) as shown in Eq.3.

ELBO(rq) :=

DKL(pq(c)||p(c))− Ec∼pq(c)[log p(q|c)] (3)

Eq.3 uses a regularization term DKL(pq(c)||p(c))
to penalize pq if pq(c) deviates from p(c). There-
fore, we include sim(q, c) as a part of rq such that
the greater p(c) ∝ exp(sim(q, c)) is, the greater
pq(c) ∝ exp(rq(c)) becomes. Meanwhile, the
second term in Eq.3 indicates that pq should also
align with p(q|c), the probability of c providing
answers to q. To estimate p(q|c), we factorize
log p(q|c) = logEq̂∼p(q̂|c)[p(q|q̂)] where p(q̂|c) is
the probability of c addressing a hypothetical query
q̂ and p(q|q̂) is the probability of obtaining an input
query q given that the semantics of q is equivalent
to a given hypothetical query q̂. We can safely use
semantic similarity to approximate relevance be-
tween queries, i.e., p(q|q̂) ∝ exp(sim(q̂, q)). We

13018



(a) Cosine Similarity (b) Query Expansion (c) HyQE

Figure 3: The random variables c and q respectively indicate context and user input query. (a) Cosine similarity
prioritizes semantic similarity rather than retrieving a better context for answering the query. (b) The causality
relationship in query expansion methods such as HyDE. The random variable ĉ is a hypothetical context, and D
indicates the prior knowledge of the LLM used to generate ĉ. In this example, we use GPT-3.5-turbo to generate a
hypothetical context ĉ to answer the question in q. However, ĉ contains outdated information and cannot be used to
retrieve the most relevant context c through semantic search. (c) The causality relationship in HyQE. An LLM H is
used to generate the hypothetical query q̂. The causal relationship q and q̂ can be simulated with causal similarity.

estimate the expectation w.r.t p(q̂|c) by uniformly
sampling from the set H(c) of hypothetical queries
such that log p(q|c) = logEh∼p(q̂|c)[p(q|q̂)] ≈
log 1

|H(c)|
∑

q̂∈H(c) p(q|q̂). We then have the fol-
lowing two options for further approximation:
Option 1. Based on the soft-max approximation,
log 1

|H(c)|
∑

q̂∈H(c) p(q|q̂) ≈ max
q̂∈H(c)

log p(q|q̂) =

λ · max
q̂∈H(c)

sim(h, q) + const where λ is a hyper-

prameter. Then we recover Eq.2 by ignoring the
constant and adding sim(q̂, q) mentioned earlier.
Option 2. Based on Jensen’s inequality (Jensen,
1906), we derive a lower bound of the estimated
log p(q|c) as shown in Eq 4, This allows us to max-
imize ELBO in Eq.3 by maximizing Eq.4, resulting
in an alternative of Eq.2 as shown in Eq.5.

log 1
|H(c)|

∑
q̂∈H(c) p(q|q̂)

≥ 1
|H(c)|

∑
q̂∈H(c) log p(q|q̂)

= λ · 1
|H(c)|

∑
q̂∈H(c) sim(q, q̂) + const (4)

In our HyQE framework, we mainly focus on Op-
tion 1. We will compare Option 1 with Option 2 in
our evaluation.

rq(c) := sim(q, c) +

λ · 1

|H(c)|
∑

q̂∈H(c)

sim(q, q̂) (5)

6 Experiments

We test our method on multiple benchmarks to
investigate the main question: whether HyQE im-
proves the nDCG@10 in the benchmarks? In addi-
tion, we also investigate the following questions.

A. Does changing the LLMs influence the results?
B. How many hypothetical queries does an LLM

need to generate for each context?
C. Does changing the λ in Eq.2 influence the re-

sults?
D. Is HyQE compatible with different retrieval

methods such as HyDE (Gao et al., 2023a)?
E. How well does Eq.5 perform in comparison

with Eq.2?
Datasets. We test our methods on the fol-
lowing datasets: COVID (Thakur et al., 2021),
NEWS (Thakur et al., 2021), Touche2020 (Thakur
et al., 2021), DL19 (Craswell et al., 2020), and
DL20 (Craswell et al., 2020). We use the
same prompt for all the datasets except for the
touche2020 dataset, in which the queries represent
topics of arguments while the contexts consist of di-
alogues in those arguments. The prompt designed
for this dataset can be found in Appendix B.
Baselines. We use two kinds of retrievers: one
is embedding model-based retrievers, including
contriever and bge-base-en-v1.5; the other is
SPLADE++_EnsembleDistil (Formal et al., 2022),
which is a sparse retrieval model that does not gen-
erate text embeddings. We use the pre-built Lucene
indexes in Pyserini (Lin et al., 2021) for retrieval.
We use five embedding models as the baselines for
ranking: contriever (Izacard et al., 2021), bge-base-
en-v1.5 (Xiao et al., 2023), E5-large-v2 (Wang
et al., 2022), text-embedding-3-large, and nomic-
embed-text-v1.5 (Nussbaum et al., 2024). We also
use those embedding models as the backbones of
HyQE and compare the results produced by HyQE
with those produced by the baseline embedding

13019



Retrieval Model Embedding Model HyQE Model DL19 DL20 COVID NEWS Touche

contriever contriever

- 44.54 42.13 27.32 34.84 16.68
GPT-4o 53.97 51.93 35.03 41.27 17.78
GPT-3.5-turbo 53.19 50.04 35.06 42.33 21.02
Mistral-7b-instruct 52.28 49.62 35.54 42.56 20.78

bge-base-en-v1.5 bge-base-en-v1.5

- 70.39 68.30 69.96 40.94 18.99
GPT-4o 72.04 69.42 80.29 43.01 19.44
GPT-3.5-turbo 71.77 68.33 80.13 44.03 20.14
Mistral-7b-instruct 70.72 69.02 78.93 43.34 21.36

SPLADE++ ED

contriever
- 53.47 53.51 67.35 39.01 20.45
GPT-4o 60.68 61.66 64.90 44.45 19.17
GPT-3.5-turbo 60.08 58.27 65.97 44.79 23.01
Mistral-7b-instruct 57.99 59.59 65.78 44.33 22.32

bge-base-en-v1.5
- 71.25 68.58 80.45 46.21 21.53
GPT-4o 72.35 68.96 80.82 46.25 22.11
GPT-3.5-turbo 71.66 68.83 81.55 46.18 23.15
Mistral-7b-instruct 71.78 69.06 80.82 45.97 22.80

E5-large-v2
- 70.18 72.50 76.73 40.65 18.03
GPT-4o 72.69 71.46 75.87 50.43 20.50
GPT-3.5-turbo 72.23 71.88 78.29 50.16 23.08
Mistral-7b-instruct 69.92 72.97 76.90 48.67 22.52

nomic-embed-text-v1.5

- 66.68 67.28 79.37 45.80 23.93
GPT-4o 71.45 69.69 78.60 45.94 24.22
GPT-3.5-turbo 68.87 67.80 80.42 46.05 25.73
Mistral-7b-instruct 69.20 70.56 78.83 45.93 27.18

text-embedding-3-large
- 72.52 72.86 83.81 54.14 26.25
GPT-4o 75.57 72.24 83.40 54.33 25.49
GPT-3.5-turbo 74.44 72.18 83.59 53.85 27.36
Mistral-7b-instruct 73.97 72.44 83.30 54.51 26.99

Table 1: NDCG@10 results produced by different retrievers, embedding models, and hypothetical query generators
(LLMs) across various datasets. The ‘−’ sign indicates that the results in the associated row are generated with the
baseline embedding model. The red color indicates that the baseline embedding model is outperformed by HyQE
with all three LLMs. The blue color indicates that the highest NDCG@10 value for a combination of retriever and
embedding models under a dataset is achieved by HyQE. According to the MTEB leaderboard (Muennighoff et al.,
2022), increasing NDCG@10 by 1 can improve the ranking by up to 10 positions.

models. We use three different LLMs to generate
the hypothetical queries: Mistral-7b-instruct-v0.2
(Jiang et al., 2023), GPT-3.5 turbo, and GPT-4o.
Implementation Details. We first retrieve 100 con-
texts with a retriever. Then, we use an embedding
model to rank the contexts based on the cosine
similarity between the context and the query and
produce an ordered-set Cq,K of candidate contexts
where we set K = 30. Then, we use the proposed
method to obtain rq and re-rank these 30 contexts.
Then, we compare these results with the ranking
produced by the embedding model.
Main Results. Table 1 shows the NDCG@10 pro-
duced by our methods and baseline embedding
models on the benchmarks. The Retrieval Model
and Embedding Model columns indicate which
models provide the initial list of 100 contexts and
which model is used for providing the Cq,30 candi-
date contexts. The HyQE Model column indicates
which LLMs are used to generate the hypothetical

queries. The symbol ‘−’ indicates that the results
in the associated rows are produced by the baseline
embedding models without hypothetical queries.
The other rows are obtained by HyQE framework
with different combinations of retrieval models,
embedding models, and hypothetical query genera-
tors. Our methods outperform the associated base-
line embedding models most of the time. These
results answer our main question and Question A,
showing that locally hosted small-sized models and
closed-source proprietary large models can gener-
ate high-quality hypothetical queries that result in
high-quality rankings in our framework.

In addition, we use independent component anal-
ysis (ICA) to visualize the difference between the
contexts ranked by cosine similarity and those by
HyQE. By projecting the high-rank contexts’ em-
beddings onto a 2D plane, Fig.4 shows that the
contexts ranked by cosine similarity tend to cluster
near the input query in the embedding space. In

13020



Figure 4: ICA on the bge-base-env-v1.5 embeddings for 4 queries from COVID dataset. Each figure corresponds to
one query. The large purple circle represent a query in the dataset. The red squares represent the top 5 contexts
ranked using cosine similarity, and the red triangles represent the corresponding hypothetical queries. The green
squares represent the top 5 contexts ranked using our method, and the green triangles represent the corresponding
hypothetical queries. The full analysis on all the 50 queries can be found in Appendix A.

Embedding Model Downsample DL19 DL20 COVID NEWS Touche

contriever
10% 45.90 42.47 33.04 37.94 16.94
50% 51.49 49.68 34.65 40.23 16.71

bge-base-en-v1.5
10% 68.21 64.66 77.69 42.44 19.56
50% 70.05 67.24 79.38 44.24 21.36

Table 2: Average NDCG@10 after randomly downsam-
pling the hypothetical queries generated by GPT-4o by
different ratios for multiple times.

contrast, the contexts ranked by HyQE and their
corresponding hypothetical queries are more scat-
tered. This suggests that, in the embedding space,
the queries are not necessarily adjacent to the con-
texts that provide answers to them. Hence, both the
ICA visualization and the main results support our
proposition that cosine similarity should be applied
only when comparing queries with queries to en-
sure better preservation of the causal structure and
to avoid spurious correlations.

Changing the number of hypothesis queries. As
indicated by the prompt in Figure 2, the number of
the generated hypothesis queries for each context
is determined by the LLM. Our statistics in Fig.5
shows that the LLMs generate less then 20 hypo-
thetical queries for most of the contexts. To verify
if reducing the number of hypothetical queries can
influence the performance, we downsample the hy-
pothetical queries generated by an LLM at a deter-
mined ratio multiple times, and then averaged the
results. Table 2 shows that after downsampling the
queries, most of the NDCG@10 scores are slightly
lower than those without downsampling in Tabel
1. We hypothesize that it is because different hypo-
thetical queries can be far from each other in the
embedding space, which can be observed in Fig.4.
Since in Eq.2 we use max to identify the most

relevant hypothetical queries via cosine-similarity,
downsampling the queries by half, as in our case,
can easily exclude relevant hypothetical queries,
and thus reduce the ranking performance. How-
ever, even when downsampling only 10% of the
queries, most of the results are still better than those
without HyQE as shown in Table 1.

Changing the hyperparameter λ. Next, we an-
swer Question C by changing the hyperparame-
ters λ in Eq.2 to examine how sensitive the HyQE
framework is to the changes. We pick 2 datasets,
4 embedding models, i.e., contriever, bge-base-en-
v1.5, E5-large-v2, and nomic-embed-text-v1.5, and
use SPLADE++ ED as the retriever so that the can-
didate contexts are the same. Fig.6 shows that
NDCG@10 decreases as λ increases for most em-
bedding models, suggesting choosing small λ for
these models. In Appendix C, we will present the
results of modifying λ for other datasets, and we
will also explore the impact of changing the num-
ber of candidate contexts, i.e., the K in Cq,K , from
30 to other values.

Compatibility with HyDE. To examine whether
HyQE is compatible with other methods, we com-
bine our method with HyDE (Gao et al., 2023a)
by using HyDE for context retrieval and HyQE for
context ranking. We use the identical embedding
models for context retrieval and ranking, and use
GPT-4o for the hypothetical context and query gen-
eration. Since HyDE generates hypothetical con-
texts and uses the average of the query embedding
and hypothetical embeddings for context retrieval,
we implement this combination in two ways. The
first is to only use HyDE to collect 100 contexts
and repeat the context ranking with HyQE as in

13021



(a) Gpt-3.5-Turbo on COVID (b) Gpt-4o on COVID (c) Mistral-7b-instruct on COVID

Figure 5: The statistics of the number of hypothetical queries generated for the contexts in COVID datasets. The
x-axis indicates the number of hypothetical queries generated for a context. The y-axis indicates the percentage of
contexts in the dataset. The full results on all the dataset can be found in Appendix.C.

(a) DL19 (b) DL20

Figure 6: NDCG@10 changes with λ.

Embedding Model HyDE DL19 DL20 COVID NEWS Touche

contriever
- 62.60 57.69 53.86 38.76 17.92
+HyQE 65.58 62.72 54.39 43.59 18.81
×HyQE 67.38 63.35 57.52 45.49 20.41

bge-base-en-v1.5
- 75.37 70.55 75.49 43.55 17.92
+HyQE 75.16 71.36 78.98 46.12 20.69
×HyQE 75.96 72.07 78.81 46.85 20.39

Table 3: NDCG@10 results produced by combining
HyDE with HyQE. In the ‘HyDE’ column, the ‘-’ sym-
bol indicates that the results in the associated rows
are generated by HyDE; ‘×HyQE’ indicates that after
HyDE is used to retrieve contexts, the query embedding
has been changed into the average embedding of the
query and hypothetical contexts when HyQE ranks the
contexts. ‘+ HyQE’ indicates that the query embedding
is not changed when HyQE ranks the contexts; The font
color scheme is similar to that in Table 1.

Algorithm 1. The second is to use HyDE to not
only collect the 100 contexts but also replace the
query embedding with the mean of the query and
hypothetical context embeddings during execution
of Algorithm 1. In Table 3, we compare the results
obtained in these two ways as well as those of us-
ing HyDE alone. The results answer Question C
by showing that HyQE is not only compatible with
HyDE but also can further improve the ranking
quality beyond that in Table 1.
Using the Alternative Scoring Function. We next
answer Question E by evaluating the alternative

Embedding Model DL19 DL20 COVID NEWS Touche
contriever 51.33 46.76 33.10 38.87 15.33
bge-base-en-v1.5 71.04 66.48 79.52 43.57 18.40

Table 4: NDCG@10 produced by using Eq.5 for HyQE.

scoring function in Eq.5. We use two embedding
models, i.e., contriever and bge-base-en-v1.5, for
both context retrieval and ranking. The hyperpa-
rameter λ for each embedding model stays the
same as that produces the main results. We still
use GPT-4o to generate hypothetical queries. The
results are included in Table 4. By comparing with
the results in Table 1, it is obvious that using Eq.5
outperforms the baseline embedding models and
cannot outperform using Eq.2.

7 Conclusion

In this paper, we introduce a novel framework for
context ranking using hypothetical queries gener-
ated by LLMs. Our method is grounded in vari-
ational inference, aiming to preserve the causal
relationship between queries and the contexts. The
experimental results demonstrate that our approach
not only outperforms baselines but also can be in-
tegrated seamlessly with existing techniques, al-
lowing for iterative refinement and continuous im-
provement. Furthermore, our method can amortize
the overhead in text generation with LLM as the
input queries increase, offering a scalable and effi-
cient solution for context retrieval and ranking.

Acknowledgements

This work was supported by the Intuit University
Collaboration Program, and in part by the NSF
under grant CCF-2340776.

13022



Limitations

While our proposed framework demonstrates sig-
nificant improvements in context ranking and is
scalable, there are several limitations to consider:

1. Overhead of Query Generation and Stor-
age. The effectiveness of our method relies
on using an LLM to generate the queries. The
computational complexity for the query gen-
eration is amortized as the input queries grow.
However, this amortization is built on the
premise that the generated queries are stored
for future retrieval. And such storage will
raise the memory complexity of this frame-
work. As a result, extremely large datasets
could still pose challenges.

2. Dependency on the Type of Query. The in-
put query can have different types, e.g., ques-
tions asking for specific information, a se-
quence of keywords, etc. However, in the
prompt we only ask the LLM to generate the
questions that can be addressed by the context,
which may not have different structures than
the input query.

3. Adaptability to Context Chunk Sizes. Our
framework has been validated on well-known
TREC and MS-MARCO datasets, where the
contexts are provided. However, when deal-
ing with document retrieval, the contexts are
created by segmenting the documents into
chunks. The documents may be segmented
with different chunk sizes depending on the
requirement. Each time the document is seg-
mented, the hypothetical queries have to be
regenerated from the contexts. This issue
could potentially be mitigated by generat-
ing hypothetical queries from smaller, fixed-
sized chunks of contexts and composing those
queries for larger chunks of contexts. How-
ever, the specifics of this approach require fur-
ther investigation to ensure its effectiveness
and efficiency.

Addressing these limitations in future work will
be essential for enhancing the robustness, effi-
ciency, and applicability of our proposed context
ranking framework across a broader range of sce-
narios.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Kartik Ahuja, Ethan Caballero, Dinghuai Zhang, Jean-
Christophe Gagnon-Audet, Yoshua Bengio, Ioan-
nis Mitliagkas, and Irina Rish. 2021. Invariance
principle meets information bottleneck for out-of-
distribution generalization. Advances in Neural In-
formation Processing Systems, 34:3438–3450.

Tiago Almeida and Sérgio Matos. 2024. Exploring
efficient zero-shot synthetic dataset generation for
information retrieval. In Findings of the Association
for Computational Linguistics: EACL 2024, pages
1214–1231, St. Julian’s, Malta. Association for Com-
putational Linguistics.

Akari Asai, Sewon Min, Zexuan Zhong, and Danqi
Chen. 2023a. Retrieval-based language models and
applications. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 6: Tutorial Abstracts), pages 41–46.

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and
Hannaneh Hajishirzi. 2023b. Self-rag: Learning to
retrieve, generate, and critique through self-reflection.
arXiv preprint arXiv:2310.11511.

Akari Asai, Xinyan Yu, Jungo Kasai, and Hannaneh
Hajishirzi. 2021. One question answering model for
many languages with cross-lingual dense passage
retrieval. In Advances in Neural Information Pro-
cessing Systems.

Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng,
Jianfeng Gao, Xiaodong Liu, Rangan Majumder,
Andrew McNamara, Bhaskar Mitra, Tri Nguyen,
et al. 2016. Ms marco: A human generated ma-
chine reading comprehension dataset. arXiv preprint
arXiv:1611.09268.

David M Blei, Alp Kucukelbir, and Jon D McAuliffe.
2017. Variational inference: A review for statisti-
cians. Journal of the American statistical Associa-
tion, 112(518):859–877.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

13023

https://aclanthology.org/2024.findings-eacl.81
https://aclanthology.org/2024.findings-eacl.81
https://aclanthology.org/2024.findings-eacl.81
https://openreview.net/forum?id=e8blYRui3j
https://openreview.net/forum?id=e8blYRui3j
https://openreview.net/forum?id=e8blYRui3j
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf


Claudio Carpineto and Giovanni Romano. 2012. A
survey of automatic query expansion in information
retrieval. ACM Comput. Surv., 44(1).

Rewon Child, Scott Gray, Alec Radford, and
Ilya Sutskever. 2019. Generating long se-
quences with sparse transformers. arXiv preprint
arXiv:1904.10509.

Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel
Campos, and Ellen M Voorhees. 2020. Overview
of the trec 2019 deep learning track. arXiv preprint
arXiv:2003.07820.

Matthew Fellows, Anuj Mahajan, Tim GJ Rudner, and
Shimon Whiteson. 2019. Virel: A variational in-
ference framework for reinforcement learning. Ad-
vances in neural information processing systems, 32.

Thibault Formal, Carlos Lassance, Benjamin Pi-
wowarski, and Stéphane Clinchant. 2022. From dis-
tillation to hard negative sampling: Making sparse
neural ir models more effective. In Proceedings of
the 45th international ACM SIGIR conference on
research and development in information retrieval,
pages 2353–2359.

Luyu Gao, Xueguang Ma, Jimmy Lin, and Jamie Callan.
2023a. Precise zero-shot dense retrieval without rel-
evance labels. In Proceedings of the 61st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1762–1777,
Toronto, Canada. Association for Computational Lin-
guistics.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
SimCSE: Simple contrastive learning of sentence em-
beddings. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 6894–6910, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia,
Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, and Haofen
Wang. 2023b. Retrieval-augmented generation for
large language models: A survey. arXiv preprint
arXiv:2312.10997.

Albert Gu and Tri Dao. 2023. Mamba: Linear-time
sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752.

Matthew D Hoffman, David M Blei, Chong Wang, and
John Paisley. 2013. Stochastic variational inference.
Journal of Machine Learning Research.

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Se-
bastian Riedel, Piotr Bojanowski, Armand Joulin,
and Edouard Grave. 2021. Towards unsupervised
dense information retrieval with contrastive learning.
CoRR, abs/2112.09118.

Kalervo Järvelin and Jaana Kekäläinen. 2002. Cumu-
lated gain-based evaluation of ir techniques. ACM
Trans. Inf. Syst., 20(4):422–446.

J. L. W. V. Jensen. 1906. Sur les fonctions convexes
et les inégalités entre les valeurs moyennes. Acta
Mathematica, 30:175–193.

AQ Jiang, A Sablayrolles, A Mensch, C Bamford,
DS Chaplot, D de las Casas, F Bressand, G Lengyel,
G Lample, L Saulnier, et al. 2023. Mistral 7b (2023).
arXiv preprint arXiv:2310.06825.

Jean Kaddour, Joshua Harris, Maximilian Mozes, Her-
bie Bradley, Roberta Raileanu, and Robert McHardy.
2023. Challenges and applications of large language
models. arXiv preprint arXiv:2307.10169.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina
Toutanova. 2019. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. In
Proceedings of naacL-HLT, volume 1, page 2.

Diederik P Kingma and Max Welling. 2013. Auto-
encoding variational bayes. arXiv preprint
arXiv:1312.6114.

Victor Lavrenko and W. Bruce Croft. 2001. Relevance
based language models. In Proceedings of the 24th
Annual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval,
SIGIR ’01, page 120–127, New York, NY, USA. As-
sociation for Computing Machinery.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, et al. 2020. Retrieval-augmented generation
for knowledge-intensive nlp tasks. Advances in Neu-
ral Information Processing Systems, 33:9459–9474.

Jimmy Lin, Xueguang Ma, Sheng-Chieh Lin, Jheng-
Hong Yang, Ronak Pradeep, and Rodrigo Nogueira.
2021. Pyserini: A Python toolkit for reproducible
information retrieval research with sparse and dense
representations. In Proceedings of the 44th Annual
International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR
2021), pages 2356–2362.

Linqing Liu, Minghan Li, Jimmy Lin, Sebastian Riedel,
and Pontus Stenetorp. 2022. Query expansion us-
ing contextual clue sampling with language models.
arXiv preprint arXiv:2210.07093.

Chaochao Lu, Yuhuai Wu, José Miguel Hernández-
Lobato, and Bernhard Schölkopf. 2022. Invariant
causal representation learning for out-of-distribution
generalization. In International Conference on
Learning Representations.

Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das,
Daniel Khashabi, and Hannaneh Hajishirzi. 2022.
When not to trust language models: Investigating
effectiveness of parametric and non-parametric mem-
ories. arXiv preprint arXiv:2212.10511.

Grégoire Mialon, Roberto Dessi, Maria Lomeli, Christo-
foros Nalmpantis, Ramakanth Pasunuru, Roberta
Raileanu, Baptiste Roziere, Timo Schick, Jane

13024

https://doi.org/10.1145/2071389.2071390
https://doi.org/10.1145/2071389.2071390
https://doi.org/10.1145/2071389.2071390
https://doi.org/10.18653/v1/2023.acl-long.99
https://doi.org/10.18653/v1/2023.acl-long.99
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://arxiv.org/abs/2112.09118
https://arxiv.org/abs/2112.09118
https://doi.org/10.1145/582415.582418
https://doi.org/10.1145/582415.582418
https://api.semanticscholar.org/CorpusID:120669169
https://api.semanticscholar.org/CorpusID:120669169
https://doi.org/10.1145/383952.383972
https://doi.org/10.1145/383952.383972
https://openreview.net/forum?id=-e4EXDWXnSn
https://openreview.net/forum?id=-e4EXDWXnSn
https://openreview.net/forum?id=-e4EXDWXnSn


Dwivedi-Yu, Asli Celikyilmaz, Edouard Grave, Yann
LeCun, and Thomas Scialom. 2023. Augmented lan-
guage models: a survey. Transactions on Machine
Learning Research. Survey Certification.

Niklas Muennighoff, Nouamane Tazi, Loïc Magne, and
Nils Reimers. 2022. Mteb: Massive text embedding
benchmark. arXiv preprint arXiv:2210.07316.

Rodrigo Nogueira, Wei Yang, Jimmy Lin, and
Kyunghyun Cho. 2019. Document expansion by
query prediction. arXiv preprint arXiv:1904.08375.

Zach Nussbaum, John X. Morris, Brandon Duderstadt,
and Andriy Mulyar. 2024. Nomic embed: Training a
reproducible long context text embedder. Preprint,
arXiv:2402.01613.

Ronak Pradeep, Sahel Sharifymoghaddam, and Jimmy
Lin. 2023. Rankzephyr: Effective and robust zero-
shot listwise reranking is a breeze! arXiv preprint
arXiv:2312.02724.

Ori Ram, Yoav Levine, Itay Dalmedigos, Dor Muhlgay,
Amnon Shashua, Kevin Leyton-Brown, and Yoav
Shoham. 2023. In-context retrieval-augmented lan-
guage models. Transactions of the Association for
Computational Linguistics, 11:1316–1331.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992, Hong Kong, China. Association for Com-
putational Linguistics.

Stephen Robertson and Hugo Zaragoza. 2009. The
probabilistic relevance framework: Bm25 and be-
yond. Found. Trends Inf. Retr., 3(4):333–389.

Rylan Schaeffer, Brando Miranda, and Sanmi Koyejo.
2023. Are emergent abilities of large language mod-
els a mirage? In Thirty-seventh Conference on Neu-
ral Information Processing Systems.

Bernhard Schölkopf, Francesco Locatello, Stefan Bauer,
Nan Rosemary Ke, Nal Kalchbrenner, Anirudh
Goyal, and Yoshua Bengio. 2021. Toward causal
representation learning. Proceedings of the IEEE,
109(5):612–634.

Freda Shi, Xinyun Chen, Kanishka Misra, Nathan
Scales, David Dohan, Ed H Chi, Nathanael Schärli,
and Denny Zhou. 2023. Large language models can
be easily distracted by irrelevant context. In Inter-
national Conference on Machine Learning, pages
31210–31227. PMLR.

Weiwei Sun, Lingyong Yan, Xinyu Ma, Shuaiqiang
Wang, Pengjie Ren, Zhumin Chen, Dawei Yin, and
Zhaochun Ren. 2023. Is ChatGPT good at search?
investigating large language models as re-ranking
agents. In Proceedings of the 2023 Conference on

Empirical Methods in Natural Language Process-
ing, pages 14918–14937, Singapore. Association for
Computational Linguistics.

Nandan Thakur, Nils Reimers, Andreas Rücklé, Ab-
hishek Srivastava, and Iryna Gurevych. 2021. Beir:
A heterogenous benchmark for zero-shot evalua-
tion of information retrieval models. arXiv preprint
arXiv:2104.08663.

Sandra Wachter, Brent Mittelstadt, and Chris Russell.
2017. Counterfactual explanations without opening
the black box: Automated decisions and the gdpr.
Harv. JL & Tech., 31:841.

Liang Wang, Nan Yang, Xiaolong Huang, Binxing
Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder,
and Furu Wei. 2022. Text embeddings by weakly-
supervised contrastive pre-training. arXiv preprint
arXiv:2212.03533.

Liang Wang, Nan Yang, and Furu Wei. 2023.
Query2doc: Query expansion with large language
models. arXiv preprint arXiv:2303.07678.

Xindi Wang, Mahsa Salmani, Parsa Omidi, Xiangyu
Ren, Mehdi Rezagholizadeh, and Armaghan Eshaghi.
2024. Beyond the limits: A survey of techniques to
extend the context length in large language models.
arXiv preprint arXiv:2402.02244.

Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas
Muennighoff. 2023. C-pack: Packaged resources
to advance general chinese embedding. Preprint,
arXiv:2309.07597.

Weichao Zhou and Wenchao Li. 2022. A hierarchical
bayesian approach to inverse reinforcement learning
with symbolic reward machines. In International
Conference on Machine Learning, pages 27159–
27178. PMLR.

13025

https://openreview.net/forum?id=jh7wH2AzKK
https://openreview.net/forum?id=jh7wH2AzKK
https://doi.org/10.48550/ARXIV.2210.07316
https://doi.org/10.48550/ARXIV.2210.07316
https://arxiv.org/abs/2402.01613
https://arxiv.org/abs/2402.01613
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://openreview.net/forum?id=ITw9edRDlD
https://openreview.net/forum?id=ITw9edRDlD
https://doi.org/10.18653/v1/2023.emnlp-main.923
https://doi.org/10.18653/v1/2023.emnlp-main.923
https://doi.org/10.18653/v1/2023.emnlp-main.923
https://arxiv.org/abs/2309.07597
https://arxiv.org/abs/2309.07597


A Visualizing the Hypothetical Query Emebeddings

We demonstrate the difference between the contexts ranked by cosine similarity and those by HyQE. We
conduct an independent component analysis (ICA) on each high-dimensional text embedding and project
the embeddings onto a 2D plane.

Figure 7: ICA on the bge-base-env-v1.5 embeddings for the COVID dataset, which contains 50 input queries. Each
figure corresponds to one of the input queries. The purple circles represent the queries. The red squares represent
the top 5 contexts ranked using cosine similarity, and the red triangles represent the corresponding hypothetical
queries. The green squares represent the top 5 contexts ranked using our method, and the green triangles represent
the corresponding hypothetical queries.

It can be observed from Fig.7 that the contexts ranked by cosine similarity tend to cluster near the
input query in the embedding space. In contrast, the contexts ranked by HyQE and their corresponding
hypothetical queries are more scattered. This suggests that, in the embedding space, the queries are not

13026



necessarily adjacent to the contexts that provide answers to them. Our experimental results in Table.1
show that the ranking produced by our HyQE has a higher NDCG@10 value than that of cosine similarity.
Therefore, both the ICA visualization and the evaluation results support our proposition that cosine
similarity should be applied only when comparing queries with queries to ensure better preservation of
the causal structure and to avoid spurious correlations.

B Additional Implementation Details

In our implementation, we have used Mistral-7b-instruct-v0.2, GPT-3.5-turbo, and GPT-4o to generate
hypothetical queries.

For Mistral-7b-instruct-v0.2, we use the pre-trained model. We set the context window size as 3900,
and the maximum number of outputs as 1024. We also use an instruction prompt as shown in Fig.8 to
wrap the prompt in Fig.2.

<s>[INST]\nYou are an AI assistant. Here are some rules you always follow:
- Generate human readable output , avoid creating output with gibberish text.
- Don 't plainly replicate the given instruction.
- Generate only the requested output , don 't include any other language before or

after the requested output.
- Never say thank you , that you are happy to help , that you are an AI agent , etc.

Just answer directly.
- Generate professional language typically used in business documents in North

America.
- Never generate offensive or foul language.

The user prompt is as follows :\n\n\{ prompt }[/ INST]</s>

Figure 8: Instruction Prompt for Mistral-7b-instruct-v0.2. ‘{prompt}’ is the placeholder for the prompt shown in
Fig.2.

We show examples of the hypothetical queries generated by Mistral-7b-instruct-v0.2 in Fig.9.

Figure 9: Contexts and the corresponding hypothetical queries generated by Mistral-7b-instruct-v0.2. The contexts
are in the yellow bubble. The hypothetical queries are in the blue bubbles.

For GPT-3.5-turbo and GPT-4o, we send the following message to OpenAI API with the parameters
temperature = 0.1, top_k = 1 and n = 1 in the request. For the same contexts in Fig.9, GPT-4o
generates the queries as shown in Fig.11.

13027



{
"role": "system",
"content ": "

You are an AI assistant. Here are some rules you always follow:
- Generate human readable output , avoid creating output with gibberish text.
- Don 't plainly replicate the given instruction.
- Generate only the requested output , don 't include any other language

before or after the requested output.
- Never say thank you , that you are happy to help , that you are an AI agent ,

etc. Just answer directly.
- Generate professional language typically used in business documents in

North America.
- Never generate offensive or foul language ,
"

},
{

"role": "user",
"content ": {prompt},

}

Figure 10: Messages sent to OpenAI API. ‘{prompt}’ is the placeholder for the prompt shown in Fig.2.

Figure 11: Contexts and the corresponding hypothetical queries generated by GPT-4o. The contexts are in the
yellow bubble. The hypothetical queries are in the blue bubbles.

We mentioned in Section 6 that we use a different prompt from that in Fig.2 for the Touche dataset.
The prompt is shown in Fig.12. We designed this prompt because each query in this dataset is about the
topic of an argument, and the contexts record the dialogues in the argument, which may deviate from the
topic. An example is provided in Fig.1.

In Table 5 we show the hyperparameter λ we set for each embedding model to obtain the results in

13028



Which topics could the 'Content ' section of the following passage be arguing about.
If the 'Content ' section provides no meaningful argument , respond with a single 'No

content '.

```<passage >
{context}
</passage >```

Topics are questions.
Each question must be very short , different , and be written on separate lines.
Do not mention the passage itself or the author of the passage ...

Figure 12: Prompt designed for the Touche2020 dataset. ‘{context}’ is the placeholder for the context.

Table 1. Note that for bge-base-env-v1.5, we use a much smaller λ than other models because we do not
normalize the product between the embeddings of the input queries and hypothetical queries but normalize
the product between the embeddings of the queries and contexts. In this way, we obtain better and more
stable results than those when we normalize all the inner products.

contriever bge-base-en-v1.5 E5-large-v2 nomic-embed-text-v1.5 text-embedding-3-large
λ 2.0 0.03 0.5 0.5 0.3

Table 5: Hyperparameter λ used for each embedding model to produce results in Table 1.

Next, we show the derivation of ELBO in Eq.3.

DKL(pq(c)||p(c|q))
= Ec∼pq(c)[log pq(c)− log p(c|q)]

= Ec∼pq(c)[log pq(c)− log
p(q|c)p(c)

p(q)
]

= Ec∼pq(c)[log pq(c)− log p(c)]− Ec∼pq(c)[log p(q|c)] + Ec∼pq(c)[log p(q)]

= DKL(pq(c)||p(c))− Ec∼pq(c)[log p(q|c)] + log p(q)

≤ ELBO

C Additional Experimental Results

In Fig.13 we show the statistics of the hypothetical queries generated for each context in the benchmark
datasets. For most of the contexts across the datasets, the LLM only generates less then 10 hypothetical
queries. Furthermore, Table 6 shows that the average token lengths of the hypothetical queries generated
are around 10 for most benchmarks. This attributes to our designed prompts requiring the LLMs to
generate atomic queries for the contexts.

In Section 6, we have shown how changing the hyperparameter λ affects HyQE on the DL19 and DL20
datasets. We now show the results on 3 other datasets in Fig.14. Most of the results align with those in the
main text, suggesting choosing a small λ for all models except for contriever.

We have also tried to use different embedding models for retrieval and ranking. As shown in Table
7, the results align with those reported in the main text, indicating that HyQE can enhance the ranking
quality.

HyQE Model DL19 DL20 COVID NEWS Touche
Gpt-3.5-Turbo 11.30 11.41 13.75 16.87 10.35
Gpt-4o 8.80 8.90 11.45 9.17 7.14
Mistral-7b-Instruct 12.83 13.24 16.43 14.80 22.48

Table 6: Average number of tokens for each hypothetical query generated in each dataset.

13029

(a) Gpt-3.5-Turbo on DL19 (b) Gpt-4o on DL19 (c) Mistral-7b-instruct on DL19

(d) Gpt-3.5-Turbo on DL20 (e) Gpt-4o on DL20 (f) Mistral-7b-instruct on DL20

(g) Gpt-3.5-Turbo on COVID (h) Gpt-4o on COVID (i) Mistral-7b-instruct on COVID

(j) Gpt-3.5-Turbo on NEWS (k) Gpt-4o on NEWS (l) Mistral-7b-instruct on NEWS

(m) Gpt-3.5-Turbo on TOUCHE (n) Gpt-4o on TOUCHE (o) Mistral-7b-instruct on TOUCHE

Figure 13: The x-axis indicates the number of hypothetical queries generated for a context. The y-axis indicates the
percentage of contexts in the dataset.

13030

(a) COVID (b) NEWS (c) Touche

Figure 14: NDCG@10 changes with λ.

Retrieval Model Embedding Model HyQE Model DL19 DL20 COVID NEWS

contriever

bge-base-en-v1.5
- 65.52 62.29 51.60 42.59
GPT-3.5-turbo 66.16 62.15 53.80 42.69

E5-large-v2
- 66.24 65.20 47.08 46.72
GPT-3.5-turbo 66.44 64.94 51.51 47.17

nomic-embed-text-v1.5
- 63.27 60.07 54.07 43.34
GPT-3.5-turbo 64.52 62.09 53.39 44.20

bge-base-en-v1.5

contriever
- 52.78 51.10 63.57 40.17
GPT-3.5-turbo 59.56 56.73 73.62 45.47

E5-large-v2
- 69.48 71.01 66.19 48.10
GPT-3.5-turbo 71.92 71.36 77.62 48.41

nomic-embed-text-v1.5
- 68.20 65.61 77.25 43.60
GPT-3.5-turbo 71.28 67.20 77.69 44.30

Table 7: NDCG@10 results produced by different combinations of embedding models across various datasets. The
‘−’ sign indicates that the results in the associated row are generated without HyQE. The blue color highlights that
using HyQE for ranking results in a higher NDCG@10 value compared to not using HyQE for the combination of
embedding models and dataset.

In addition to using different LLMs to generate the hypothetical queries, we also vary the temperatures
of the LLM during the generation. Higher temperatures can make the LLM’s response more random. In
Table 8, we utilized contriever for retrieval and embedding and used GPT-3.5-turbo for query generation
under different temperatures. The results show that the ranking performances of our approach is not
significantly impacted by the temperature.

In Algorithm 1, the parameter K in the candidate context set Cq,K functions can also be considered
as a hyperparameter. Setting a small value for K limits the range of contexts to be ranked, resulting
in fewer calls to the LLM. Conversely, a large value of K allows for low-rank but potentially highly
relevant contexts to be re-ranked. However, this increases the number of calls to the LLM and the risk of
erroneously assigning a high rank to a low-relevant context. In Section 6, the results are obtained with K
set to 30. In Table 9, we show how the performance of HyQE changes with the value of K. Compared
with Table 1, the results for K = 20 and K = 30 are close to each other.

Temperature DL19 DL20 COVID NEWS Touche
0.1 53.19 50.04 35.06 42.33 21.02
0.5 53.05 49.50 35.70 40.96 20.43
1.0 52.56 49.74 36.10 41.98 21.91

Table 8: NDCG@10 results produced by using contriever for retrieval and embedding, and using GPT-3.5-turbo for
query generation under different temperatures.

13031

Retrieval Model Embedding Model HyQE Model K DL19 DL20 COVID NEWS

contriever

contriever
GPT-3.5-turbo

10 46.35 43.56 28.84 36.74
20 51.38 48.59 32.82 41.33

Mistral-7b-instruct
10 46.14 42.94 28.63 36.24
20 50.85 48.16 32.90 40.18

bge-base-en-v1.5
GPT-3.5-turbo

10 66.55 61.84 52.66 42.09
20 66.16 62.15 53.80 42.69

Mistral-7b-instruct
10 66.58 61.94 52.62 42.31
20 65.89 62.40 53.93 42.99

E5-large-v2
GPT-3.5-turbo

10 66.55 64.85 27.32 34.84
20 66.48 64.98 27.32 34.84

Mistral-7b-instruct
10 66.41 64.84 48.38 46.08
20 65.67 65.09 52.78 46.28

nomic-embed-text-v1.5
GPT-3.5-turbo

10 62.12 61.77 53.92 44.83
20 64.11 62.08 53.26 43.86

Mistral-7b-instruct
10 64.48 61.54 55.46 43.09
20 63.47 63.69 54.71 44.22

Table 9: NDCG@10 results produced by embedding models and hypothetical query generators (LLMs) across
various datasets. The values in the K column indicates HyQE is used to re-rank the top-K contexts ordered by the
embedding model.

13032

